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Abstract

This paper presents some comparative examples of the use of system dynamics (SD)
for the modeling of electro-mechanical systems. The authors argue that many simula-
tion models coming from sciences can be easily translated to SD, with a large number
of advantages. The work has been developed in a multidisciplinary environment, where
a lack of knowledge transfer between practitioners of these different disciplines is ap-
preciable. In everyday practice, a clear methodology does not exist to evolve from a
classical engineering to a system dynamics approach, from mathematical thinking to
SD thinking. As engineers are fixed to quantitative results to specific problems, they
need strictly quantitative models. This uses to be a critical point in SD where there
is a large amount of qualitative modeling and quantitative modeling with soft vari-
ables. Through the comparison of the same problems solved with different modeling
techniques, it is possible to show the advantages and disadvantages of each of them,
and improve to a better understanding of both approaches.

Key words: quantitative model, electro-mechanical systems, hybrid systems, elec-
trical circuits, system thinking.
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1 Introduction

The development of computing capabilities and software has enabled in the last years the
use of computers for the resolution of complex problems on electro-mechanical systems.
The traditional education of engineering schools to solve this kind of problems is the use
of mathematical equations under the name of Dynamic Systems (DS). These systems are
precise and usually deterministic, purely quantitative, according to the needs of engineering
sciences. The objective of these models is to be able to give a concrete answer to a problem,
far from planning or strategic purposes.

After the 1950s, the development of the seminal work of Forrester evolved to a new
paradigm of modeling techniques called System Dynamics (SD). These systems are based
on stock and flows and are more visual and intuitive. Even, while during the first decades
of SD development, the main purpose was mainly quantitative, many critics emerged from
different disciplines related to a few number of models.

After the 1980s, some modellers derived to the development of pure quantitative models,
as explained by Coyle [6]. Other papers have dealed with this topic ([7], [8], [9], [10]; [11];
[12]; [13]; [15], [16], [17]).

From this moment on, models developed with SD have included pure quantitative modes,
pure qualitative, and a mixture of both. However, when approaching different scientific
domains outside from engineering, like economics and social sciences, there is a profusion of
soft variables, that delimitate the engineers work [14]. These approaches are not the aim of
the engineer’s work, and that is why in this paper the authors do not try to choose one of the
approaches (quantitative of qualitative). The aim is rather to compare between quantitative
approaches from different disciplines. In the following, a short theoretical overview of solving
methods for differential equations will be given, as the examples shown later are concerned
with these type of problems.

1.1 Solving methods for differential equations

Differential equations are an important conceptual part not only of automation or control
systems but also in many other areas of science and engineering, each of which has developed
its own methods to find solutions efficiently. The wheel-and-disc integrator invented by James
Thomson [1], brother of Lord Kelvin, was the first device that allowed for (mechanically) the
operations of analog computation. Using the integrator as basic element, the two brothers
built a device to calculate the integral of the product of two given functions. Kelvin designed
other machines capable of integrating differential equations of any order, but they were never
built.

To find the solution of a given explicit ordinary differential equation,

dny

dtn
= f

(
dn−1y

dtn−1
, . . . ,

dy

dt
, y, u, t

)
,

together with the initial values, the idea of Lord Kelvin was to integrate with his device n
times dny

dt
, thus obtaining the values dn−1y

dtn−1 , . . . ,
dy
dt

, and carry out with them the necessary
(mechanic) arithmetic operations to obtain f(·), and then close the loop [2].
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In 1950s came the analog computer, equipped with electronic integrators made by electron
valves and based on the same ideas of Kelvin. This device allowed for obtaining solutions of
differential equations in the form of electrical signals. Despite its high efficiency (especially
compared to the mechanical integration methods), the analog computers lost importance
with the advent of computers and now digital methods are predominant. Anyway, Kelvin’s
method is still applied in the numerical algorithms.

Also on the the 1950s, Jay W. Forrester [3] was confronted with a problem for the
company General Electric where he understood the need of simulation (of inventory control
type). This first simulation that Forrester did, using pencil and paper, can be considered
as the beginning of System Dynamics [4]. Later he asked Richard Bennett for help to solve
the equations using the computer and created a compiler, called SIMPLE, for this purpose.
Interestingly, the method of Bennet was the same (adapted to the computer) that Kelvin used
to solve differential equations by mechanical methods. Since then, successive generations of
SD people have spoken in the Forrester language.

2 Simulation and modelling approach

2.1 Why model differential equations in SD

The increasing computation power as well as the rapid development of software and simu-
lation programs allow nowadays to build models of complex technical systems in such areas
as architecture, engineering, economics and business, telecommunications, networks and the
Internet. The development of these complex models is expensive and requires teamwork
among groups of people from different disciplines, often with different academic curricula,
what is required to employ a methodology that allows for easy and fast exchange of models
and ideas.

