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ABSTRACT 

The process of research and development (R&D) in the pharmaceutical industry has become 
increasingly unproductive during the last few decades. One reason, among others, for this 
development is the diminishing level of performance reached by research technologies. In the 
following study the term 'performance' is limited to an output measurement which is reflected 
by the number of new drugs launched into the market by which therapeutic improvements can be 
realized. 

The purpose of this study is to analyze the decreasing performance of traditional technologies 
in order to partly explain the reduction in R&D productivity. Subsequently, the potential impact 
of new technologies upon research performance will be simulated by using System Dynamics. 

Broad-scale random screening is the main technological process traditionally used to 
discover chemical substances for new drugs. This study reveals that random screening can be 
adequately modelled by the statistical formula Poisson function. The function is used to calculate 
the probability of discovering new drugs. Empirical data from the German pharmaceutical 
industry from the 1950s onwards were put into the formula. The results show that the probability 
of discovering new drugs has decreased strongly by using random screening. Furthermore, the 
risk involved in research with random screening can be measured by Poisson distribution 
functions. It can be seen that risk has risen significantly since the 1950s. 

The Poisson formula also provides a formal framework for forecasting the impact of new 
technologies on the rate of drug discovery. The high potential performance of new 
biotechnologies, especially genetic engineering, could increase research success rates 
significantly. A System Dynamics model has been constructed in a prototype version to generate 
scenarios for future output rates. The high uncertainty in predicting research successes can be 
estimated by a best, a worst and an intermediate forecast based upon varying assumptions. The 
software application V ensim has been used for modelling and simulating. The model is partly 
based on hypothetical data and is, therefore, a first step towards forecasting the impact of genetic 
engineering on research performance in the pharmaceutical industry. 
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I. Traditional versus New Research Technologies for Drug Discovery 

The paper focusses on a specific category of pharmaceutical R&D called 'research route' (Cox, 
Millane, Styles 1975). The drug search process in research routes is often based on inadequate 
knowledge of the disease for which a chemical substance has to be discovered and subsequently 
developed to a medicine. The causes of diseases and their mechanisms are fairly unknown and 
thus, limited knowledge about their treatment is present. The objective pursued with research 
routes is to discover new ethical drugs by which therapeutic advances can be realized. 

The action of drugs is often described by a lock-and-key analogy. The drug is seen as the key 
and the lock, as a drug receptor. The receptor is a molecule, for example on the surface of a cell, 
through which a drug causes a physiological response (OTA 1993, Weber 1992). This 
physiological response can either alleviate the symptoms or cure the causes of diseases. A 
chemical substance, which is efficacious in these respects, is a potential drug. 

Drugs can basically be identified in two ways: randomly or rationally. The traditional 
technology used to discover drugs in research routes is called 'broad-scale random screening' or 
sometimes just 'random screening' (Walker and Parrish 1988). This means that several thousand 
chemical substances have to be tested, for example in animals, and screened to explore their 
therapeutic potential. The receptors, which control the stages of a disease, are unknown. 
Consequently, the search process for drugs does not rest on knowledge of how the drugs work. In 
this context, the search process is therefore of low rationality. 

As a consequence, substances which bind to a receptor and therefore produce desired 
therapeutic results are found by accident. In other words, the discovery of drugs by the random 
screening technology occures at low probability. Thus, in Figure 1 the traditional technology, 
random screening, is classified as a low rational search process in which successes occur at low 
probability. 

This traditional process can be reversed by rational drug design, searching backwards from a 
known receptor target (OTA 1993). The underlying theme of such a search technology is a 
deliberate design of substances to affect target molecules. This is only possible, of course, if any 
target molecules are known. 

By using new biotechnologies, especially genetic engineering, such target receptors can be 
identified (Weber 1992). Moreover, scientific knowledge for understanding causes and 
mechanisms of diseases has increased significantly through these new research technologies. 
Genetic engineering allows, therefore, a shifting of scientific foundations of drug discovery from 
a low to a higher rational search process. Consequently, the successes will occur with higher 
probability compared to searching for drugs by random screening. 
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Figure 1: Classification of traditional and new research technologies 
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In Figure 1, the term 'molecule modification' means that chemical structures of existing 
drugs will be varied. The result of this trial-and-error approach is often a generic product or a 
slightly improved medicine. Since the search process is based upon existing drugs, the successes 
occur with higher probability compared to random screening. Its rationality is similarly limited. 

