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Abstract 

The theory of decisions under uncertainty share basic assumptions with system 
dynamics. Both methods require that decisions are based on only available inform 
mation, and both methods focus on the development of policy rules that improve 
system performance. Both methods have other implications for parameter estimam 
tion than conventional deterministic analysis. Fluctuations are frequently studied 
in system dynamics, and fluctuations and randomness are of great importance for 
decisions under uncertainty. Decisions under uncertainty can be studied by ana­
lytical methods, dynamic programming and Monte Carlo simulations. The latter 
method is quite easily applied to system dynamics models. Using Monte Carlo 
simulations we show that uncertainty has important implications for decisions in­
fluencing the "greenhouse" effect. Note that risk aversion is not an issue in this 
example. The theory of decisions under uncertainty brings new qualitative inm 
sights to system dynamics, an facilitates quantitative improvements of policy 
·rules. Referring to or applying the theory of decisions under uncertainty might 
help to get a wider academic acceptance of system dynamics models, which are 
often thought of as being realistic but quite uncertain. The principles of sy~tem 
dynamics might bring the field of decisions under uncertainty in the direction of 
greater realism. The focus on real life interpretation of system dynamics models is 
most useful for the application of apriori information. Apriori information is 
needed to establish important autocorrelation in cases where short time-series do 
not contain sufficient information. 

System Dynamics and Decisions Under Uncertainty 

Optimization has not got a strong foothold within the field of system dynamics, particularly when 
dealing with uncertain social systems. According to R.F.Naill:" ... uncertainties and imprecisions 
inherent in social systems modeling make any claim of an 'optimal' [deterministic] policy design 
unjustified", (Naill1974, 16). This is also what scientists within the field of stochastic optimization 
or decisions under uncertainty argue about deterministic optimization. According to C.Henry: " ... in 
general, replacing random variables by their expectations will not lead to the appropriate decisions" 
(Henry 197 4, 1 007). 

To my knowledge the technique and philosophy of stochastic optimization or decisions under un­
certainty have not been explicitly considered in the system dynamics literawre. The purpose of this 
paper is to demonstrate that these two fields share underlying assumptions. Both methods require 
that decisions are based on only available information, and both methods focus on the development 
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of policy rules the improve system performance. The purpose is also to show that the methods 
might empower each other. For system dynamics, stochastic optimization might provide both 
qualitative insight as well as better quantitative policy suggestions. For decisions under uncertainty, 
the principles of system dynamics and its focus on real life interpretation and apriori data. might 
provide better models and understanding of random processes. The paper presents a Monte Carlo 
method for making decisions under uncertainty that is easily applicable for system dynamics mod­
els. 

The paper is organized as follows. First, an example is used to introduce the problems of decisions 
under uncertainty. Secondly, the Monte Carlo method is presented and used to find an optimal 
strategy in case of an irreversible decision. Thirdly, various stochastic optimization methods and 
modeling techniques are discussed. 

Examples of decisions under uncertainty 

The general problem of decisions under uncertainty can be stated as follows: 

max E { U (x,E) } (1) 

X 

In addition to the ordinary problem of formulating and maximizing a criterion U(x), uncertainty in­
troduces three new aspects: 

- Uncertainty represented by the random variable e must be formulated and estimated. 
- The expected value of the criterion E { U } must be found. 
- The optimal solution must not assume the use of information that is not yet available ("You know 
that you11 know, but you don't know yet"). 

Risk aversion can, but does not have to be part of the problem. (It can be built into the criterion U). 

Random fluctuations 
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Figure 1: Examples of random and detenninistic fluctuations in oil and gas prices. 

An example of a decision under uncertainty is the choice between investing in a power station that 
uses oil or a multi-fired one that can switch between using oil and gas. If future oil and gas prices 
are expected to be exactly equal, profits are maximized by choosing the oil-fired station which is 
cheaper than the multi-fired station. If there are independent random fluctuations in the two prices, 
while the average or expected values are still the same, the multi-fired station becomes more valu­
able because it benefits from utilizing the cheaper fuel all the time, see figure 1. Whether the multi-
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fired station should be chosen depends on the amount of randomness. Thus, an estimate of the 
randomness is needed to make the correct decision. 