However, when multidisciplinary teams are working on models, communication problems
arise that may hinder the team integration and then result in a drop of its performance,
mainly due to the different training of the persons involved with. So, while people coming
from hard sciences like physicists, mathematicians or engineers, are used to raise the problems
of dynamic systems in terms of differential equations (initial value problem (IVP)); people
from economic sciences, biology, architecture and philosophy, feel more comfortable when
reasoning using Forrester diagrams, system thinking and stock & flow diagrams. Because
these two groups of people have been working for decades in completely disjoint compart-
ments, SD people rarely exchange their views with DS people probably due to the fact that
they talk different languages.

Regarding methodology, while DS people mainly use block-based tools like Matlab/
Simulink and physical modeling tools that allow two-way connections, such as Dymola; SD
people typically employ System Dynamics modeling software such as Stella iThink, Vensim,
etc. Clearly, an important step to improve the effectiveness of model building in multidis-
ciplinary teams is to try to find a working methodology in which both DS people and SD
people feel comfortable. According to the authors, methods used by the SD people are better
positioned than DS, as candidates to be elected as common methodology. Some reasons for
this are:
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1. It is easier to study the SD methods for one who has studied the DS methods than the
other way round.

2. While SD systems, depicted as SD diagrams (Forrester diagrams) represent explicit
differential equations (with derivatives appearing only in the left hand side of the
equations) easily resolvable by the numerical calculation solvers; DS systems usually
give implicit differential equations which results in a set of differential algebraic equa-
tions, not so easy to solve, mainly for multidimensional, discontinuous and discrete
systems.

3. DS, in order to allow more freedom when building models (blocks, bon-graphs and
sophisticated components), are a real worry when performing the simulation. For ex-
ample algebraic loops arise very frequently when modeling systems in Matlab/Simulink.
This is noticeable especially in hybrid systems modeling (discontinuous ordinary dif-
ferential equations) where SD method clearly offers many advantages.

4. A main advantage is the existence of high quality object-oriented software that inte-
grates SD (System Dynamics paradigm) as well as other modeling paradigms explained
further, allowing for a multi-approach modeling and high team integration tasks.

The advantages and disadvantages can be summed up and are presented in the following
Table 2.1.

Approach + –
conciseness limitations in: space, compre-

DS reproducibility hension, notation
preciseness non scalable
comprehension not classical algebra

SD scalability lack of standards
multidimensionality unusual representation

Table 1: Advantages and disadvantages of both approaches

2.2 Simulation and modeling tools used in this paper

Matlab is probably the most widely used simulation program for control systems by aca-
demics, although there are many other programs like Maple, Mathematica, Octave, Scilab,
etc. that are also commonly used and have similar characteristics. With Matlab, simula-
tions are possible in a mathematical sense, i.e. to apply numerical methods for solving some
differential equations representing the system. However, being a program designed with the
technologies of the 1950-60s, it lacks the advantages of more modern object-oriented based
software. These advantages are evident if the system to model is of discrete event type and
even more if it is a hybrid or an agent-based system.

AnyLogic is a recognized program in the community of multi-paradigm simulations, but
little known in the areas of automation and control engineering, which is based on the latest
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advances in object-oriented modeling applied to complex systems [5]. It currently supports
three approaches or modeling paradigms :

• System Dynamics (SD)

• Discrete Events (DE)

• Agent Based (AB)

These three paradigms are mutually compatible, so that, for example, to model a hybrid
system we will use the SD method to model the continuous part of the differential equations
and the DE method for modeling the events. AnyLogic models are portable Java applications
that can run on their own. They are also multiplatform and can run anywhere a Java Runtime
Environment (JRE) is installed. So the models can be also run in a web browser in form of a
Java Applet, which allows for an easy way of publishing the models. Moreover, it is very easy
to develop animations of active objects: the assembly of the image is done automatically. In
this way the animations are highly reusable and can be displayed on the applets.

In AnyLogic scalable models can be easily created, because you can define arrays of
objects whose size is a parameter of the model. You can even dynamically change the
structure of the model by adding or deleting items or changing their interconnection during
runtime to reflect the dynamic changes that can occur in a real system. Regarding the
simulation algorithms, some of them have been modified to work in hybrid environments
(hybrid state machines).

