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Abstract 
 

Many studies have found widespread misperceptions of dynamic systems. Knowing the 

complexity of dynamic systems and how little education is offered on this matter, 

misperceptions and mismanagement should not come as a surprise. Furthermore, due 

to complexity, analysts face difficulties in setting boundaries for models and in 

choosing dept of analysis. Consequently, analysts easily misunderstand each other. The 

purpose of this paper is to point out some basic guidelines for the analysis of complex 

dynamic systems. The guidelines come from optimisation under uncertainty, Bayesian 

statistics, and System Dynamics. All three disciplines contribute to a common research 

program. Taken together, they offer a deep philosophy of dynamic systems and a guide 

to proper analysis, and they represent a standard which all statistical, optimisation and 

System Dynamics works could be measured against. 

 

1.  INTRODUCTION 

Nonlinear, uncertain, dynamic systems are typically hard to analyse and manage. The 
purpose of this paper is to present guidelines for the modelling and analysis of such 
systems. The guidelines will be derived from three disciplines of advanced modelling 
analysis: optimisation under uncertainty, Bayesian statistics, and System Dynamics.  
 
Currently, none of the three types of analysis can be said to be used frequently, when 
compared to simpler methods and when compared to the frequency of decisions made 
in complex dynamic environments. According to diffusion analysis, Rogers (1995), the 
complexity of the methods could be the reason. From a utilitarian point of view, a 
modelling approach is the more useful the easier it is to understand and comply with. 
For that reason, this paper focuses more on intuitive explanations than on intricate 
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mathematical analysis, and it points to simplified procedures when warranted and warn 
against such procedures when inappropriate. 
 
From a philosophy of science point of view, the three disciplines of advanced 
modelling are close to belonging to the same “hard core” or “research program” in the 
terminology used by Imre Lakatos. Hopefully this paper will contribute to this view. 
With a common research program for the analysis of complex, dynamic systems, the 
problems of the “unavoidable a priori”, Meadows (1980), is reduced to practical issues 
rather than philosophy. When representatives of the three disciplines end up with 
different practical approaches; this will to a large extent reflect different assumptions 
about: purpose, needs of decision makers, costs of analysis, as well as acquired 
methodological skills. Hence we also keep an eye on these issues. 
 
We limit the discussion to dynamic problems of the infinite horizon type; a class of 
decision problems which covers a large number of important real life situations. 
Bertsekas (1987) defines the infinite horizon problem from an optimisation point of 
view: “First, the number of stages is infinite, and, second, the system is stationary: that 
is, the system equation, the cost per stage, and the random disturbance statistics do not 
change from one state to the next. -- The assumption of stationarity is often satisfied in 
practice, and in other cases it approximates reasonably a situation where the system 
parameters vary slowly with time.” This is exactly the type of problem that is normally 
dealt with in System Dynamics studies, where problematic behaviours are produced by 
the system equations themselves. In other words, the model contains a theory of 
problem behaviour and therefore it can be used to test policies to solve it. 
 
Before discussing basic requirements we distinguish between two different purposes of 
modelling: mental model change and policy fine tuning. When it comes to analysis, 
misperceptions and failures are related either to model structure or to the identification 
of appropriate policies. First we consider policies relying on all three disciplines of 
modelling. Note that not only optimal policies matter here; it is also vital to study the 
consequences of current policies. A proper method must make clear to decision makers 
why there is a problem in the first place. Without such an understanding, policy makers 
may not be motivated to listen to policy recommendations; they may be overconfident 
in current policies. Second, we consider model structure and model testing. Doing so, 
we again rely on all three disciplines of modelling. The key point here is that prior 
information is needed; time-series data never suffice. Finally, we conclude. 
 

2.  TWO DIFFERENT PURPOSES 
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We describe two different purposes: mental model change and policy fine tuning. We 
end with some information economics arguments about the process of modelling where 
a natural process is from the first to the second purpose.  

2.1.  Mental model change 

Some dynamic problems last for decades and centuries without being properly 
understood and dealt with, others repeat themselves from one setting to another with 
little learning from experience, some problems are postulated to occur in the future 
with limited attention by policy makers. In all such situations there is likely to be a 
need for better mental models, for conceptual change among policy makers. The main 
point we want to make is that as a first step in the policy process, simple “qualitative” 
models have an important role to play. By qualitative we mean models that are 
consistent with prior structural information, but that are not necessarily very precise 
and established with much statistical rigour. 
 
We illustrate the usefulness of qualitative models by a well known example from the 
field of economics. Assume there are clear signs of problematic overproduction in a 
market. The supply and demand diagram in Figure 1 shows how of a policy of price 
control produces a new equilibrium with overproduction. This insight is not sensitive to 
large variations in the parameters that determine the slope of the supply and demand 
curves. Furthermore, one does not have to be able to predict the equilibrium point (Pe, 
Qe) or the exact size of overproduction to understand the effects of the price control. 
Finally, the analysis points to the current policy as the cause of the problem, and it hints 
at a removal of the policy as a “new” policy. 
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Figure 1. Supply and demand diagram illustrating effects of price control 
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Modern textbooks in both macro and micro economics make extensive use of similar 
qualitative models (e.g. Mankiw (2007) and Mansfield (1988)). The models are hardly 
ever presented with parameters that have been estimated statistically, although the 
models themselves may have been thoroughly tested. Does this mean that these 
textbooks are unreliable and useless? Since they are frequently used, the perception is 
clearly not. 
 
One can make exactly the same observations about models of dynamic problems, 
although this point may require a longer explanation. Experiments show that most 
people have difficulties in formulating simple open-loop stock and flow problems and 
in reasoning about their behaviour (integration), Sweeney and Sterman (2000) and 
Moxnes and Saysel (revised). In light of these results, it may seem inconsistent that 
people manage well simple dynamic systems. However, for simple systems, feedback 
rules are both effective and precise. Think for example of the filling a glass with water. 
It is when delays and nonlinearities are added, that the simple heuristics start to 
produce problem behaviours, Brehmer (1989), Sterman (1989), and Moxnes (2004). 
Consider for example fluctuations caused by feedback adjustments of the water 
temperature in a shower with a pipeline delay from faucet to showerhead. 
 
