
An attempt to automate the analysis of complex system 
dynamics models: an example of WORLD 3 

 
Pedro Retortillo, Margarita Mediavilla, Luis Javier Miguel, Carlos de Castro 

University of Valladolid 
Departamento de Ingeniería de Sistemas y Automática 

E.T.S.I.I. Paseo del Cauce s/n 
47011 Valladolid, Spain 

Tel/fax: 34 983 423545/34 983 423355 
marga@eis.uva.es 

 
 
 
Abstract 
 
Even the simple run of a medium size system dynamics model can be a cumbersome 
process, since the uncertainty of the parameters forces the modeller to consider many 
runs before being confident of how the model behaves. System dynamics simulation 
packages include some analysis tools, but in many occasions customized tools are 
desired. For example, one would like to be able to program iterative running of 
simulations and perform mathematical operations with the results, use analysis 
techniques such as PPM or screening, or even use fuzzy logic to automate the revision 
of graphs. In this paper we explore the possibilities of a programming language, 
Matlab, and its simulation tool, Simulink, for those possibilities mentioned. These 
languages come from the fields of engineering, but offer many interesting possibilities 
because of their programming ability. They enable the development of customized 
analysis tools at a very low programming cost. The World 3 model has been 
programmed in this languages and some examples of application programming runs, 
screening and  fuzzy logic are given. 
 
 
Keywords 
Screening, analysis, uncertainty, World 3, fuzzy logic.  
 
1. Introduccion 
 
System dynamics modelling and simulation is an exciting process that helps the 
modeller to get an important understanding of the problems involved, but, when the 
model is built and run, the user does not have so many instruments to tests what that 
model is really showing. A handful of simulation runs do not give much information 
when one faces large models with many stock variables, nonlinear dynamics and a high 
degree of uncertainty in the parameters, and the tools for analyzing large scale models 
are not very developed. 
 
Some rely on intuitive approaches based on experience or, for example, on the notion of 
system archetypes (Güneralp 2006, Senge 1990), others focus on bounding the structure 
of the model with the observed behaviour, using methods like the eigenvalue elasticity 
analysis described by Forrester and refined lately in Kampmann and Oliva 2006. This 
approach uses linear systems theory to decompose the behaviour into simple modes, 
each of which corresponds to an eigenvalue. Measuring how much a given eigenvalue 



changes with a small change in a link in the model gives an indication of how much that 
link contributes to that behaviour mode. The main drawback of this method is the fact 
that eigenvalues are meaningful only for linear models or valid linearizations, which, in 
many occasions, are not possible. The pathway participation metric (PPM), developed 
by Mojtahedzadeh, (Mojtahedzadeh et al. 2004), identifies the structure that is most 
influential in affecting the qualitative time path of a given variable. The main strength 
of PPM is that it does not require calculating eigenvalues. 
 
These two approaches focus on linking the temporal behaviour observed in the 
simulations of the model with its structure, (focusing on what part of the systems 
structure contributes most to some pattern of behaviour) but do not pay so much 
attention to the uncertainties and parameter variations of the models, which may, 
significantly, change system behaviour. 
 
Ford (Ford and Flynn 2004) uses a pragmatic approach called screening that also 
focuses on detecting what part of the model structure contributes to the observed 
behaviour, but does not use eigenvalues or dominant loops, and pays more attention to 
the uncertainty of parameters. Part of the screening process is done in Vensim using the 
sensibility tool, but another part must be done with customized software. 
 
Knowing what part of the model structure contributes to the observed behaviours is 
interesting because that helps, as Ford  describes, “creating system stories” or correct 
explanations of how influential pieces of structure give rise to behaviour, and helps 
managers to understand the systems they manage. But, prior to the construction of such 
explanations, the modeller would need to know how his/her system does really behave.  
 
This is not an easy task, since the uncertainty of the parameters is high and the possible 
variations of the values of the parameters multiplied by the number of parameters gives 
rise to an enormous number of possible behaviours that the modeller would have to test 
in order to really know the model. 
 