If there is a certain adjustment time in going from one fuel to another, for example due to delivery 
delays of the fuels, it will not be possible to use the cheapest fuel all the time. The multi-fired 
option will only pay off each time the gas price is lower than the oil price for a longer period than 
the adjustment time. Thus, adjustment delays reduces the value of the multi-fired option. On the 
other hand, if price fluctuations are deterministic, like in the second exhibition of figure 1, it would 
be possible to plan ahead and to get the full benefit of multi-firing in spite of adjustment delays. In 
between these two extreme cases is the more realistic case with autocorrelated randomness. 

To conclude, randomness and autocorrelation are important for the correct choice between an oil­
fired and a multi-fired power station. This conclusion is independent of whether the criterion is 
measured in money or in units of utility. The purpose of the decision under uncertainty is to maxi­
mize the expected outcome. 

If the criterion is measured in units of money, we see that stochastic optimization increases the ex­
pected value, while an insurance policy would reduce the expected value. 

Note that decisions under uncertainty bring a new meaning to forecasting. Decisions under uncer­
tainty acknowledge the scepticism of (Forrester 1961, 431): "If the presence of noise is admitted, 
we must necessarily come to the conclusion that even the perfect model may not be a useful predic­
tor of the specific future state of the system it represents." However, decisions under uncertainty 
go a step further and take advantage of the fact that scenarios of the future might belong to the same 
"family" as Forrester terms similarities with respect to amplitudes of excursion and abruptness of 
change. In Henrik Ibsen's terminology in his play Hedda Gabler: "J0rgen Tessman: About the fu­
ture! My God, we know nothing about it. Eilert L0vborg: No, but there are still things to be said 
about it." 

Stochastic methods have been applied in studies of optimal stopping (e.g. job search), futures 
pricing, option pricing, portfolio selection, asset pricing, project evaluation etc. (Malliaris and 
Brock 1987) refer numerous examples. 

Monte Carlo simulations to make decisions under uncertainty 

In this section an example demonstrates the Monte Carlo2 method used to make decisions under 
uncertainty. The next sections will explore details of the methodology and compare it to other tech­
niques. 

In short, the method goes like this. Propose a rule-of-thumb (heuristics) for decisions based on 
available information as this information is revealed over time. Start simulating. Draw random 
numbers from specified distributions to mimic the revelation of information. Make decisions based 
on this information, and evaluate the criterion as the results appear. Repeat the simulations a large 
number of times, and calculate the expected (average) value of the criterion. Repeat this whole pro­
cess with various rules-of-thumb, and choose the rule that maximizes the expected criterion. 

The following practical example is inspired by (Henry 1974), who has studied the effect of irre­
versibility on an investment decision under uncertainty. Think of our irreversible decision as being 
releases of C{h into the atmosphere3. Think of the investment decision as being a power station 
burning coal and releasing COz. The benefits of power generation are assumed to be known pre­
cisely, while the costs of releasing C02 are uncertain. However, measurements of the effects of 
historical and on-going releases of C02 as well as basic research, will provide new information 
about the costs over time. · 
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The following formulation is used to represent the stochastic process of revealed expected costs 

E(t): 

t 

E(t) = Jv( ~)d~ + Eo 
't=() 

(2) 

The expected costs of having the extra units of accumulated C02 from the power plant equals Eo 
initially. This value must be exclusively based on apriori knowledge about the problem, since sig­
nificant changes in climate and costs have not been measured yet. At each point in time new infor­
mation is revealed through the random variable v(t), which is a uniformly distributed variable. 
When simulating, we assume that v(t) is updated every fifth year (simple Euler integration with a 
five year step). Initially it ranges from -0.5 to +0.5 per five years. Over time this range decreases 
linearly towards no variation in year 150. Thus, we assume that after 150 years there is absolute 
certainty about the costs of C02 releases4. 

Revealed information 
about expected costs 
2,5 
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25 
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50 75 100 125 

Figure 2: 5 runs of a Monte Carlo simulation of revealed expected costs of C~ releases. 

