
An Architecture for Hosting Management Flight Simulators 
on the World Wide Web 

Magne Myrtveit, Powersim AS 
David Bridge/and, Powersim Corporation 

The need for simulation software installation can be a barrier to the usage of a 

management flight simulator. MFSes are often used once or twice each by a large number 

of people. Installing special software on each individual's PC can be impractical. 

Furthermore, MFSes are convenient to support just-in-time learning. Requiring software 

installation between the need and the satisfaction of that need is a barrier to just-in-time. 

The world wide web is a natural platform for hosting an MFS. A user can point a standard 

/ 
1 
web browser-like Netscape Navigator or Microsoft IE--to a URL that contains a 

Gmanagement flight simulator. No special software is needed. The user interface for the 

simulator is downloaded transparently. Once downloaded, the MFS user interface 

communicates with a simulation model running on a server. 

Hosting management flight simulators on the web also provides a way of mainstreaming 

system dynamics in the business community, removing SD from the ghetto oflearning 

labs, and placing it as part of a standard business environment, the same environment that 

today hosts customer databases, human resource policies, technical support information, 

and other information. 

However, hosting a reliable MFS on the web poses several technical problems. The most 

basic requirement is that communication between the client and server must be supported, · 

with inforin,ation about decisions sent from the clients to the server, and information 

about the state of the model sent from the server to the client. The latter should include 

support for real time user interface controls driven by datastreams from the simulation 

model, allowing animations at the client side. 



Furthermore, this communication should be transparent on the client side. Building a user 

interface for an MFS is challenging enough without having to write network 

communication software. The client software should interact with local proxy classes that 

hide the details of the communication. 

Multi-user games are becoming increasingly important, to simulate different functions in 

an organization, different positions in a supply chain, or different competitors. The web is 

a good place to host a multi-user game, because it naturally supports multiple users in 

different locations. But multi-user games puts additional requirements on the simulation 

server software. In particular, there must be support for the process of choosing a role in a 

game, for joining a game in progress, and for leaving a game. In addition the different 

users may be connected to the server with different bandwidths and latencies. The server 

software must be able to distinguish between a client who has left an active simulation, 

and a client who.has slower responses because she is an ocean away. 

There are several different methods of handling time in a multi-user game. For example, 

one alternative is to have time advance while decisions are made, without anyone able to 

pause the simulation. Another alternative is to have regular cyclic pauses for decision

making, for example every year or every quarter. A third alternative is to allow any user 

to pause the simulation, with that user responsible foi: resuming it when done. The 

simulation server software needs to support user interfaces built with any of these 

alternatives. 

The biggest constraint on simulation server software is that it must manage a potentially 

large number of simultaneous simulations. It is not uncommon for 1 00 or 1 000 

individuals to visit the same site on the web at the same time. Managing a scale of 100 or 

1000 simultaneous simulations is a difficult challenge. 

504 

/ 



Inside a websim 

Figure I shows the architecture of 

a typical "websim". Some of this 

architecture should be familiar: the 

client machine has a web browser 

like Netscape Navigator, and the 

server machine has a http server 

like Microsoft liS. The web 

Client Server 
HTMLstream ' I HTML Server I I Browser 

~~ 
Sim stream I Sim Server I 

~ /Model/ 

Figure 1: Architecture of a Websim 

browser and html server communicate over the internet via a stream of URL requests 

from the client to the server, and http responses from the server to the client. 

The model (shown in Figure I inside the Sim Server) represents the structure of the . 

situation being simulated, a standard SD modeL The Sim Server itself allows that model 

to be controlled: to be played, for parameters to be examined, and for parameters to be 

changed. 

Client Server 
The sim GUI is a user interface to 

a simulation. In addition to D 
SimGUI I HTML Server I 
~~ 

handling all interaction with the 

user, the sim GUI does all other 

application tasks that are not part 

of controlling a simulation modeL 

I 
SimServer 

Figure 2: Invoking a Websim, the First Step 

For example, if a local database is required, that will be part of the sim GUI. The sim 

GUI is written as executable content, typically in Java, but possibly in another medium 

like ActiveX. 

I 

The communication between the sim GUI and the sim server takes place over the internet 

or intranet/extranet (of course), but it is convenient to talk about it as if it happened over a 

private communication channel, a "simulation stream". The simulation stream handles 

requests and control information from the client to the server, and provides responses and 

505 



asynchronous events from the server to the client. Each client has its own simulation 

stream. 

Client Server 
The first step in invoking a 

websim is for the user to browse to 

a page that includes the Sim GUI. 

The html server then automatically 

downloads the Sim GUI 

Browser l HTML .SO rver I 
~~ 

Create session 

I 
Sim Server 

~ 

executable content, as shown in Figure 3: Loading a Model 
Figure 2. Ifthe right content is 

already available locally (e.g. is cached from previously), no download is necessary. 

Next the Sim GUI is executed. One of the first actions taken by the GUI is to open a 

simulation stream with the sim server, as shown in Figure 3, and ask the server to load 

and initialize the model-" creating a session" in the language of the sim server. 

The result of that action is a websim that is ready to run, with all pieces in place. 

Subsequent commands are interpreted by the sim server. Notification of asynchronous 

events ~re also provided by the server to the sim GUI. 

Building and buying pieces 

of a websim 
Client Server 

I 

Of course not everything shown in 

the preceding diagrams must be 

built by the websim creator. The 

simulation server is a standard 

Browser l HTML Server I 
~~ 

application that is common to all 

websims. Powersim Metro Server 

is a sim server application that 

~ Commands 
Res on s p se 

Events 

I Sim Server I 
/Model/ 

Figure 4: Websim ready to simulate 

506 



Client Server 
handles multiple clients and 

multiple models, as many as 200 

simultaneous clients in our most 

Browser 
H1MLstreani 

! I H1ML SeNer I (§0(§0 
Simstream 

il 
SimSeNer 

I ••d"- 4hiMF 
recent tests. 

The Sim GUI middleware is also 
Figure 5: Two Pieces of the Websim that Must be 

provided with Metro Server. The 
Built 

middleware hides all the 

communication details from the rest of the GUI. The rest of the GUI sees a set oflocal 

Java classes that make it seem as if the simulation is running locally. This frees the 

application programmer from the details of the communication and allows her to focus on 

how things should look to the user and what should happen to the model. Figure 5 shows 

the two pieces that must be provided: the model and that part of the Sim GUI that is not 

middleware. 

Related work 

The definition of the Model Interchange Format (MIF) (Myrtveit 1995) opens up the 

potential of using any SD modeling tool for creating models that can be run on the server 

side of a websim. 

The technology described in this paper extends the local·area network simulation 

technology (Davidsen and Myrtveit 1994) without introducing any new limitations

websims can be run over a LAN as well as a WAN. 

Finally, this work can be seen as a extension of some pioneering websim work (Groessler 

1996) that used CGI as middleware to a sini on a server. 

507 



References 

Myrtveit 1995: Models crossing the boundaries of tools. Proceedings ISDC '95, Tokyo, 

Japan 

Davidsen, Myrtveit 1994: Der ROTLI management simulator. Proceedings ISDC '94, 

Stirling, Scotland 

Groess1er 1996: Providing Simulation Models on the Internet, Proceedings ISDC '96, 

Boston, USA 

508 