Discovering drugs on an empirical pathway is based upon random screening. During 
screening, knowledge of the disease can be accumulated by trial-and error-learning and this helps 
to establish an understanding of drug actions. Empiricism increases the rationality of the search 
process and the probability of success slightly in comparison to random screening (Figure 1 ). 
Neither the molecule modification nor the empirical pathway are subjects of this study. The 
paper is focussed on research technologies, in Figure 1 bold, which are allocated to opposite 
classifications. 

II. Modelling Drug Search Processes by the Use of Poisson Functions 

A traditional technology used in discovering new drugs is that of broad-scale screening. As 
described above, a high number of chemical substances have to be tested to find active molecules 
which are useful in treating diseases. This technology for discovering drugs is also called 
'random screening'. 

As the term 'random' indicates, the efficacy of molecules is discovered by accident. (Webster 
and Swain 1991; Spilker 1989; Walker and Parrish 1988; Cox, Millane, Styles 1975). The results 
of testing chemical substances cannot be determined in advance. Thus, and based upon the 
opinion of the above cited experts, screening tests can be interpreted as random experiments. The 
following thoughts are based upon this view. 

After testing a chemical substance, two results are possible: the compound is efficacious and 
therefore has a therapeutic potential or it is not of value in treating a disease. The testing of 
chemical substances via broad-scale screening can therefore be interpreted as a number of 
Bernoulli trials. To analyze this search process statistically, it is necessary to specify some 
statistical terms. Figure 2 shows the results. 
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Figure 2: Specifying statistical terms 
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A random variable X is for the following study defined as the number of successful trials that 
occur during the screening process. This is equivalent to the number of new drugs, which are 
efficacious in the therapy (see Figure 2). The random variable only takes on non-negative integer 
values which dictates a discrete probability distribution. Thus, a binomial distribution can be 
used to model the probability distribution of X. 

The Poisson distribution is the limit ofthe binomial distribution. To be able to use a Poisson 
function, four conditions have to be met (Cook and Russell 1985): 

1. The number of Bernoulli trials (n) is large. 
2. The probability of an event (p) within .M is small. 
3. The events occur independently. 
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4. The probability of an event is constant during M. 

The conditions for using the binomial distribution are described in the numbers 3 and 4. The 
additional assumptions for using the Poisson function can be seen in numbers 1 and 2. 

In Table 1, the conditions for using Poisson functions are compared with the situation in the 
research section by using the broad-scale random screening technology. 

Assumptions for using the Broad-Scale.Random 
Poisson Model Screening 

1. n::?:20 n::?: 1,000 (in average n = 12,000) 
2. p ~ 0.25 p = 0.00008 (for n = 12,000) 

The mean A is the expected number of successes in 
n Bernoulli trials. 
The A should be~ 5. A= np 

3. The events occur independently. The discovery of any successful substance does not make it more, or 
less, likely that another successful substance will be discovered. 
Thus, the successful trials occur independently of one another. 

4. p is constant. The conditions during testing are held constant. It can therefore be 
assumed, that p remains constant. 

Table 1: Comparing Pmsson assumptions with the random drug search process 

The comparisons in Table 1 show that the assumptions 1 to 4 hold true in reality. Thus, the 
Poisson function can be used to model a traditional drug search process in the form of random 
screening. The four conditions can be accepted as adequately reflecting some aspects of the 
search process. 

The random variable X is therefore Poisson distributed. The probability that X will take on 
any value of k is given by the Poisson function: 

where 

k -.:t 
e A, 

P(X=k)=--
k! 

fork= 0, 1, 2, 3, ... 
0 elsewhere 

e =the base ofnaturallogarithmus, with a value approximately equal to 2.71828. 
A = mean number of new drugs. 
k = number of new drugs. 

If A is known, the values for the probability of k can be calculated. Table 2 gives A for the 
German pharmaceutical industry from 1958 to 1993 (Riebel 1972; BPI 1985; Baumler 1993). 
The empirical values for A are the arithmetic means of successful trials calculated on all diseases, 
on which research has been undertaken during the respective years. It is an industry-wide figure. 

Year A out of n = 10,000 

1958 5 
1967 2 
1978 1.4 

1985 1 
1993 0.8 
1993 (0.1) 

Table 2: Average technological successes by usmg random screemng 
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By using the random screening technology, five chemical substances out of 10,000 were 
identified, on average, as having therapeutic improvements in 1958. This technological success 
rate fell to 0.8 in 1993. Furthermore, the success rate 0.1 in the year 1993 is related to a specific 
disease. It is the rate for discovering a cytostatica used to treat cancer. The technological success 
rate is, on average, 0.1 cytostatica out of 10.000 chemical substances. 