Endogenous learning is slow in complex systems, Brehmer (1990) and Paich and 
Sterman (1993), simple teaching interventions may have little effect, Moxnes (1998), 
and overconfidence may need to be reduced through information producing “cognitive 
conflict”, Limon (2001) and Moxnes and Saysel (revised). For these reasons 
simulations, manually or by the use of computers, are very useful both to be explicit 
about model structure and to see the behavioural consequences of model assumptions.1 
 
To understand behavioural consequences, one does not usually need a model with very 
accurate parameters, as in the supply and demand example above. A shower model will 
produce fluctuations in showerhead temperature whenever the operating policy is 
impatient and does not wait for updated feedback information about the temperature. 
The model teaches the user to be sufficiently patient, independent of parameter values. 
Applying this knowledge in a real shower, the user could perform a quick test to find 
out how long it actually takes for the water to pass from the faucet to the showerhead. 
With this information, the appropriate patience is established for the decision rule. 
Without the system knowledge, it is not obvious where the fluctuations come from and 

                                                 
1  Phase diagramming methods and eigenvalue analysis are alternative ways to analyse behaviour.  

These are not pursued here because of an educational barrier of entry. 
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what information to gather. There is a widespread tendency is to assumed that 
complicated behaviour is caused by exogenous factors. 
 
The example clearly demonstrates that simulation models can be very useful even 
though they do not produce very accurate point predictions. Again, this is parallel to the 
supply and demand example in Figure 1. This is a very important point, because it 
seems that the focus on policy analysis is easily blurred when analysts get heavily 
involved in improving models’ ability to predict. Econometricians may erroneously 
demean qualitative insights of a simulation model because their focus is on prediction 
error and statistical testing. Their own policy analysis may be drowned in technicalities 
and complaints about low quality of data. System Dynamicists may go on adding model 
detail to explain every detail of historical behaviour. The model becomes intractable for 
outsiders, and the analysts end up “modelling the system” rather than a dynamic 
problem. In both cases, these tendencies could be seen as beginners’ problems that go 
against good practise. A bias towards minimising prediction error could be motivated 
by human desires to be accurate and clever, as is indicated by investigations of 
conjunction fallacy and overconfidence, Plous (1993). In these cases people lose sight 
of the main goal and the final payoffs in their pursuit of short-term goals. 
 
Simple, insightful models can go a long way in motivating policy change. First, 
simulations or data can be used to produce cognitive conflict, which makes decision 
makers disbelieve current erroneous mental models. For instance, data showing that the 
CO2 concentration in the atmosphere continued to increase during the period 1979 to 
1985 when emissions did not increase, challenged high school students’ assumptions 
about a direct, algebraic relationship between emissions and concentration, Moxnes and 
Saysel (revised). Second, simple models and simulations can provide the analogies and 
arguments needed to build alternative mental models. Once a fundamental change in 
mental model has taken place, it is not easily reversed, unless there is sufficient 
complexity and ambiguity left to allow for denial and wishful thinking. The latter is 
particularly tempting whenever policy makers are invited to accept that current 
problems may be due to their own policies of the past, Argyris (1985) and Leibenstein 
and Maital (1994). 
 
As indicated in the two examples above, considerable improvement could be obtained 
without much deliberation once mental models have changed. The shower policy was 
not fine tuned and optimal, however would represent a satisficing policy. The policy of 
simply removing the price control would most likely cure overproduction while the 
problem that motivated the price control in the first place may require further analysis. 
In other cases, there would be an additional benefit for policy fine tuning. 



                       6 

2.2.  Policy fine tuning 

Because of the costs involved, model improvement and policy fine tuning requires a 
minimum of motivation. Decision makers must see potential benefits of more complex 
analyses: to finance such efforts, to spend time trying to understand the results, and to 
trust whatever they are not prepared to comprehend. Motivation is likely to come from 
simple models of the type described above. 
 
Normally, fine tuning of policies requires models that are accurate and produce good 
point predictions of behaviour. Hence, statistical methods are useful to identify the 
most likely model parameters and to reject inappropriate assumptions. Optimisation is 
useful to identify accurate policy implications. 
 
However, a model’s ability to explain historical behaviour is not always directly linked 
to its appropriateness as a testing ground for policies. One obvious possibility is that 
the ideal model changes from its historical version as a reaction to certain policies. For 
instance, a new policy to ban alcohol is not appropriately analysed in a historically 
accurate model that does not include the possibility of future smuggling. Another 
possibility is that of shifting dominance, where historical data are limited to test only 
the then active part of the model. For instance, in a model of yeast cell growth in wine 
production, data from the early period will reveal no significant effect of alcohol on 
yeast growth. Because policies may be more sensitive to structures and parameters that 
have not been influential in the past than to those that find support in historical time-
series data, policies not only improve with models’ ability to predict historical 
behaviours, Moxnes (2005). 

2.3.  Optimal effort 

It follows from Bayesian decision theory that one should consider the expected utility 
before carrying out further analysis. In practise this would lead to a stepwise procedure, 
where at each step one decides on further effort. A likely outcome is that one should 
start with the analysis that produces the greatest expected utility per unit effort. This 
also seems to be a guiding principle in practice, Lyneis (1999). The socalled 80/20 rule 
is consistent with this line of reasoning, where 80 percent of the benefits are supposed 
to follow from 20 percent of the costs of analysis. 
 
Seen in the light of Bayesian decision theory, one sees that the purpose of modelling 
naturally changes from initial efforts to question mental models, to complex analysis to 
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fine tune policies, and maybe back to simple models to improve and disseminate mental 
models. These different purposes are important to keep in mind in later sections of this 
paper. 
 

3. POLICY ANALYSIS 

In principle, optimisation problems are infinitely complex. Through simplifications, 
they become solvable. Underlying models can be simplified or one could search for 
near-to-optimal or satisficing policies. This means that analysts need to be aware of the 
consequences of different types of simplification. The main purpose of this section is to 
give an introduction to the implications of various model attributes for optimal 
solutions. The insights about optimal policies should be useful for both the purpose of 
mental model change and for policy fine tuning. They will also be referred to when we 
discuss model identification in Section 4. 
 
Optimal policies depend on formulations of objective functions (what is to be 
optimised), restrictions (model formulations), and ability to find optimal (or near-
optimal) policies. We use the notation for discrete time systems to be closer to the 
literature on numerical methods and to simplify the modelling of stochasticity. Insights 
will be similar for continuous models. 

3.1. Deterministic dynamic optimisation 

Using formal notation the objective function can be written 
 
 �
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k kk
k uxJ πδ    (1) 

 
where J is to be maximised. J sums up net benefits π over time, where π depends on the 
state vector (the stocks) xk and the decision vector uk. Since we are dealing with infinite 
horizon problems, time step k ranges from 0 to infinity. The discount factor δ is 
normally between 1 and 0. In this case the distant future is in practise not weighted. If 
the discount factor is set equal to 1, there is no discounting and in practise one finds the 
average or total value of π over a finite time horizon. The objective function could also 
be designed to capture risk aversion, to value stability etc. 
 