This is the reason why we have tried to explore some tools to ease the process of testing 
system dynamics models. We decided to work with World 3 (Meadows 1992) to gain 
insight into this model and become familiar with it, but soon we realized that 
experimenting with a model of such complexity, using current system dynamics 
software packages, was not easy. We felt the need to use a customize software to be 
able to program massive runs of simulations, extract the interesting features of the 
results and operating with them as desired. A programming language (MATLAB in this 
case) showed as a perfect platform for this task (some similar languajes are public such 
as Scilab). We, therefore, translated World 3 model to Simulink-Matlab platform. The 
task was a hard one, but the model is now ready, and testing may now be done at a very 
low programming cost, as we show in this paper. 
 
 
Purpose and organization 
 
This paper describes the first trials to analysing this model and exploring the strength of 
using a programming platform. Our aim is to ease the analysis of the model by 
automating the analysis process, so that the modeller does not have to be running 



several simulations and studying the results, but, after a brief programming stage, the 
computer does the work and shows the desired comprised results.  
 
The paper makes a brief description of the World 3 model translation into Simulink-
MATLAB code in section 2, then explores the possibilities of using this software to 
ease the analysis process of common tools such as sensibility analysis or screening in 
section 3, and finally, describes the use of fuzzy logic to automate the analysis of some 
of the results in section 4.  
 
 
2. The World 3 model in Simulink 
 
System Dynamics diagrams are designed to explain feedback relationships as clearly as 
possible, and Stella, Vensim and Powesim are, no doubt, the easiest software packages 
for system dynamics programming. Other simulation packages, such as the ones used in 
control engineering, do the same simulations but the graphical languages are different 
and more obscure, although they have other advantages, as we shall see. 
 
For those who would like to explore the possibilities of these tools, or try our World 3 
model, it could be useful to look at figure 1 where we compare the graphical 
implementation of a stock with two flows in Vensim and in Simulink. The main 
difference is in the representation of stocks.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

??

energy_percent

growth

growth_rate

depreciation

capital

p4

deprecitation_rate

p5

Figure 1: Comparison of simulation lenguajes. Figure (a) shows the Forrester diagram and 
(b) the same equations using the block diagram of Simulink. The input variables of the (b) 
diagram come from the Matlab workspace and the variables sent to the “to workspace” 
blocks are stored in the Matlab workspace as well. This way the desired input and output 
variables of the simulation are stored in vector or matix form ready for all kinds of math  

(a) 

(b) 

Figure 1: comparison of a Forrester diagram (a) and the equivalent block diagram (b). 
In the block diagram the variables “flow” between the blocks as they get operated. The 
block 1/s is the integrator, the output variable is the integral of the input. 



 
 
 
Figure 2 shows the aspect of the interface of the World 3 model that we have built in 
Simulink. The complexity of the model is huge, and its aspect is less intuitive as in 
Stella or similar packages, but its modularity helps the integration and order. The best 
feature of this simulation is the interaction with the Matlab programming language, 
which enables the programming of experiments and analysis. The work presented in this 
paper explores some of the possibilities of analysis, it is only a first trial, further work 
should be devoted to a complete analysis of World 3, maybe introducing modifications 
such as the ones describe in Acharya and Saeed 1996. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Exploring the possibilities of programming platforms for the analysis of models 
 
When a modeller needs to run a model and see how it works, few runs are not enough to 
describe it. The uncertainty of most of the parameters of system dynamics models is 
high, or even very high (Ford and Flint 2004) and all of them might change at the same 
time. On the other hand, the nonlinearity of these models can make small changes in the 
parameters lead to big changes in the outputs. It is, thus, very desirable to program 
several runs of any model with randomly selected parameters and plot all the results. 
Some system dynamics software’s enable this multiple runs, but one might like to be 
able to have more control on those runs. For example, one could decide to store all the 
output values to extract relevant statistical information of those outputs, or could be 

Figure 2: A partial view of the simulink interface with World 3 model. 



interested on plotting the results in a different way to observe the behaviour better. The 
fact that Matlab is a programming platform and the user programs the runs enables all 
kind of manipulations with the running of the simulation and with the data.  
 