150 
Year 

Figure 2 shows five runs of a Monte Carlo simulation of how the revealed expected costs develop. 
Notice how variation from year to year declines over time until full certainty is achieved in the end 
of each scenario. The parameters of the random process are set such that the distribution of the 
costs in the fmal year correspond to the distribution of today's apriori cost estimates. We notice that 
the expected value in year 150 is the initial expectation, and the standard deviation is 0.825. The 
stochastic process is similar to a random walk with the exception that v(t) is uniformly instead of 
normally distributed and the varians declines over time. 

The rule-of-thumb for the investment decision is such that the investment will not take place unless 

revealed expected costs get below a reservation cost e,.. The first time E(t) gets below the reserva-
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tion cost, the "decision time" td is set equal to t. The variable d(t) denotes that an irreversible deci­
sion has been made by switching from 0 to 1. The formal rule is 

t = { 150 initially 
d t at the time e(t)S:e, for the first time 

d(t) = { 0 if t<td 
1 if t~td (3) 

The benefits from the power station b(t) are set equal to 1 by definition, during the 30 year period 
the station operates. Otherwise there are no benefits. 

(4) 

We assume that there is a 50 years delay T from the power plant starts operating (d(t)=l) to the full 
effect of the costs are felt in terms of climate effects6. The distribution of the costs over time c(t) is 
given by a first order delay: 

t 

c(t) = J<d(1') -c(t)){l" dt +0 
't'=() 

(5) 

We choose the net present value (NPV) of benefits b(t) minus costs c(t)·e150 to be the criterion. 

Notice that e150 represents the true, revealed costs after 150 years. The exponent takes care of the 
discounting with a discount rate r=0.02 per year7. The time horizon is 150 years, which should 
give a sufficient accuracy with the chosen discount rate&. 

150 

NPV = I e·rt (b(t) - c(t)·e150 )dt 
t=o 

(6) 

We now set EO and consequently the expected value of e150 equal to 1.148, such that the expected 
NPV=O when the power station is started in the initial year. This enables us to focus on the net 
effect on the NPV of using a better decision rule than the immediate production start. In other 

words, EO is set such that the traditional deterministic analysis based on expected costs, yields a net 
present value of 0. 

The reservation cost e, in the rule-of-thumb is assumed to increase over time, to take account of 
reduced uncertainty: 

(7) 

When t=150, there is no uncertainty, and consequently the power station should be built if the 

NPV is positive. Thus, at t=150 the reservation cost e,=EQ. Initially, uncertainty is large, and by 

using a reservation cost er0 lower than EO, the project start is delayed to wait for more information. 
The reservation cost increases linearly between start and end. The purpose of the Monte Carlo sim-

ulation is to establish the value of er0 that gives the maximum expected NPV. 



System Dynamics '90 

The expected NPV is calculated as the average of the individual net present values NPVi of n 
runs of a Monte Carlo simulation: 

(8) 

This concludes the presentation of the model. 

Then we are ready to search for the reservation cost e.r{) that maximizes the expected NPV. We 

enumerate with e.r{) ranging from 0.2 to 0.9999 relative to EQ. Table 1 shows the resulting expected 
NPV 's with standard deviations, as well as average investment years and number of cases when 
power plants are built Remembering that the expected NPV in the case with immediate production 

start (e,o'~l) is zero, we see that all the suggested values of E.r{) improves the expected net present 
value. Clearly, using the procedures for decisions under uncertainty yields higher expected NPV's 
than the deterministic analysis. This is also what Henry(197 4) found in his analysis of irreversible 
decisions under uncertainty. 

Table 1: Results of Monte Carlo simulations, n=lOOO. 

E!{)/EQ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.9999 

E(NPV) 4.12 4.39 4.49 4.80 5.55 5.21 5.05 3.81 3.76 

GE(NPV) 0.22 0.24 0.26 0.27 0.33 0.39 0.40 0.45 0.47 

Av.inv.yr.td 59 53 48 39 32 26 21 17 13 

No.cases 528 547 574 608 653 680 742 807 847 

Figure 3 shows expectedNPV's as a function of relative reservation costs. The maximizing value 
is somewhere around 0.6. As can be seen, the Monte Carlo analysis does not indicate a very pre­
cise maximum when the number of simulations is moderate. In the figure, a second order polyno­
mial is fitted to the data points. This is not necessarily the correct function to use. However, the 
smooth curve is probably a better estimate of expected NPV's for the interior points than the indi­
vidual outcomes of the Monte Carlo simulations. 