The restrictions are represented by the dynamic model 
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 ),(1 kkk uxfx =+    (2) 

 
The optimal solution to this dynamic and deterministic optimisation problem can be 
written 
 
 )( kk xu µ=     (3) 

 
First, note that the optimal solution is a feedback policy, Bertsekas (1987).2 Second, in 
general the optimal policy is a nonlinear function of the state vector.3 
 
Third, the optimal solution is a nonlinear function of the entire state vector; that is all 

the stocks of the model. For instance, to stabilise a goods inventory, one should not 
only base the policy on measurements of the inventory, but also include information 
about the amount of goods already ordered. This is consistent with the statement in 
System Dynamics that one should not only consider policy parameter changes, but 
change the structure of the problem by introducing new links.  
 
Fourth, policies could also introduce new stocks in addition to links. For instance, by 
putting a small rudder on the main rudder of a ship, the ship can be steered with much 
less use of power. Thus, a creative policy could involve replacing the algebraic function 
in (3) with a dynamic policy model. With regard to optimisation, one would treat this 
situation as if the model in (2) was augmented with the extra states and then find an 
algebraic feedback policy for the augmented state vector in (3). The System Dynamics 
literature refers to such creative and effective policies as leverage point policies 
(pulling the lever rather than lifting the heavy load directly). 
 
Fifth, the optimal policy depends on the instantaneous values of the state variables; 
there is no need for predictions. The model in (2) is a Markov process for which all 
information is contained in the current stock values. Hence, a forecast would not 
contribute with any useful information beyond what is contained in the state variables. 
Actually, a forecast would complicate the policy in that a two-step procedure would be 
needed, first produce a forecast, and then find a policy based on that forecast. One 

                                                 
2  In this deterministic case the solution could also be written as a function of time, uk=u(tk). This is 

easily seen when the policy (3) is inserted in (2) yielding an equation where xk+1 is only a function 
of xk. Thus, in this deterministic case the resulting xk is only a function of time, hence uk is also a 
function of time (Bertsekas (1987), p. 23). 

3  Only in the case with a quadratic objective function and a linear dynamic model is the optimal 
policy a linear function of the state vector. 
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should also keep in mind that it is a challenge in itself to produce accurate point 
predictions, Forrester (1961) and Sterman (1986). 
 
One may also think of forecasts as a simple way to represent exogenous influences 
from the rest of the world. However, such forecasts are not consistent with the 
stationary assumption of infinite horizon problems. Conceptually, the easiest way to 
deal with forecasts of exogenous variables is to augment the model (2) with the 
generating process. Doing this the above insights all apply. Adding uncertainty, the 
below insights also apply. 
 

Case for illustrations 
 
To illustrate some of the points made in this section we find optimal harvesting policies 
for a fishery model. We want to maximise the objective function, which is the expected 
net present value over an infinite horizon 
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where πk is the yearly net profits and ρ=0.95 is the discount factor. Yearly profits are 
given by revenues minus costs 
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where p=NOK 6/kg is the price of fish, hk is the yearly harvest, the per unit operating 
cost is c=NOK 3/kg, and β

kx denotes the catch per unit effort with β=0.6. Costs are 

integrated over the yearly change in stock size xk due to harvesting, because the catch 
per unit effort decreases when the stock size is reduced. The stock increases with 
surplus growth and decreases by harvest 
 
 

kkkkkkkk whxbhxahxx ))()()(( 2
1 −+−+−=+   (6) 

 
where a=0.75 and b=-0.18 are the parameters of the surplus growth, and wk represents 
stochastic variation in net recruitment from year to year (lognormal distribution, iid). 
All parameters reflect data for cod in the Barents Sea, Moxnes (2003). 
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To find optimal policies hk=h(xk) we use the program package SOPS (Krakenes (2004), 
Moxnes (2003), and Moxnes (2005)). Figure 2 shows the optimal policy for the 
deterministic case, wk=1.0. The policy is the well known target escapement policy, 
where each year the harvest reduces the stock to the target (2.2 million tons). If the 
stock is below the target, harvest equals zero. 
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Figure 2: Harvest policies for different cases: deterministic, stochastic, stochastic and measurement 
error, and stochastic and lasting parameter uncertainty 
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3.2. Stochastic dynamic optimisation 

A next step is to add stochasticity to the model in (2) 
 
 ),,(1 kkkk wuxfx =+    (7) 

 
by introducing an independently, identically distributed random variable wk. This 
variable sums up all the factors that could lead to different outcomes than that predicted 
by the deterministic model, for instance recruitment variation and predation. With 
stochasticity, the net benefits vary with the stochastic variable and we have to operate 
with the expected value in the objective function 
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All the insights from the deterministic model are still valid with the following 
qualifications. First, the optimal solution is a feedback policy, and in this case the 
solution can not be expressed as a unique policy path over time. Feedback is needed to 
correct for the unpredictable outcomes of the stochastic process. Second, the exact 
relationship between state variables and the policy variable is influenced by the amount 
of stochasticity; one cannot simply assume the solution from the deterministic case to 
apply.4  
 
Figure 2 shows the optimal policy for the fishery case with stochasticity5 in 
recruitment. Again the policy is the well known target escapement policy with only a 
marginally different target from that obtained in the deterministic case, Reed (1979).  
 
When introducing high dimensionality, stochasticity, and other types of uncertainty, 
optimisation requires simplification. When there are many state variables, the optimal 
policy will be of high order. To avoid putting severe restrictions on policies, many grid 
points are needed in each dimension. This led the inventor of dynamic programming, 
Richard Bellman, to use the term “the curse of dimensionality”. Bertsekas (1987), 
pp.143, points out huge needs for both computer storage and CPU time in higher order 
cases. 

                                                 
4  If one tries to fine tune the policy to one (deterministic) scenario, one will normally end up with a 

biased policy, Rockafellar and Wets (1987). 
5  The lognormal distribution has mean=1.0 and standard deviation=0.15, reflecting the residuals 

when regressing (6) on data for cod in the Barents Sea. 
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The curse of dimensionality can be dealt with in two ways: either by simplifying 
models to enable exact optimal solutions, or by seeking approximate solutions to 
complex models. The first approach is attractive because it produces optimal policies 
that are internally consistent with model assumptions. It would be surprising if this was 
not the preferred approach in much theoretical work. 
 
The second approach allows higher external consistency while there will be uncertainty 
left regarding the policy recommendations. The prime argument for this approach is 
one of practical policy making. If advanced optimisation methods fail in identifying 
optimal policies for complex problems, how could one expect policy makers to do so 
by intuition? Bertsekas (1987), writes: “When everything else fails, one has to settle for 
a control scheme that can be practically implemented and performs adequately 
(hopefully close to optimally).”, pp.143. Neuro-dynamic programming, Bertsekas and 
Tsitsiklis (1996) and SOPS (see references above), are both methods that seek near-to-
optimal solutions to complex problems. 