Some possibilities are shown in figure 3: run several simulations with randomly elected 
parameters, calculate several interesting characteristics out of those outputs and, for 
example, plot the results of the output variable of interest all together in one graph, or 
plot relevant features of the output versus some parameters. In figure 3 we can see the 
results of these kinds of experiments. We can see that the programming effort is very 
small using these programming platforms. We have simulated World 3 under Matlab 
randomly changing the following parameters in their intervals: 
 
 

Parameter interval 
non renewable resources initial  (1·1012 ,   2·1012) 
inherent land fertility  (600,  1200) 
index of absorption of pollution  (0.5 , 1) 
average life on industrial capital  (12,  16) 
year of stabilization of industrial capital  (2000, 2100) 

 
 
The plot of the final value of population and the maximum population minus the final 
value can be seen in figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EQUIVALENT MATLAB 
CODE 
 
Pmin=[0, 0.2]; 
Pmax=[1,3.1]; 
kk=1; 
for k=1:100, 
  P=Pmin+rand*(Pmax-
Pmin); 
  P1(kk)=P(1); 
  P2(kk)=P(2); 
  sim(‘mymodel’) 
  mean_y(kk)=mean(y); 
  max_y(kk)=max(y); 
  hold on 
  plot(y) 
  kk=kk+1; 
  end 
pause; clf 
plot(P1,mean_y); 
plot(P2,max_y)

Plot all 
the graphs 
of output 
y together 

Store  
parameter
s for latter 
use 

Mathematical 
calculations are 
already 
programmed in 
functions 

Set the range of uncertainty for each parameter
Pi ∈ [Pimin, Pimax] i_1…N number of uncertain parameters

Set the number of desired simulations, n 

Choose the P1, P2,…PN parameters ramdomly inside
their intervals and run the simulation using them

Collect the desired results:
•The whole yj(t) values of all the outputs j=1…M 
•An interesting characteristic of the outputs: mean, 
maximum value, standard deviation, cross 
correlation, etc.

Are all the simulations done?

Operate with the results as desired and show results in 
the most convenient plots

NO
YES

Range of 
parameters

Figure 3: Programming of several simulation runs with randomly selected parameters. All 
the variables involved are stored in vectors and matrices for later calculations and plots. 



A sensibility analysis can be performed in a similar way, calculating the sensibility not 
only around one specific parameter set, but around several possible parameters sets, as 
shown in figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Results of 50 simulation of World 3 model  with randomly selected parameters. 
(a) population, (b) final value of the population and difference between maximum and 
final value plotted against several parameters. Some correlations can be observed in 
inherent fertility and average life of industrial capital variables



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The screening technique described by Ford and Flynn 2004, can also be implemented at 
minimum programming cost as can be seen in see figures 6 and 7, since most of the 
mathematical calculations are already programmed as toolboxes of Matlab:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EQUIVALENT MATLAB CODE 
 
Pmin=[0, 0.2]; Pmax=[1,3.1]; 
for k=1:100, 
  P=Pmin+rand*(Pmax-Pmin); 
  P1(k)=P(1); 
  P2(k)=P(2); 
  sim(‘mymodel’) 
  y_store(:,k)=y; 
  end 
for tt=1:length(y), 
  correlation_1(tt)=corrcoef(y_store(tt,:),P1); 
  correlation_2(tt)=corrcoef(y_store(tt,:),P2); 
end 
plot(correlation_1); 
plot(correlation_2); 

Store  all 
outputs in a 
matrix 

Find 
correlation  
coefficients 
between 
parameters 
and output at 
all times 

Set the range of uncertainty for each parameter
Pi ∈ [Pimin, Pimax] i=1…N 

Set the number of desired simulations, n 

Choose the parameters ramdomly inside their intervals
And run the simulation with the elected parameters

Store the following results
•All the yk(t) values of the output k=1…n (only one
output considered at this time) 
•All the random values given to the parameters

Are all the simulations done?