The probability of success fork and the mean "A is shown in Table 3. The Poisson function is 
used to calculate the probabilities for k equals 0 to k equals 10. This has been done for the mean 
of the respective year. The values have been rounded off, so they will not add up exactly to equal 
one in the last column. The Poisson frequency distribution of each year can be seen in Diagram 1 
which shows the usual way of expressing Poisson functions. 
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1958 1967 1978 1985 1993 

A=5 A=2 A= 1,4 A=1 A=0,8 

0,01 0,14 0,25 0,37 0,45 

0,03 0,27 0,35 0,37 0,36 

0,08 0,27 0,24 0,18 0,14 

0,14 0,18 0,11 0,06 0,04 

0,18 0,09 0,04 O,Q2 0,01 

0,18 0,04 0,01 0,00 0,00 

0,15 0,01 0,00 0,00 0,00 

0,10 0,00 0,00 0,00 0,00 

0,07 0,00 0,00 0,00 0,00 

0,04 0,00 0,00 0,00 0,00 

0,02 . 0,00 0,00 0,00 0,00 

... 
Table 3: Probabilities for values of k at different means 
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Diagram 1: Poisson Distribution at different means 
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As Diagram 1 indicates, the Poisson distributions are asymmetrical with respect to their 
means. The curves have a long tail to the right and therefore they are skewed to the right. Two 
trends can be seen. Firstly, the current situation of pharmaceutical research is shown by the 
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curves with small means, e.g. A is 0.1 or 0.8. The probabilities of the curves associated with 
small values ofk, e.g. k = 0, are the largest. The probabilities decrease rapidly ask increases. 

The second trend was between the 1950s until the 1970s, with a mean over 1. These curves 
show, that the largest probabilities of successful trials become associated with values of k equal 
to one and higher. As k increases, the probabilities decrease slowly in contrast to the first trend 
described. The largest probabilities ofvalues fork are shown in Table 4, taken from Table 3. 

Year A Largest probability of values fork 
1978 1.4 0,35 fork= 1 
1967 2 0,27 fork= 1,2 
1958 5 0,18 fork= 4,5 

... 
Table 4: The largest probabilities of technological successes from the 1950s until the 1970s 

The A was 1 in the mid 1980s. This curve divides the two trends described above. Its 
probability fork equals 0 and 1 was constant at 0.37. The line for A= 1 proceeds horizontally 
between these values of k in Diagramm 1. This can be seen in Table 2 as well, where the 
probability fork equals 0 and 1 remains at 0.37. 

III. Measuring Technological Risk by Poisson Distribution Functions 

The term 'risk' is related to the research technology 'random screening'. To analyze risk, two 
components have to be considered (Eckert 1985): 

1. The target of research k*, which should be reached by random screening. This is a specific 
value for the random variable X which is defined as the number of new drugs. 

2. The Poisson distribution function: F(k*) = P(k < k*). 

The Poisson distribution function is defined here as the cummulative probability calculated with 
probability values for k less than k*. The risk involved in random screening can be expressed by 
means of these distributon functions. The risk is the sum of all probabilities for values of k less 
than a specific target k*. Consequently, the technological risk is measured by the probability of 
not reaching the target, i.e. the probability of failure. Diagram 2 shows the distribution functions 
calculated with values from Table 3. 
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Diagram 2: Technological risk of random screening 
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The distribution functions in Diagram 2 give the risk profile related to k at the mean A of a 
specific year. The research target per year can be set at k* equals 2, which could be the target for 
an pharmaceutical company, under the first 20 world-wide in terms of annual sales. For the 
lowest curve in the year 1958, the probability of not reaching the target of 2 was 0.04 or 4 
percent in 10,000 trials. By 1993, this probability had increased to 0.81 or 81 percent. 

The development of technological risk by using random screening at k* equals 2 can be seen 
as well in Table 5. The numbers show how enormously technological risk has increased industry
wide by using random screening. 

Year Technological Risk 
Probability of Failure 

1958 4% 
1967 41% 
1978 60% 
1985 74% 
1993 81% 
1993 (99%) 

Table 5: Increasmg technologtcal nsk 

The discussion of Diagrams 1 and 2 reveals that the probability of research success by using 
random screening has fallen enormously since the 1950s. The performance of this traditional 
technology is widely "exhausted" in searching for efficacious drugs to treat complex diseases 
like cancer and AIDS. Drugs for less complex diseases have largely been discovered. The 
scientific knowledge and medical experience gained in past research activities is inadequate and 
seems to be resulting in a bottleneck of future drug discovery. 