3.3. Stochastic dynamic optimisation with uncertain measurements 

Measurement error is a further complication. In this case the true stock values xk are not 
known with full precision, only uncertain measurements 
 
  ),( kkk vxhy =    (9) 

 
are available, here with a stochastic variable vk. At the outset this complicates 
tremendously since now the optimal policy becomes a function of not only current 
values, but of the entire history of stock measurements yk and decisions uk. Over time 
the dimension of the policy function tends towards infinity. In principle there exists a 
solution where the policy only depends on the last point in time, but where the optimal 
policy is a function of the probability distribution for all states given the uncertain 
measurements, Bertsekas (1987), pp.127. A simplification of the latter approach that 
may work quite well is to let the policy be a function of the expected value of the 
estimated state 

kx̂  

 
  )ˆ( kk xgu =    (10) 

 
Besides leaving out information about the entire distribution for 

kx̂ , a weakness of this 

approach is that the estimator requires linearization, for instance if the estimate is 
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produced by a Kalman filter. Another approximation is to let the policy be a direct 
function of current and past measurements6 
 
  ),,,( 21 �−−= kkkk yyygu    (11) 

 
This way, the estimator with its imperfections is removed from the process. Moxnes 
(2003) finds that the latter method outperforms the former in a fishery example. Simply 
assuming that the policy is a function of the last measurement, Figure 2 shows the 
(very) near-to-optimal policy for the case with measurement error in our stochastic 
fishery example.7 The harvest policy is less sensitive to measurements of the stock than 
to exact information about the stock. In the example, measurement error has a much 
stronger impact on the policy than stochasticity.  
 
This case exemplifies the above discussion about model versus policy simplification. It 
is a well known fact that stock estimates are influenced by measurement error. Still 
nearly all optimisation studies have simplified their models by ignoring measurement 
error. Our approximate near-to-optimal policy for the complex model clearly 
outperforms the exact policy for the simplified model. 
 
In case a state cannot be measured, (10) is preferable to (11) as long as the policy is 
sensitive to information about the unmeasured state. Using (10), the estimate of the 
unmeasured state will influence decisions. 

3.4. Stochastic dynamic optimisation with uncertain parameters 

Uncertain information about model parameters ακ is a further complication that is not 
easily dealt with. The model can be written 
 
 ),,,(1 kkkkk wuxfx α=+    (12) 

 
To shed light on this situation, we augment the state vector by the parameter vector αk, 
see Bertsekas (1987) pp.162. 
 
 ),(1

ααα kkk wf=+    (13) 

                                                 
6  Moxnes (2003) explains how previous decisions uk-j are removed from the equation. 
7  Measurements are given as yk=xkvk, where vk is lognormally distributed (mean=1.0 and standard 

deviation=0.4). To avoid a minor bias we let the model start in year minus 10, see Moxnes (2003) 
for a more detailed explanation of why. 
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This system resembles the case with measurement error in that we have less than 
perfect information about the state variables representing the parameter vector. 
Assuming that parameters are constants, αk+1= αk, it is only the initial value of αk that is 
a random variable.8 The solution in (10) can be written 
 
  )ˆ,ˆ( kkk xgu α=    (14) 

 
where 

kα̂  denotes the estimate of the parameter vector. We distinguish three situations. 

 
First, no new information about the parameters is obtained over time; the estimate is 
constant and equal to the estimate at the time when the policy analysis is carried out, 

0ˆˆ αα =k
. This simplifies (14) considerably since 

kα̂  disappears as a variable; the 

situation resembles that in (10). Hence, once again we can use the simplified procedure 
of (11) when using SOPS.  
 
Figure 2 shows the effect of uncertainty in the parameters of the growth function in our 
fishery example.9 The effect of parameter uncertainty is quite similar to the effect of 
measurement error. Again, the policy is clearly different from the case with 
stochasticity only.�
 
Second, learning about the parameters is exogenous. That is, the distributions of the 
parameter estimates are narrowed over time as a result of efforts to improve models and 
estimation procedures. Over time, 

kα̂  moves in the direction of αk with a certain 

probability. Ideally, this process must be modelled, and the updated estimates can no 
longer be neglected in (14). Intuitively and roughly, one should expect the optimal 
policy to change over time. Initially, it should be quite similar to the policy with no 
learning. In the long run it should move towards the case with known parameters.10 
 
Third, the most complex case of all is where parameter estimates are updated 
(reestimated) each time new measurements yk arrive. The main problem in this case is 
not to update the parameter estimates; a recursive Bayesian estimation technique could 
provide a solution. The problem lies in the fact that the policy at one point in time 

                                                 
8  Parameters that change over time could be seen as model variables. 
9  The two parameters in (6) are uniformly and independently distributed, a ∈(0.5,1.0) and b ∈(-0.24,-

0.12). 
10  Bertsekas (1987) pp.162 comments this case by saying: “...in the great majority of cases it is 

practically impossible to obtain an optimal controller by means of a DP [dynamic programming] 
algorithm. Suboptimal controllers are thus called for....” 
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influences the data that is used for estimation in ensuing time periods. Hence the policy 
influences not only the current net benefits πk, but also the quality of the model in later 
periods. This means that there is a tradeoff between short term maximisation of the 
criterion and the learning objective. This is commonly referred to as dual control. The 
final value of the objective function is optimised only when this tradeoff is optimal. 
 
The latter problem can only be solved to optimality in extremely simple cases. Still, the 
dual problem is of considerable interest to modellers. Consider a model of a renewable 
fish resource, for which the initial parameter estimates for the surplus growth function 
are biased. The thin curve in Figure 3 illustrates the biased growth curve where both the 
maximum sustainable yield and the carrying capacity are underestimated compared to 
the correct curve (thick line). A policy, which maximises the yield according to the 
biased curve, will keep the size of the resource close to 1.5 units. The policy generates 
data points that are of little help to distinguish between the biased and the correct 
growth curves. To explore the growth curve at higher resource values, the harvest rate 
must be reduced. If the initial estimate had been correct, this would lead to a short-term 
loss. If, as assumed here, the correct curve has the higher maximum sustainable yield, 
harvests could be raised to a higher level than before and the net benefits would be 
higher in the long-term. 
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Figure 3: Surplus growth functions for estimated and correct parameters together with data points. 

 

3.5. Conclusions regarding policy design 

Clearly, dynamics, nonlinearity, and various types of uncertainty can lead to very 
complicated decision problems. Whether, in such systems, one makes decisions based 
on an intuitive trial-and-error approach or on exact optimisation with highly simplified 
models, there is obviously a potential for biased decisions.  
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However, the optimisation literature gives some guidelines such as: Explore nonlinear 
feedback policies; policies need not be complicated by forecasts. Consider all model 
stocks as potential information sources for the policy. Then search for the leverage 
points. Possibly add new structure to the policy, for instance a dynamic filter to deal 
with measurement error. Be aware that deterministic optimisation or simulation will 
normally lead to biased policy conclusions. Be aware of the tradeoff between data 
generation and short-term optimisation. 
 