3 System Dynamics examples

The examples presented below have been chosen to expose some typical problems well known
by DS people, especially electrical engineers, accustomed to use sophisticated circuit analysis
tools, or mechatronics analysis tools, and to encourage them to use the System Dynamics
paradigm. These examples prove that (with a little effort) SD methods are also perfectly
valid for analysis of mechanical and electrical systems and that they are easily integrable
into multi-approach modeling environments, allowing for integration of DS people within
multidisciplinary modeling projects.

3.1 Numerical ODE solution using an SD model

An initial value problem (IVP) is an ordinary differential equation (ODE) with a given
initial condition (in form of a specified value) of the unknown function at a given point
in the solution domain. In physics and engineering resolving these kind of problems is
common, as the differential equation describes a system which evolves with time according
to the specified initial conditions. Using SD we can obtain the numerical solution of the first
order control differential equation (initial value problem),{

x′(t) = f(x(t), u(t))

x(0) = x0,
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where t ∈ R, x(t), u(t) ∈ R and f : R× R× R→ R; the (control) function u(t) is given.
Note that the above equation can also represent a multidimensional system if for some

given integer n there are t ∈ R, x(t) ∈ Rn, u(t) ∈ Rm and f : R× Rm × Rn → Rn

AnyLogic hyperarrays allows us to model these multidimensional differential equations,
using a very single Forrester diagram, as can be seen in Figure 1.

Figure 1: Forrester diagram of an multidimensional ODE

Indeed this diagram can represent a first order system when n = 1 or, in general, an
order n system for n > 1 and where u(t), Dx(t) and x(t) are hyperarrays. In this model, the
(given) function u(t) represents the system input (or control input). Dx as a flow variable in
DS represents the formal derivative x′(t) of the unknown function x(t), which is represented
as a stock.

The thick arrow is nothing more than the integrator DS object whereas the thin arrows
indicate dependencies of the function

f(x(t), u(t)).

that is, f depends on x and u (also it depends implicitly on t).

3.2 First order system

To explain a concrete example, a first order ODE given by

IVP:


dx

dt
= a x(t) + b u(t), u(t) is given

x(0) = x0

where parameters a, b and control input are given. This system will be modelled as follows.
The way AnyLogic gives to model this system is very easy: after placing the selected ob-

jects from Palette into Main window, some Properties should be assigned to them, by clicking
them. Figure 2 shows a special case from the previous example while its Forrester diagram
remains the same (but without array variable settings). After dragging a Stock variable and
two Flow variables from Palette to the Main window, by clicking at each one of them we
will rename them with appropriate names and assign them some pertinent properties. So in
Stock x variable properties we write

dx

dt
= Dx

as well as its initial value x0. In Flow Dx variable we should write the function description
that in this case is

a x + b u
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Figure 2: Anylogic interface enables differential equation modeling by drag & drop

where a and b are Java variables of type double, declared within the Main window properties.
Another double variable x0 should be declared here. After that, we can run simulation. Also
it is possible to adjust some simulation parameters such as plot time window and vertical
scale, simulation stop time, etc.

3.2.1 RL circuit

As first example of an electrical system, the RL circuit will be discussed. It consists of a
resistor, represented by the letter R and an inductor, represented by the letter L. Resistor
and inductor are connected in series in this example, as shown in the Figure 3.

u(t) i(t) R

L

Figure 3: RL circuit

The problem that arises is: for given u(t), i(0) = i0, calculate i(t).

In order to obtain the ODE initial value problem, we use the 2nd Kirchhoff law. Then
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we get

L
di

dt
+ Ri = u,

so the IVP is 
di

dt
= −R

L
i +

1

L
u

i(0) = i0

and the solution can be computed with AnyLogic in the same way as the previous first order
system, taking into account that in this case the unknown function is i(t) and we have

a = −R

L
, b =

1

L
, i(0) = i0

The Forrester diagram, similar to the previous generic example, can be seen in figure 4.

Figure 4: Forrester diagram for the RL circuit

3.2.2 RC circuit

The next example discussed is the RC circuit, which is quite similar to the previous one,
but instead of using an inductor, a capacitor, represented by the letter C, is considered here.
Like the RL circuit, the RC circuit can be used as filter for signals by letting pass only
certain frequencies. Together with the RL circuit, the RC circuit exhibits a large number
of important types of behaviour that are fundamental in analog electronics.

u(t) i(t)
v(t)

R

C

Figure 5: RC circuit
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The problem that arises is: for given u(t), v(0) = v0, calculate v(t).