A more intuitive grasp of the results can be obtained from figure 2 where the reservation cost is 
shown together with five examples of how expected costs develop. If the power plant is started 
initially, all five outcomes will contribute to an expected NPV of about zero. With the shown 
reservation costs, the two upper cases with great losses are ruled out. This leads to a higher ex­
pected NPV. The cost of this policy is that startup is delayed in the profitable scenarios. In the thick 
grey line scenario startup is delayed by about 40 years. The solid thick line illustrates a case where 
an unsuccessful investment would be made if the reservation cost had been somewhat higher. Both 
in year 5 and in year 35 expected costs for this case are quite low, but in the long run the costs are 
revealed to be high. This indicates that a decision rule cannot exclude failures completely without 
ruling out all profitable investments as well. Table 1 illustrates this point. As the initial reservation 
cost is reduced, the projects are on average delayed further into the future and the number of in­
vestment starts is reduced. Eventually expected net present values will start falling when reserva­
tion costs are reduced. 
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Figure 3: Results of Monte Carlo simulations, indicating the optimal reservation cost 

In the words of deterministic analysis, we have found that the power plant should not be built to­
day unless the project yields a positive NPV for "greenhouse" cost estimates'that are 40 percent 
above the expected or most likely costs. If there were no close substitutes to power stations that 
burn coal, and demand for electric power were inelastic, decisions under uncertainty would have 
little impact on the actual building of power plants. The reason being that as soon as the supply of 
power does not grow in pace with demand, prices and benefits will increase to offset the addition 
to the costs. However, the existence of close substitutes to coal-fired power stations, as well as 
numerous options for energy saving, implies that a 40 percent addition to the expected "green­
house" costs ought to have a quite dramatic effect on coal-frred power plant decisions. 

Stochastic methods 

The Monte Carlo method was the frrst stochastic method to be applied in the field of economics. 
Later, dynamic programming and analytical methods have been applied. We comment on these 
methods in reverse order. 

Analytical methods 

Stochastic calculus can be used to find analytical solutions to the problem of stochastic optimiza­
tion. In continuous time, the maximization problem can be stated as: 

1 

max E 0 J u(x, d) dt 
d 

1=0 

The function u() denotes utility, usually including discounting. Decisions or control is denoted by 
d. The restrictions for the state variable x are expressed by Ito's stochastic diff~rential equation: 
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dx = f(t,x,d)dt + a(t,x,d)dz 

We notice that the restrictions include an ordinary differential equation/, which contains the math­

ematics of system dynamics. In addition there is a second term on the right hand side u which 
captures the randomness. This term complicates the analytical solution, which typically make use 
of stochastic integration developed by Ito in 1944 (a generalization of a stochastic integral first in­
troduced by Wiener in 1923), Ito's lemma and Pontryagin's stochastic maximum principle. First in 
the 1970's the ideas of stochastic calculus have become accessible to the applied researcher through 
publications like (Astrom,1970; Arnold,1974; and later Malliaris and Brock,l987). Early applica­
tions in economics are (Merton, 1969; Black and Scholes, 1973). 

Analytical solutions to stochastic optimization problems are elegant, exact and provide basic insight 
into difficult problems. The method is limited to simplified problems. According to (Stensland and 
Tj~stheim, 1989) much of the work of practical interest use a linear version of the stochastic diff­
erential equation, with no influence of time t and control d. "The penalty of this approach is that a 
fairly narrow class of processes (geometric Brownian motion) emerges that may in fact fail to cap­
ture the essential features of the data in a number of cases". In the more general form of the model 
Stensland and Tj~stheim write that "an explicit solution can only be obtained in certain special cases 
(Cox and Ross, 1976)". 

Dynamic programming 

An alternative method is Bellman's dynamic programming approach, which can be illustrated by 
S~ren Kierkegaard's saying that: "Life has to be understood going backwards, and it has to be 
lived going forwards". Backwards is here from a future date, and living might be interpreted as 
applying a rule-of-thumb. With dynamic programming the problem is stated in discrete time . 