Finally, improvement is valuable even though the ideal, global optimum is not reached. 
If the underlying problem is erroneous mental models among decision makers, 
considerable improvement could result from rather simple analysis. Simple models are 
also likely to be needed to create cognitive conflicts to reduce overconfidence and to 
motivate further analysis and policy change. The more fine-tuned one wants the policy 
to be, the more effort must be put into the policy analysis. Those who have the most 
efficient tools should normally be the ones to identify the most successful policies. 
Hence, analysis could improve through competition. 
 

4.  MODELLING AND TESTING 

Modelling is hypothesis formulation and testing against data. According to the 
discipline of Bayesian statistics11, data can be split into prior information and data. For 
the case of dynamic models, we will usually think of data as time-series data. Both 
sources of data are of great value. We start by discussing hypothesis formulation, where 
prior information is the key source of data. Next, we discuss model testing and 
parameter estimation, where Bayes’ theorem is used to combine prior information and 
time-series data. 
 
We distinguish between three types of prior information: minimally informative priors, 
empirical, and subjective priors. Regarding testing methods we discuss both advanced 
Bayesian techniques and simple, manual heuristics. We keep the two purposes in mind: 
mental model change and policy fine tuning, here through model improvement. 

4.1. Model formulation based on prior information 

                                                 
11  Although Bayesian statistics is not widely used, it gains popularity in some niches.  Ashby (2006) 

writes in a 25 year review: “From sparse beginnings, where Bayesian statistics was barely 
mentioned, Bayesian statistics has now permeated all the major areas of medical statistics --.“ 
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For model building, prior information is a prerequisite. Consider a situation without 
prior information. To explain a change in A, one would have to consider all possible 
and impossible influences Bi. Out of millions of explanatory factors Bi, many would 
give statistically significant explanations of the change in A. Therefore, prior 
information is needed for model formulation.  
 
This is also a point Smith (2002), who has been central in the development of 
experimental economics, makes: “The purpose of theory is precisely one of imposing 
much more structure on the problem than can be inferred from the data. This is because 
the assumptions used to deduce the theory contain more information, - -, than the data. 
The next time you report experimental data supporting a hypothesis, someone may note 
that the result might be due to “something else”. Of course, this is necessarily, and 
trivially, true; there are an infinite number of them.” 
 
According to Berger (2006): “Model-building is not typically part of the 
objective/subjective debate, however - in part because of the historical success of using 
models, in part because all the major philosophical approaches to statistics use models 
and, in part, because models are viewed as “testable", and hence subject to objective 
scrutiny. It is quite debatable whether these arguments are sufficient to remove model 
choice from the objective/subjective debate --.” In other words, model formulations 
could range from pure subjective speculation to well founded theories based on much 
prior information. The latter seems preferable. 
 
Dynamic models formulated in differential or difference equations are used in nearly all 
fields of study. Much experimentation and observation has led to the accumulation of 
large amount of prior information. There are laws of physics, chemistry, biology, 
medicine etc. and many of these laws are supplied with universal constants. When 
modelling for instance commodity cycles in the hog market, Meadows (1970), the 
modeller can build on precise prior information related to the modelling of growth of 
hogs with details about gestation time, offspring per livestock, time to mature, weight 
growth etc. These are typically well established biological relationships that need little 
testing against time-series data. Furthermore, people in the business have information 
about business rules and regulations, market structure, availability and accuracy of 
information etc.  
 
Formulating dynamic models is not a trivial task; both laboratory experiments and 
experiences from teaching suggest that considerable knowledge and training is needed. 
Very useful in this regard are the principles and guidelines for modelling developed in 
the discipline of System Dynamics, Forrester (1961), Forrester (1968), Forrester and 
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Senge (1980), and Sterman (2000). For instance: diagramming techniques and 
equations that clearly distinguish stocks and flows, and that distinguish in- and 
outflows; practical definitions of stocks; the feedback concept where causality is 
circular and not only one way; formulations of nonlinearities; distinction between goal 
and realisation; boundary adequacy; real life interpretations of variables and 
parameters; and numerous tests to ensure that theories are internally consistent, robust, 
and consistent with prior information. These guidelines enable students to rediscover 
scientific discoveries of the past, given that the proper questions are raised. Hence they 
should also be helpful in guiding future discoveries. 
 
One of the greatest difficulties is to capture human decision making. How humans 
actually combine information sources to make decisions can be quite complicated. In 
the tradition of economics, a way out of this difficulty has been to assume that people 
make “rational decisions”. However, in the light of the earlier discussion of 
optimisation under uncertainty, it is not at all clear what rational decisions are in 
complex, uncertain, dynamic systems. The choice of a policy formulation somewhere 
between state of the art in the optimisation literature and the simplest of heuristics must 
be subjective, unless it builds on prior information.  
 
Optimisation under uncertainty points to policies that rely on feedback. Laboratory 
experiments suggest that people rely on simple heuristics that work well in simple 
systems but cause problems in more complex systems for which people are not able to 
construct appropriate models. Oscillating showerhead temperatures exemplify; the 
heuristic that works well when filling a glass with water fails in a system with a 
pipeline delay. With precise and frequent feedback, learning and policy adjustment is 
likely to take place in simpler systems. Without, successful policies seem to rely on 
abilities to analyse dynamic systems. If so, it should be possible to obtain some prior 
information about this. 

4.2.  Bayes’ theorem 

Bayes’ theorem or Bayes’ rule prescribes how prior information and data should be 
combined to give more precise posterior estimates and hypothesis tests. The main 
purpose of the presentation is to convey the ideas and intuition behind. 
 
According to Zellner (1984): “Ideally, it would be desirable to have a unified set of 
principles for making inferences and decisions which can be readily applied in a broad 
range of circumstances and fields to yield good results. One of the main points of this 
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paper, and hardly a novel one, is that the Bayesian approach approximates this ideal 
much more closely than do non-Bayesian approaches currently in use in 
econometrics.”, p.187. This praise of Bayesian statistics does not necessarily mean that 
it is, or will be widely used for all purposes. One important reason for this is that 
Bayesian statistics appears more difficult to learn and apply than other statistical 
methods, Moore (1997). Even when Bayesian statistics are not used formally, the 
underlying philosophy should provide guidelines for model testing. 
 
The continuous version of Bayes’ theorem reads: 
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Here )|(| xf X θΘ  denotes the posterior distribution for an unknown parameter θ given 

new data x. The posterior distribution is formed by multiplying the likelihood function 
)|(| θxf X Θ  by the prior distribution )(θΘf  for θ. The likelihood function denotes the 

probability of obtaining the new data x given the parameter θ. The denominator is the 
integral of the numerator over θ. This is just a constant which ensures that the entire 
expression becomes a proper probability distribution where the cumulative distribution 
tends towards 1.0 as θ  tends towards infinity. To simplify the expression, the 

denominator is replaced by 1/c in the last part of (15).  
 