The voltage across the resistor and capacitor are as follows:

vr = Ri

dv

dt
=

1

C
i

Then, from the 2th Kirchhoff law, we get

Ri = RC
dv

dt
= u− v,

so the IVP is 
dv

dt
= − 1

RC
v +

1

RC
u

v(0) = v0

and the solution can be computed again with AnyLogic using SD, in the same way as the
previous example but in this case the unknown function is u(t) and

a = − 1

RC
, b =

1

RC
, v(0) = v0

The Forrester diagram is similar as in the previous examples, and can be seen in figure 6.

Figure 6: Forrester diagram for the RC circuit

3.3 Second order system

A second order differential equation is an equation involving the unknown function x(t), its
first and second derivatives x′(t) and x′′(t), and, for control differential equations, the given
control function u(t). We will consider the Initial Value Problem

IVP:

{
x′′(t) = a1x

′(t) + a0x(t) + b u(t)

x(0) = x0, x
′(0) = v0
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As it is know, any n order explicit differential equation, with some single variable changes,
can be translated to a system of n differential equations of first order. So in this second order
system, making the changes

x := x1, x′ := x2

we will obtain the following IVP with two first order differential equations:
x′1(t) = x2(t)

x′2(t) = a1x2(t) + a0x1(t) + b u(t)

x1(0) = x0, x2(0) = v0

It very easy to model this IVP in AnyLogic, in similar way as the previous first order
examples, as it is shown in Figure 7.

Figure 7: Second order system modelled in Anylogic

3.3.1 Mechanical system

Second order ODEs appears in many electromechanical systems. As an example, the move-
ment of an object through a viscose fluid tied to a spring will be discussed. The object of
mass m is moving through a fluid of viscose dumping b and tied to a spring which is fixed
on one side and has an elasticity k. The mass is pushed with the force f(t).

( )f  t
k

b

x  t

m

x

( )

Figure 8: Spring-mass system in viscose fluid

Applying Newton’s second law gives

m
d2x

dt2
= −bdx

dt
− kx(t) + f(t).
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Figure 9: Spring-mass system modelled in Anylogic

Now, with the changes
x := x (no change), x′ := v

we obtain: 
x′(t) = v(t)

v′(t) = − k

m
x(t)− b

m
v +

1

m
u(t)

x(0) = x0, v(0) = v0

And again it results very easy to model it in AnyLogic, as it is shown in Figure 9. It is even
possible to reuse some parts of the previous second order example to build this model.

3.4 Hybrid systems

Power electronic converters as for example buck and boost converters contain switching ele-
ments, posing discontinuous differential equations, so always have been difficult to modeling.
However, today one can model them using Hybrid System theory. [18, 19]

An hybrid system is composed by two parts: a continuous part and another discontinuous
part. The continuous part can be modeled using the System Dynamics paradigm and the
discontinuous part can be modeled by means on the so called Discrete Event paradigm. Both
of them are provided on the AnyLogic simulation tool.

The analysis that usually is made for the DC-DC converters is based on assuming a priori
some operation hypothesis, in order to be able to obtain formulas that therefore will be valid
only if such hypotheses are fulfilled. Nevertheless, we will not made previous hypothesis but
we will associate the operation modes of the system to different states of an hybrid system.

In the circuits we will suppose switch sw is controlled by a binary periodic signal
clock(t), with period Ts, being ton and toff the times during which the function value
is 1 and 0 respectively.

We will consider three states, Son, Soff and Snc. The states Son and Soff will be associate
to operation modes with switch sw in states on and off, respectively, whereas the state Snc

will be associate to the mode in which the diode does not conduct (null current). In this
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Figure 10: Running simulation of the spring-mass system with time plot and animation

way we are going to analyze the both buck and boost converters. We will denote by i the
current through the coil and v the voltage across the capacitor.

3.4.1 Buck converter

This converter gives an output voltage v smaller than the input voltage u. It is based on the
circuit of figure 11.

u

i
+

−

sw

L

C R v

+

−

Figure 11: Buck converter.

The discrete event system has three states:

Son If switch sw is closed, the diode is on inverse polarization and can be eliminated for
analysis. The resulting electrical system, without diode and with sw closed, with two
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meshes, is described by the pair of differential equations

di

dt
= − 1

L
v +

1

L
u

dv

dt
=

1

C
i− 1

RC
v

(1)

Soff When opening the switch sw, whenever the current is positive, it will also flow through
the diode, now directly polarized. For analysis we can replace the diode by a conductor
and delete the switch sw and the source of voltage u. The resulting circuit, with two
meshes, is described by the equations,

di

dt
= − 1

L
v

dv

dt
=

1

C
i− 1

RC
v

which are the same ones described for the previous mode by doing u = 0.