. Using dynamic programming, one starts solving the problem at the final timeT. At this point there 
_is no future value Vt+ 1 such that the maximization problem boils down to maximizing the value of 
the expected immediate return C(i,d) by choosing the best possible decision d. The variable i de­
notes the state that the earlier development has brought the system into. The maximization has to be 
made for all possible states i. The resulting expected value for each state VT(i) becomes the future 
values Vt+ 1 (/) in the earlier period T-1. (Future states are denoted by j.) At T-1 the expected imme­
diate return C(i,d) is maximized as in the final period In addition one has to consider the effect of 
the current policy d on the likelihood of moving from the current state i to a favourable state j at 
the last point in time. This is modeled by the transition probability Pij(d). Again the maximization 
has to be made for all possible states i. When the Vr-1 's are calculated, one moves to time T-2, and 
so forth to the initial time. Dynamic programming became available in 1957 (Bellman, 1957), and 
an early stochastic application in economics was by (Samuelson, 1969). 

Central to this approach are the transition probabilities Pij. which replace the stochastic differential 
equation of the continuous approach. The transition probability describes the randomness of the 
problem. For example, if the system is in the state i=5, there is 25 percent probability of getting to 
a state j=6, 50 percent chance of going to j=5, and 25 percent probability of ending up with j=4. 
Thus, the transition probability is a matrix. If the process is stationary, one matrix will do, if the 
probabilities change over time, numerous matrices might be needed. 
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Using transition probabilities allows for a very detailed description of a random process. However, 
the size of the problem soon becomes unmanageable with many state variables, non-stationarity, 
and a fine grid to represent continuous state spaces. According to (Stensland and Tj!11stheim, 1989): 
"A more difficult practical problem is the specification of the transition probability matrix { P ij(d), 
iJ = l, ... ,k }. Usually there will not be enough empirical data so that these quantities can be esti­
mated reasonably well using Markov chain estimates even for moderate values of k." They proceed 
to show how a discrete version oflto's stochastic differential equation or a more general ARMA 
model can be used to estimate the transition probabilities. This procedure puts severe (and realistic) 
constraints on the flexibility of transition probabilities, and it allows a limited number of parameters 
to be estimated from scarce data. 

Thus, dynamic programming allows for a more detailed and realistic representation of random pro­
cesses than the analytical approach. For example, when Stensland and Tj!11stheim expands on a 
simple model, allowing for autocorrelation, the optimal policy is changed considerably (the first 
example in this paper indicates why). 

Monte Carlo Simulations 

First note that the Monte Carlo method differs from so-called "scenario analysis"9. An early appli­
cation of the Monte Carlo method for decisions under uncertainty is (Robichek and Home, 1967). 
There seems to be few applications of the method lately. The reason is that the method typically re­
lies on heuristics and does not provide optimal solutions. However, the simulation method is still 
interesting for a number of reasons. The method seems particularly appropriate for researchers with 
system dynamics background. In the following we discuss how to model an uncertain problem, 
how to design rules-of-thumb, how to make the rules as efficient as possible, and we comment on 
the implications for model estimation and implementation. 

How to model a problem with uncertainty? 

Stochastic optimization involves the modeling of decisions at future points in time when new in­
formation is revealed. In the "greenhouse" example a new power plant was built when information 
turned out to be favourable. Thus, in principle, stochastic optimization involves the modeling of a 
regular decision process. Typically this process has three stepslO: 

Reveal information ~ Make forecast ~ Make decision 

Information is revealed about random events and state variables, with or without measurement er­
rors and processing delays. A forecast of future development has to be made for the period when 
the decision has its consequences. Finally, a best possible decision must be based on the forecast. 
Alternatively the decision might be based on the revealed information directly like in most system 
dynamics models. In the latter case the last two steps are combined. Below we concentrate on the 
two first steps, and return to the last step later. · 

We differ between two cases. First we consider systems with known parameters. These are sys­
tems where new information is not expected to improve the parameter estimates. Secondly, we 
consider problems where measurements of states imply new parameter estimates and better models 
overtime. 