In the following we illustrate how Bayes’ theorem works and what the challenges are. 
At the outset there are three challenges. First, a prior distribution must be specified, 
second a likelihood function must be determined, and third, the posterior distribution 
must be found. To simplify, we assume that we will test a model with only one 
parameter θ. 
 
We start by assuming that the prior is uniformly distributed. Then we obtain the 
likelihood function from a regression where we estimate θ from time-series data. The 
distributions are illustrated in Figure 4. Using Bayes’ theorem, we find a posterior 
distribution that overlaps perfectly with the likelihood function. Thus, in this case the 
prior distribution does not contribute to a more precise determination of θ. The example 
is constructed such that the expected value of θ based on the likelihood is not 
significantly greater than zero. This is a quite frequent observation when testing 
dynamic models on time-series data of limited length and quality. 
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 Figure 4: Example - uniform prior, binomial likelihood and posterior. 

 
Next, consider a situation where we do have prior information, illustrated by the prior 
distribution in Figure 5. In this illustration, the prior estimate has an expected value of 
8, two units below the expected value of the likelihood function. Thus one effect on the 
posterior distribution is to shift the expected value of θ to a lower value. The 
distribution of the prior is nearly as wide as that for the likelihood, still the prior leads 
to a considerably more narrow posterior distribution. In spite of the lower expected 
posterior value for θ, the parameter estimate is now significantly different from zero. 
The multiplication of the likelihood with the prior in (15) explains why we get these 
effects. 
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 Figure 5: Example - binomial prior, binomial likelihood and resulting posterior. 
 

 
Bayes’ theorem can also be used to blend the results of previous studies with new data, 
irrespective of what type of experiment or study the prior comes from. This requires 
that all studies focus on the distribution of the same θ. This requirement is relaxed in 
meta-analysis, Glass (2000). 
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The illustration shows that the accuracy of the posterior estimate can be improved by 
both better prior information and by the use of more time-series data. Where to search 
for more information should be guided by the expected improvement obtained per unit 
of money spent. There is no general answer to where, sometimes prior information is 
nearly perfect and sometimes will repeated experiments provide cheap and long time-
series. 

4.3.  Three different priors 

Depending on the type of information source that is used, the literature operates with 
different types of priors. Here we focus on minimally informative, empirical, and 
subjective priors. 
 
Minimally informative priors do not require much specific information about the 
unknown parameter θ. For that reason minimally informative priors tend to be 
noncontroversial. A uniform distribution exemplifies.12 A major reason for using 
minimally informative priors is that they allow the analyst to use the Bayesian 
framework without appearing to be subjective. In the literature on Bayesian statistics, 
minimally informative priors are usually referred to as objective priors. That definition 
is misleading since empirical priors should also fall into the objective prior category. 
 
There is a philosophical divide between Bayesian statistics and the more standard 
frequentist approach.13 However, in practise and as long as one uses minimally 
informative priors, the two approaches often lead to quite similar results. Berger (2006) 
shows examples where on average Bayesian confidence intervals are somewhat smaller 
than the intervals established by frequentist methods. Probably these differences are 
also small compared to the biases introduced by misspecifications, measurement errors, 
correlated data etc. Berger continues: “Bayarri and Berger (2004) review the vast 
literature showing that objective Bayesian methods are the most promising route to the 
unification of Bayesian and frequentist statistics.” 
 

                                                 
12  Berger (2006) provides a list of minimally informative priors with desirable properties. 
13  In the Bayesian framework the parameter θ is seen as a random variable. Thus both the prior and 

the posterior denote distributions from which one can establish means, standard deviations and 
confidence intervals; all useful measures for decision making. The framework of frequentist 
statistics holds that θ is an unknown constant, which either lies or does not lie in an interval, there is 
no probability involved. Probability is only used about the relative frequency of occurrence of an 
event. This probability should be defined as the limit of its relative frequency in a large number of 
trials. According to Zellner (1984, p.193): “However, this is not to say that non-Bayesians do not 
engage in considerations concerning whether a particular hypothesis is probably true. They do so, 
but only in an informal and subjective manner.” 
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Empirical priors14, as we define them here, build on data other than time-series data. 
Priors that are not minimally informative are usually referred to as subjective. For 
priors that build on generally available numerical data, this seems inappropriate. We 
have already mentioned biological data about for instance gestation and maturation 
times. These are estimates based on much numerical information and with no particular 
element of subjectivity. 
 
Forrester (1980a) makes the point that there is vastly more information in people’s 
mental data bases than in written data bases, which again exceed that of numerical data 
bases. Many sciences have developed and used techniques to elicit data from the 
mental and written data bases.15 Some of these elicited estimates may be subject to well 
known biases in judgement, Wolfson et al. (1996).16 To the extent that biases are 
systematic and well know, biases could be reduced by researchers by making standard 
corrections for underestimations of delay times, standard deviations etc. When elicited 
priors are based on collected information, the elicitation methods are not necessarily 
subjective in the sense that they are biased by the researcher’s own views. Furthermore, 
the fact that the estimates may be biased does not necessarily rule them out as prior 
information. Likelihood functions are also likely to be biased by measurement errors, 
model misspecifications, and overly simplified estimation techniques. 
 
In most cases elicited information is used as it is. In our case the elicited data is treated 
as prior information and will be updated by likelihood functions from time-series data. 
This automatically limits the potential damage of highly biased priors. Furthermore, 
great deviations between prior estimates and expected values of likelihood functions 
should stimulate to critical appraisals of both priors and likelihoods. It should also be 
kept in mind that when there is no valuable prior information about a parameter, a 
minimally informative prior should be used. 
 
By subjective priors we think of prior parameter estimates that are guesstimates made 
by the researcher, possibly influenced by inputs from others, but not arrived at through 
a documented and replicable procedure. The first associations that come to mind may 
range from prejudice to fraud. For instance subjective parameters seem totally 
unacceptable in a study designed to find the effect of a new drug. However, when 

                                                 
14  Note that empirical priors should not be confused with and has nothing to do with “Empirical Bayes 

methods”. 
15  For the use of elicitation techniques in connection with simulation models see: Luna-Reyes and 

Andersen (2004), Ford and Sterman (1998), and Vennix et al. (1992). 
16  There is also a danger that prior estimates are influenced by the same data that are used in the 

likelihood function. In this case the same data will erroneously be used twice to reduce the variance 
of the posterior. 
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dealing with dynamic systems, there are some interesting exceptions. First, for the 
purpose of mental model change, rough parameter guesses may be sufficient to learn 
about the dynamics of a system. Our previous example of showerhead temperature 
illustrates; the oscillations that occur due to the pipeline delay could be observed for a 
wide range of pipeline parameters and decision rules. 
 