IV. A Prototype System Dynamics Model for Forecasting the Impact of New Technologies 
on Research Productivity 

The scientific knowledge gained with new research technologies, especially through genetic 
engineering, could help to overcome the bottleneck described above. The impact of genetic 
engineering related to the process of screening is at least twofold: 

1. Genetic engineering helps to design and synthesize new chemical substances rationally. 
Thus, it may be more likely, as it is the case by random selection of substances, that designed 
molecules have main biological properties necessary to treat diseases efficaciously (OTA 
1993, 120). However, it is assumed that screening tests are still random experiments. 

2. The efficacy and safety of substances is traditionally discovered in the laboratory by using 
disease models, for example animals. These have often had a low predictability for man. 
Consequently, it is likely that chemical substances "fell through the screen", which could 
have had a therapeutic improvement in humans. Genetic engineering may provide disease 
models with a higher predictability for man (Weber 1992, 45-48). 

As a consequence of points 1 and 2, the probability p of discovering a chemical substance 
having a therapeutic improvement increases through genetic engineering. For the use of Poisson 
functions it is assumed that A = np. Thus, by an increasing p, A will increase whilst the number of 
trials n is kept constant. 
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Forecasting the impact of genetic engineering means, that A has to be predicted. An exact 
measurement of future AS is not possible, since the point in time of major scientific 
breakthroughs and their effect on drug discovery is unknown. The high uncertainty in predicting 
A can be reduced by a best, a worst and an intermediate scenario. Table 6 shows how the 
probability of research successes could increase. The numbers are the assumed values at which A 
increases annually starting from 1994 onwards. The data are hypothetical and symbolize the 
growth of scientific knowledge beneficial to discovering drugs. 

Best Intermediate Worst 
0.2 0.1 0.05 

Table 6: Forecasting the increasing probability of research successes 

The feedback loop of the prototype System Dynamics model is displayed in Figure 3. The 
model's structure is identified in the real world and this could be the situation for a 
pharmaceutical company under the first 20s in terms of annual sales. 
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Figure 3: Core R&D loop 

By"the variable 'Research Intensity' in Figure 4 it is assumed, that the company allocates a 
percentage of its sales income to R&D. The R&D budget is divided by the average expenditure 
for 10,000 trials. The result is the number of 10,000 trials which can be carried out in the 
laboratories. This number multiplied by the probability of success A creates an annual flow of 
new drugs which adds to the portfolio of medicines. In reality, the R&D expenditure associated 
with a new drug and the number of trials in the laboratories is incurred over the 1 0 - 15 years 
prior to launch. The length of this process is not captured in the model described here. The same 
simplifying aggregation was used by Hobbs and Deane (1994). 
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Figure 4: Core stock and flow of R&D 
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There are different tests in order to proof if a model can be accepted as a valid representation 
of the real world (Saeed 1994 ). In the model, empirical and partly statistical values are used for 
the parameters. Thus, it can be stated that the model is valid in this respect (Milling 1974). Table 
6 shows the values of parameters used. 

Parameters Values 
Average Drug Live Cycle Time 25 years (Grabowski and Vernon 1990) 

Average Sales $ 50m p.a. (Hobbs and Deane 1994) 
Research Intensity 15,52 percent (BPI 1994) 

Expenditure $ 194m p.a. (estimated out ofOTA 1993) 
Initial number of drugs in the portfolio 50 drugs 

Table 6: Parameters used m the model 

Diagram 3 presents the scenarios for new drug launches after a simulation run until the year 
2005. The scenarios start at the empirical value 0.8 in the year 1993. 
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Diagram 3: Scenarios for new drug launches 
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The random screening scenario shows the output of R&D by using this traditional 
technology. It is assumed that the success rate of random screening falls 0.005 p.a. starting from 
the empirical value 0.8 in the year 1993. Diagram 4 shows the sales prospects under the 
conditions ofTable 6. 
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Diagram 4: Scenarios for annual sales 
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The impact of genetic engineering on research output can basically revealed by this prototype 
model for a pharmaceutical company of the top 20. The model can be anjusted to specific 
diseases. In addition, the input side of R&D, the expenditure for 10,000 trials, is kept constant 
during simulation. In further studies, causes of expenditure have to be identified and predicted to 
be able to gain an overall picture of future R&D performance by using genetic engineering. 
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