An example of a system with known parameters might be a commodity market. Additional time­
series data are not likely to give significantly better estimates of price elasticities of supply and de­
mand, effects of inventory coverage on price etc. Randomness is represented in GNP (demand), in 
weather, political events etc. 
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If information about price development follows a simple random walk process, the decision pro­
cess becomes very simple. First, the revealed information comes about by drawing random num­
bers and adding these to the previous price. Secondly, the forecast is simply equal to the current 
price, since the random walk process is a martingalell. An example of a decision rule is: Invest if 
the price is higher than a reservation price. 

If information about price development follows a more complicated time-series model like in 
(Stensland and Tj~stheim 1989) or a system dynamics commodity market model like in (Meadows, 
1970), the decision process becomes increasingly complicated. First, randomness is introduced 
quite easily by drawing random numbers and letting these influence the development of the market 
model. Secondly, a forecast of market development must be calculated from previous prices in the 
time-series model, or the different states of the commodity modell2. A decision rule might say: In­
vest if the expected net present value of a project is greater than zero. 

An example of a system with unknown parameters is the "greenhouse" problem. For example, ad­
ditional time-series data on C(h concentration and temperature development will lead to new and 
improved parameter estimates of the model. 

One can, like we have done, simplify matters and assume that information is revealed through a 
random walk process with declining varians. The choice of process and the exact time development 
of the varians might be based on simulation experiments with "greenhouse" models and estimation 
procedures. Martingale properties imply that the last observation is the best forecast, and the deci­
sion rule can make use of a time dependent reservation cost. 

A more complicated alternative is to include the "greenhouse" model. The parameters of this model 
must be assumed to be unknown; they are drawn from apriori probability distributions initially. As 
the simulation gets started, revealed development is used by a built-in Bayesian estimation routine 
to update the parameter estimates13. The initial parameter estimates of this routine equal initial ex­
pectations. The updated parameters are used in an equilibrium version of the model to forecast the 
true costs of the "greenhouse" effect. These forecasts are· used in the decision heuristics. 

How to construct rules-of-thumb? 

"Rules-of-thumb are among the more efficient pieces of optimal decision making" (Baumol and 
Quant 1964). If a problem is properly stated, nothing is of course more comforting than the optimal 
solution. However, in cases where it is difficult to state the problem in a simple, solvable form, 
rules-of-thumb can be fruitful. We give two examples of how rules-of-thumb can be constructed to 
improve the "optimal" solutions. 

First, if an optimal solution has been found to a simplified problem of decisions under uncertainty, 
this solution provides a good starting point for a rule-of-thumb in a more complex model. The new 
rule should contain the "optimal" policy as a special case. Monte Carlo simulations will then show 
whether the "optimal" policy can be improved or if it still holds in the more complicated model. The 
resulting decision rule will be better than the "optimal" rule. However, we will not know if it is~ 
optimal rule. 

Secondly, a rule-of-thumb might be designed to be robust against mis-specifications of the proba­
bility distributions of the random variables. According to (Hey 1981, 64 ): "The use of the word 
'optimal' is misleading in that it suggests an objectivity which cannot be present given that the op­
timality is simply relative to the searcher's prior beliefs. Under very imprecise prior knowledge, 
reasonable rules may well be better, ... The general problem of assessing 'how good' are reasonable 
rules is very similar to the general problem of assessing 'how good' are (reasonable) estimators 
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.... the interested reader could refer to ... (Huber 1972)." See also Bayesian and system dynamics 
literature on this point14. Hey's concern about stochastic optimization is similar to Naill's concern 
about deterministic optimization (Naill1974). 

Searching for the best rule-of-thumb 

The statistical nature of Monte Carlo simulations implies that the surface of the expected criterion 
changes each time the expected criterion is evaluated, see figure 3. This property reduces the effi­
ciency of formal search procedures. Enumeration seems to be a better choice. 