Second, to determine optimal research efforts, a model with subjective parameters may 
be used to perform first rough tests of the hypothesised model structure to see if it 
reproduces the behaviour patterns seen in time-series data. Furthermore, sensitivity 
tests on such a model will indicate which parameters are most important and are most 
in need of precise prior estimates. Different from open-loop models, models with 
negative  feedback loops (also referred to as counteracting or balancing loops) tend to 
be quite insensitive to large variations in many parameters. 
 
Third, clients may want to test models based on their own subjective prior information. 
This is the information they will base their decisions on anyway, such that subjectivity 
will be the same. If the client tries to deceive someone, it will be him- or herself. Model 
simulations or optimisations provide extra checks on the client’s mental models and the 
corresponding behavioural implications. 
 
Because empirical and subjective priors can be very useful, the divide between the 
objective and the subjective Bayesian schools may not be very deep. Berger (2006) 
writes: “Note that, in practice, I view both objective Bayesian analysis and subjective 
Bayesian analysis to be indispensable, and to be complementary parts of the Bayesian 
vision.” Then he adds: “--I feel that there are a host of practical and sociological 
reasons to use the label “objective” for priors of model parameters that appropriately 
reflect a lack of subjective information.” 

4.4. Methods for model testing 

As for optimisation, complex dynamic models present great challenges for model 
testing. We start by discussing the augmented Kalman filter, which represents a 
Bayesian approach. Then we comment on a series of tests that go beyond the standard 
statistical tests. Finally, we present a light version of Bayesian statistics for model 
calibration and testing. 
 
As mentioned before, most statistical methods are frequentist methods and do not take 
account of prior information. Many of these methods have been discussed and used by 
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System Dynamicists to analyse dynamic models, e.g. Peterson (1980), Graham (1980), 
Hamilton (1980), and Eberlein and Wang (1985). However, because dynamic models 
consist of coupled, nonlinear equations; time-series are short, autocorrelated, and with 
measurement errors; there is a considerable need for prior information. Hence there are 
good reasons to think that Bayesian methods are superior to frequentist methods for this 
purpose. 
 
One such Bayesian method is the augmented Kalman filter where parameters and 
system states are estimated simultaneously. Parameters and states are updated from 
prior values. This updating slows down if there is measurement error present. A 
weakness of the Kalman filter is that it is ideal only for linear systems. An extended 
version deals with nonlinear systems, relying on linearisation. The augmented filter is 
also an extended filter since parameters and state variables normally form nonlinear 
relationships in model equations. Another weakness of the augmented and extended 
Kalman filter is that it does not always converge.  
 
Using Bayesian methods it is important to be consistent when it comes to the definition 
of priors. Estimation procedures typically operate with discrete time difference models. 
Then, for instance, an interest rate will be defined as the interest accrued over one time 
step. Therefore, using the instantaneous interest rate as a prior would introduce a bias. 
In general, estimation models with coupled difference models represent the one time 
step solution to the corresponding coupled differential equations model. In these one 
step solutions all future states will in principle depend on the current state of all state 
variables, even when the differential equation model has only a few links from states to 
flows. Hence, using instantaneous priors in a difference equation model could lead to 
both parameter biases and model errors (many priors are set equal to zero, overly 
simplifying the discrete time model17). It is not sufficient to adjust each and every prior 
parameter from instantaneous to time step values. 
 
The above is only a major problem when the time step of the estimation model is long 
compared to the shortest time constant in the model. Since the time step is typically 
defined by the time step of available data, discrete time Bayesian techniques typically 
depend on sufficiently rapid updating of data. If data are not reported sufficiently 
frequently, this is an argument for using differential equations, where the simulation 
step length can be set short enough to allow for the use of instantaneous parameter 
definitions. 

                                                 
17  This is an argument in favour of methods proposed by Henry and Richard (1982) and Henry and 

Richard (1983) of letting the data speak by allowing for multiple explanatory factors. 
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To simplify Bayesian estimation one could estimate and test models equation by 
equation. This is also what is typically done when using frequentist methods. This is 
often referred to as a problem because one neglects feedback from dependent to 
independent variables when regressing. However, just as stocks decouple otherwise 
simultaneous equations, they also remove the direct effect of the left-hand side variable 
on the right-hand side variables in difference equations. Hence, one may wonder if this 
particular problem is often exaggerated. However, all other deviations from the 
idealised conditions required by statistical methods could lead to parameter biases. 
Thus, when all equations are put together, the model may fail to endogenously explain 
historical behaviour. Hence, model testing is not necessarily finished when the 
individual regressions have been made. 
 
A last complication to be discussed here is the one where no measurements exist of a 
variable. Soft variables like expectations and attitudes exemplify. Many or most 
decisions are influenced by these types of variables. Even if they cannot be measured, 
they can be quantified and modelled. Given that the unmeasured variable is observable 
(meaning that it can be estimated based on information about other state variables), the 
model can be reformulated such that the unmeasured variable disappears. The 
parameters of the original equation for the unmeasured variable will however show up 
in all equations that the unmeasured variable influences. As a consequence, these 
equations will be complicated by more parameters to be estimated, additional 
nonlinearities, and more complex dynamics. With limited length time-series data and 
measurement error, the likelihood of obtaining statistically significant estimates 
deteriorates. 
 
Because of the many possible complications, all formal statistical methods produce 
results with biases and remaining uncertainty. Hence a theory that has been falsified by 
one method may get support from some other method (Duhem-Quine problem). This 
calls for alternative tests that also go beyond Bayesian statistics.18 Numerous such tests 
are proposed and discussed in Mass and Senge (1978), Forrester and Senge (1980), 
Zellner (1981), Barlas and Carpenter (1990),  and Chapter 21 in Sterman(2000). 
 

                                                 
18  Some of these additional tests only imply minor changes in the standard statistical methods. To test 

for cyclical behaviour, one could for example use a criterion with the deviation between the 
frequency distribution of the model and that of the data (Kullbach-Leibler’s method) rather than the 
prediction error. Doing this one implicitly also questions the existence of cycles in the data by 
explicitly considering the frequency distribution. In practise, however, it is not easy to establish 
frequency distributions in non-stationary time-series. 
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Based on the many potential problems and weaknesses of Bayesian and frequentist 
methods19, as well as considerable costs in terms of education and analysis, it is 
tempting to explore simplified techniques. This has been tried in System Dynamics 
with critical remarks from statisticians as a result. For instance, Zellner (1980) kindly 
suggested that System Dynamics might benefit from a greater emphasis on statistical 
techniques. Forrester (1980b) replied: “He might be correct; however, so many people 
are already working with statistical methods that perhaps some of us should emphasize 
alternatives.” Below, we take both suggestions seriously and indicate how principles 
and insights from Bayesian statistics could be used to justify and to improve simplified 
techniques for model testing and parameter calibration. 
 