Snc In switch-off mode, with i > 0, the voltage v in the capacitor will be increasing and
the current will be diminishing; if time is long enough, it will be a moment when i
is annulled, later trying the capacitor to discharge through the diode, which is not
possible, so there is to be i = 0. In this case, with i = 0, we can consider the circuit
reduced to a single mesh, the one that contains R and C. This circuit is described by

di

dt
= 0

dv

dt
= − 1

RC
v

3.4.2 Boost converter

This converter is able to give an output voltage v greater than the input one u. It is based
on the circuit of figure 12. The discrete event system has three states:

u

+

−
v

+

−
sw

L

i

C R

Figure 12: Boost converter.

13



Son When the switch sw is closed, the diode is on inverse polarization (it can be eliminated
for analysis), the mesh on the left is isolated and the equations are:

di

dt
=

1

L
u

dv

dt
= − 1

RC
v

Soff If sw is open, whenever i is positive, the diode is directly polarized. For analysis we
can replace the diode by a conductor and eliminate the switch sw. The resulting circuit
with two meshes is described by

di

dt
= − 1

L
v +

1

L
u

dv

dt
=

1

C
i− 1

RC
v

(2)

Snc In switch-off mode, with i > 0, the voltage v in the capacitor will be increasing and
the current i will be diminishing; if time is long enough, it will be a moment when
i is annulled, later trying the capacitor to discharge through the diode, which is not
possible, so there is to be i = 0. In this case, with i = 0, we can consider the circuit
reduced to a single mesh, the one that contains R and C. This circuit is described by

di

dt
= 0

dv

dt
= − 1

RC
v

3.4.3 Hybrid models

Given that equations (1) and (2) are in the standard form of linear systems, i.e. x′(t) =
Ax(t) + Bu(t), where u(t) ∈ R, x(t) ∈ R2, A ∈ R2×2, B ∈ R2×1, it is very easy to translate
the right hand side of differential equations to an AnyLogic Forrester diagram, and their
corresponding values on each state of boost or buck converters, to AnyLogic state actions.
Also, the hybrid system transitions are assigned to AnyLogic transitions and the system
parameters are assigned to AnyLogic parameters in a straightforward way.

So, for the buck converter, the following statechart properties are chosen:

Son entry action: a12=-1/L; a21=1/C; a22=-1/(R*C); b1=1/L;

Soff entry action: a12=-1/L; a21=1/C; a22=-1/(R*C); b1=0;

Snc entry action: a12=0; a21=0; a22=-1/(R*C); b1=0;

Son → Soff transition: triggered by timeout and timeout=ton

Soff → Son transition: triggered by timeout and timeout=Ts
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Figure 13: Forrester diagram, statechart and simulation for the buck converter

Soff → Snc transition: triggered by condition and Condition: i<=0

Snc → Son transition: triggered by timeout and timeout=Ts

Once made the Forrester diagram for the System Dynamics part and the State Chart for the
Discrete Event part, the only thing left is to assign values to parameters. Choosing

Ts=1e-3, ton=Ts/2, V=20, R=12.0, L=5e-3, C=200e-6;

the simulation in figure 13 has been obtained.
Now for the boost converter, in a similar way, the following statechart properties are

chosen:

Son entry action: a12=0; a21=0; a22=-1/(R*C); b1=1/L;

Soff entry action: a12=-1/L; a21=1/C; a22=-1/(R*C); b1=1/L;

Snc entry action: a12=0; a21=0; a22=-1/(R*C); b1=0;

Son → Soff transition: triggered by timeout and timeout=ton
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Figure 14: Forrester diagram, statechart and simulation for the boost converter

Soff → Son transition: triggered by timeout and timeout=Ts

Soff → Snc transition: triggered by condition and Condition: i<=0

Snc → Son transition: triggered by timeout and timeout=Ts

In this case, with the values chosen for parameters

Ts=5e-4, ton=1.2e-4, Vs=20, R=10.0, L=250e-6, C=100e-6;

the simulation in figure 14 has been obtained.

4 Conclusions

As exposed in this paper, SD has many advantages for the resolution of differential equations
on electro-mechanical systems, but is not well known by engineers and in more general those
who are involved with DS. Probably there is a lack of systematisation and a too large degree
of freedom for the engineer approaches. Anyway, if SD models are developed rigorously with
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the same coherence than DS models, the advantages in the resolution of problems, and their
understanding can be enormously increased.

Moreover, the use of graphical SD interfaces can improve the thinking of DS practitioners
and allow them to get integrated into multidisciplinary groups where people of other areas
like architects, biologists, economists or philosophers discuss in order to model complex
natural phenomena. We hope that these examples can serve as a first step, in the difficult
task of communication between SD and DS modellers.
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