Computation time depends on the number of runs in each Monte Carlo simulation and the size of 
the problem. The number of runs depends on the total variation of the criterion caused by the ran­
dom variables. The size of the problem can be approximated by the formula NruleSrule, where Nru1e 
is the number of grid points for each parameter in the rule-of-thumb. Sru1e is the number of param­
eters in the rule. In figure 3 there are 9 grid points and one parameter, which implies 9 Monte Carlo 
simulations. For most purposes 5 grid points would probably be sufficient. To save computation 
time, the interesting region could be established by using a rough grid and a reduced number of 
runs in each Monte Carlo simulations. A second iteration could use a fme grid over a small region 
and a higher number of Monte Carlo simulations. For complex problems computation time might 
get very long15. However, Monte Carlo simulations should be more efficient than dynamic pro­
gramming16. 

Implications for model estimation 

Decisions under uncertainty are sensitive to autocorrelation and to the amount of uncertainty in a 
model. This is different from deterministic decision problems which depend on expected develop­
ment Different purposes have implications for the estimation procedures to be used. 

Most problems of decisions under uncertainty have been analyzed with very simple processes like 
the random walk process. According to (Taylor and Kingsman 1978): "It has now been widely 
accepted that the random walk model describes the stochastic process generating such speculative 
[commodity market] time series." Taylor and Kingsman go on to discuss four methodological traps 
that can lead to incorrect acceptance of the random walk hypothesis. 

(Stensland and Tj~stheim 1989) have estimated an ARMA model for a problem of decisions under 
uncertainty. They find the price series to be autocorrelated. However, knowing the long periods of 
many economic cycles, one should not in general expect that time-series models are likely to reveal 
autocorrelation from relatively short time-series. Non-linearities17 and non-stationarity add to this 
problem. 

Scarce time-series data can be complemented by apriori data about a market. This is the approach of 
Bayesian statistics and in particular of system dynamics, where the required real life interpretation 
of all parameters facilitates the use of apriori information. (Meadows 1970) has demonstrated con­
vincingly that apriori data like maturity times of hogs, chicken and cattle can be used to explain 
historical autocorrelation in the prices of the three types of meat. 

Estimation techniques that minimize the sum of square prediction errors can lead to misleading re­
sults for decisions under uncertainty. This criterion leads to parameters that minimize the varians in 
one period predictions, which is desired in deterministic analysis. In case of cyclical tendencies in 
the data and randomness that makes even the true model miss turning-points, square errors might 
become very high. Minimizing square errors, estimated parameters will attenuate the fluctuating 
tendency. Fluctuations which might be very important for correct decisions under uncertainty. 
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Therefore ordinary estimation techniques must be supplemented by other tests, for example check­
ing that the model produces correct amplitudes!&. 

Implementing the results of the analysis 

In some cases decisions under uncertainty add little to the deterministic analysis. In other cases like 
in our "greenhouse" example, uncertainty is of great importance. Thus, in general one cannot say 
that decisions under uncertainty only yield marginal improvements to deterministic decisions. 
However, the complexity that is added to the analysis implies that one might like such a general 
statement to be true. 

When implementing the results, all the intricate steps of the analysis, whether one uses analytical 
methods, dynamic programming, or Monte Carlo simulations, do not have to be presented to the 
client What the client needs to know is that the assumptions of the model are representative of re­
ality, and that the solution has an intuitive explanation. The first task is similar to that of a regular 
simulation model. The second task might be eased if the suggested rule-of-thumb takes current 
practise as a starting point, and shows how current rules can be improved. It might be the case that 
practical rules already have some provisions for uncertainty. 

Finally, when suggesting a decision under uncertainty, one should anticipate that critics of the 
decision maker might mistake bad luck for bad decision making. One result of this might be that the 
decision maker denies that bad outcomes are bad. Another result could be that she or he returns to 
decisions that are in line with what the critics expect A better strategy would be to announce the 
next step before uncertainty is revealed. For example, in the "greenhouse" example, a decision to 
delay the construction of a coal-frred power plant could be accompanied by a statement saying that 
if costs are revealed to be low, the plant will be built later. 