First consider the case where there exists perfect prior information about all parameters 
and the model structure. Simulations will be needed only to make explicit the 
behaviour of the model and eventually to test policies. If time-series data are influenced 
by measurement errors, this would be the only cause of deviation between simulated 
and observed behaviour. The certainty of the prior estimates implies that parameters 
should not be adjusted to improve the fit. 
 
Second, some prior estimates are lacking or are not significantly different from zero. 
These parameters could be calibrated to improve the fit between simulated and 
observed behaviour while the more certain prior parameters estimates are kept as they 
are.20 This could be seen as a special case of Bayesian statistics where either prior 
estimates or data are used. Figure 4 illustrates the case with no prior information. 
Figure 5 illustrates a case were both likelihood and prior counts, a case that is missed 
with a rough either-or approach. If the number of parameters without prior information 
is limited, one could of course also make changes in parameters for which uncertain 
information exists to improve the fit to time-series data, however with an eye to the 
prior. Compared to single equation statistical tests, the simulation test captures all 
model interactions. Compared to discrete time Bayesian models, the simulation model 
can always be run with a sufficiently short time-step to ensure that prior information 
about both structure and parameters can be used directly and correctly. 
 

                                                 
19  According to Leontief (1971) in his presidential address to the American Economic Association: 

“In no other field of empirical inquiry has so massive and sophisticated a statistical machinery been 
used with such indifferent results.” 

20  Moxnes (1990) provides an example where a dynamic model of fuel shares reproduces historical 
developments when using prior estimates for equipment costs and lifetimes, while uncertain 
“constant convenience premiums” are found by calibration. Just as obtained statistical estimates of 
parameters are often judged ex post by their signs, the obtained premiums were judged by their 
magnitudes. 
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In the second case simulated behaviour could be sufficiently close to observed 
behaviour that a trained statistician would regard the probability of model rejection as 
highly unlikely. Figure 6 exemplifies. The thick solid line shows the historical 
development of anthropogenic CO2 in the atmosphere. The thin solid line shows 
simulated behaviour of a dynamic model where CO2 is represented as a stock, the 
inflow is the historical emission rate, and the outflow equals the stock divided by an 
average lifetime of 40 years. The lifetime is the only unknown parameter and it has 
been adjusted manually. The fit is very good and there is no reason to reject the model 
based on this fit. In this simple case, a statistical test would also find a highly 
significant parameter for the lifetime. 
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Figure 6: Historical development of anthropogenic CO2 in atmosphere compared to simulated 
developments with a dynamic and a static model. 

 

To illustrate the difficulty of rejecting a false hypothesis by standard statistical 
methods, Figure 6 also shows the behaviour of a static model. Here the CO2 
concentration is a linear model of the historical emission rate. A regression gives the 
impressive t-ratio of 45.4 for the slope coefficient, clearly implying no rejection.21 The 
example shows that quite large deviations from historical data may not lead to 
rejection. Probably, a person using simulations would be more sceptical of the linear 
model than a person seeing only a high t-ratio. Comparing simulations and historical 
behaviours also allow for other comparisons than just prediction error. Most important, 
does the model reproduce the problem behaviour of interest? 
 
In case many prior estimates are highly uncertain or do not exist at all, manual 
calibration to fit historical data becomes increasingly unjustifiable. This is because 
many sets of adjustable parameters could possibly make the model fit the historical 
data. Statistical methods would normally warn that obtained estimates are not 

                                                 
21  A second order static model obtains an even better fit to the historical data with t-ratios higher than 

4.2 for both the first and the second order term. 
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statistically significant. Manual calibration in this case could also be highly subjective 
and influenced by the modeller’s biases. Hence, testing of parameter rich dynamic 
models through simulation is likely to depend on a minimum of prior information. This 
is a main reason for System Dynamics textbooks to insist on real life interpretations of 
model variables and parameters. 
 
Prior information about parameters could also come from previous studies. That could 
be valuable information to improve problem solving. Testing a decision rule with its 
parameters could also reduce the uncertainty about it. For instance, Meadows (1970) 
used the same decision rules in three different commodity market models. Other than 
the decision rules, the models built on prior information about the biology of chicken, 
hogs, and cattle. The three models produced cycles with distinct frequencies, similar to 
the frequencies observed in time-series data for the three respective markets. 

4.5. Conclusions regarding model testing 

Like for optimisation, nonlinear, uncertain, dynamic models present numerous 
challenges for model testing. In the light of model complexity and lack of long and 
reliable time-series data, prior information is of great potential value. Bayesian 
statistics provide a formal apparatus to blend priors and likelihoods obtained from time-
series data. Hence, Bayesian statistics allow for the use of more information than more 
standard frequentist methods. However, practical use of Bayesian statistical methods 
requires simplifications that could introduce biases. For the moment, the methods also 
seem to be quite costly in use. This creates interest in a simplified Bayesian approach 
where as much prior information as possible is introduced before the model is 
calibrated to replicate the problem behaviour modes of interest in historical time-series. 
The more parameters without prior information, the more subjective the simplified 
Bayesian approach becomes and the larger the need for Bayesian or frequentist 
statistical methods. 
 

5. CONCLUSIONS 

Bayesian statistics and advanced optimisation under uncertainty provide important 
guidelines for model construction, testing, and policy identification. Blended with the 
more practical philosophy and guidelines from the discipline of System Dynamics, a 
powerful and workable methodology emerges. It may seem like a paradox when we 
claim that in complex dynamic systems, manual model testing and manual search for 
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policies could outperform rigorous methods from statistics and optimisation. There are 
good arguments for this claim, and there are limitations and traps. We have also pointed 
out the natural progress in studies from simple systems to challenge current mental 
models to comprehensive, well tested models for policy fine tuning. In this broader 
view advanced optimisation, Bayesian statistics and System Dynamics could be seen to 
belong to the same research program. The practitioners of the latter two disciplines 
probably have a bias towards prediction accuracy to the detriment of a clear problem 
focus. In optimisation there is likely to be a bias toward exact solutions, to the 
detriment of more realistic models. 
 
For further research, it would be very interesting to arrange practical “competitions” 
between formal and more practical methods. Synthetic data experiments could be used 
where the data generating process is known. Different cases should be chosen that are 
thought to favour either formal or practical approaches. Furthermore, new simple to use 
Bayesian statistical tests for dynamic models are likely to be very beneficial, and would 
probably bring the disciplines of System Dynamics and Bayesian statistics closer 
together. 
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