Notes: 

lThanks to my colleges at the Centte for Petroleum Economics at the Chr.Michelsen Institute and Dag Tj0stheim at 
the University of Bergen for stimulating discussions and helpful comments. 
2The way we use Monte Carlo simulations here differs from the way it is used in "scenario analysis", see note 9. 
Consider the relationship y=f{x). The probability distribution of x is known, and we want to fmd the distribution or 
just the mean value and the standard deviation of y. If the functionf{x) is complicated enough an analytical solution 
might not existHowever, Monte Carlo simulations can always be used. Draw a random number from the distribu­
tion of x and calculate y. Repeat this procedure a large number of times. Organize the resulting values of y to con­
struct a histogram of the distribution of y or simply calculate mean and standard deviation from the values. 
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3The residency tinle of C(h in the atmosphere is thought to be about 100 years, which for practical purposes means 
that C(h releases are irreversible. 
4A similar assumption about a narrowing distribution has been made by Robens and Weit:zman(l981) in a study of 
R&D and exploration projects. 
5since the random process is discrete in time it can be written: 

145 
e150 = £t45+Vt45=eo+ :Lvi 

i=O 

The expected value of Et50 equals eo since the expected values of all vi 's equal 0. The variance of EtSO is given as 

the sum of the variances of the Vi 's. The variance of Vi is O'v1
2-; (mo(I-fcp)3, where mo is half the range of the 

initial uniform distribution (0.5). Initially O'YQ2=0.083, and O'YQ=0.29. The sum of the 30 variances is O'etso2=0.67 
and 0'£15o=0.82. Thus, the final standard deviation is 2.83 times the standard deviation of vo. Notice also that while 
v(t) is uniformly distributed, e(t=150) is approximately normally distributed because it is a sum of independent ran­
dom variables. 
&rhe delay represents time for the C(h releases from the power plant to accumulate in the atmosphere, and it repre­
sents time needed to increase the temperature of air, oceans and the ground. 
7This estimate of the discount rate represents the lower end of estimates based on historical data, see Lind(l982). It 
represents a high estimate in light of desired future sustainable development, see Moxnes(1989). 
8Jn the net present value formula, only 5 percent weight is placed on what happens after year 150. 
9using "scenario analysis" one fmds optimal policies after each run of a Monte Carlo simulation has revealed all 
uncertainty. Thus, the solution builds on information that is not available at the time of the decision. Uncertainty 
only influences the fmal choice of policy in that the final policy is a blend of the "optimal" policies. According to 
(Wets 1988, 3): "the major objection to the 'scenario analysis' approach remains the lack of a solid and reliable 
mathematical basis for the justification of the solutions derived in this fashion." (Rockafellar and Wets, 1987) pro­
pose a method that makes "scenario analysis" converge towards the optimal decision under uncertainty. 
lOnis corresponds to what (Robichek and Home 1967) does. In an appendix they use explicitly the term "forecast". 
llThe martingale property is stated as: E[Xn+tiXt. ... ,XnJ=Xn. That is, expectations about the future are not influ­
enced by the previous history. 
12(Forrester 1961, Appendix L) shows how a forecasting procedure based on trend extrapolation can be built into a 
system dynamics model (and he points to some of the dangers involved when using forecasts). Trend extrapolation is 
an appropriate procedure to use, if this is in fact the technique that will be used when the actual future decisions have 
to made. The parameters of the rule-of-thumb that come out in the end, will reflect the choice of forecasting proce­
dure. 
13(Sterman et aL 1988)'give an example of how a built-in estimation might be modeled in a system dynamics 
model. 
I4see (Zellner 1981; Forrester and Senge 1980) 
15In the "greenhouse" example, each Monte Carlo simulation with 1000 runs took about 20 minutes of computer 
time on a Macintosh II, using an Excel macro. 
16The complexity of a stochastic dynamic programming problem can be approximated by a similar, but squared for-

mula Nstates2·Svariables, where Nstates is the number of grid points for the discretized state variables. Svariables is 
the number of state variables. Typically, Nstates will be larger than Nrule. because state variables that are continuous 
in reality cannot be forced to jump in large steps. This would change the nature of the random process and the opti­
mal solution. Srule should probably be as close to Svariables as possible. Thus, the facts that the dynamic program­
ming formula is squared, and that Nstates typically is larger than Nruie. imply that the Monte Carlo method will be 
more efficient than dynamic programming when the number of state variables gets large. 
17For a discussion of non-linear models see (Tj0stheim 1986). 
I Sse note 14 for references to such techniques. 
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