For each value of the time, to, calculate the cross 
correlation between the vector containing all the
results of the output at to, [y1(to), y2(to)… yn(to)] and the
vector of all parameters Pj,=[Pj,1, Pj,2 …Pj,n] and plot the
results.

NO
YES

Figure 6: Screening process. Several simulation runs with randomly selected parameters.  
The correlation coefficients between all the values of the output obtained (at each time 
instant) and the randomly selected parameters are calculated. 

Figure 5: Sensitivity of the final population to average life of industrial 
capital with random parameters. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Application of fuzzy logic 
 
Fuzzy logic is another interesting tool for analysis. Normally, system dynamics models 
are evaluated by looking at the graphs of the output variables. It is the human modeller 
the one who normally decides weather or not a curve shows a “good”, “poor” or 
“excellent” response. If the number of runs is high it would be desirable to count on an 
automatic procedure to classify the shape of a curve and automatically extract the 
desired information.  
 
Fuzzy logic can help us on that, since it is a form of logic designed to imitate human 
reasoning and its vagueness. Fuzzy logic is based on the concept of a fuzzy set. A fuzzy 
set is a set without a crisp, clearly defined boundary. It can contain elements with only a 
partial degree of membership. For example, in a simulation of the world population we 
could say that if human population is above 9,000 million inhabitants is clearly high and 
below 5,000 million is clearly low, but what about populations between 5,000 and 
9,000? It would be “high” but not very “high”, or “high” only to a certain degree. Fuzzy 
logic describes variables in terms of fuzzy sets with a membership degree; in this case 
we would say that the population is 0.8 “high” and 0.2 “low”. 
 
Fuzzy logic is divided in three stages: fuzzyfication, application of fuzzy rules and 
defuzzyfication.  
 
Fuzzyfication is the process of assigning an input variable (numerical) to a fuzzy set 
with a membership function (see figure 8). 
 
 

Figure 7: Results of the screening applied to the population and several 
parameters. Correlation coefficients between the population at each time';' 
parameters: average life of industrial capital (-), assimilation of pollution (...) 
and initial non renewable resources (.-.-)'   

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time

co
rre

la
tio

n 
co

ef
fic

ie
nt

s

Screning analysis. Correlation between population and parameters



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The application of fuzzy rules is based on an imitation of the reasoning logic of human 
languages. For example, we could apply the logic describe in the following sentence: “if 
the final value of the population is low and population curve has a very negative slope 
then the result of the run is a catastrophe” (see figure 9) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The logical sentences are translated into mathematical operations of the fuzzy sets. We 
can electr any of these two options for implementation of  AND and OR operators.  
 

 
AND operator 

Minimum of the membership funcions 
product of the membership functions 

 
OR operator 

Maximum of memebership funcions 
Probor operator (probor(a,b)=a+b-a*b) 

 
 
 
 
 
 

Population=8,000 

Population is high

“high”

FUZZIFICATION PROCESS

Figure 8: fuzzy sets and fuzzyfication process. If the world 
population is 8,000 million, for example, it would be 0.2 “low” 
and 0.8 “high”. 

Input 1:
Population final value
(8,000)

Input 2:
Slope of population
curve (-0.2)

Rule 1: if the population final value is low and
The minimum slope of the population curve is
Low the result is a catastrophe

Rule 2: if the population final value is high and
The minimum slope of the population curve is
High the result is good.

∑
Output:
(Result is 0.7
good)

Figure 9: fuzzy rules 



The defuzzyfication process assigns a numerical output value to the output fuzzy sets 
and membership functions. In simple rules as the ones we are using in this paper the 
result of the logical operation is enough. 
 
The entire process is resumed in figure 10. 
 
 
 
 
 
 
 
 
 
 
 
If the final_population is low and the maximum_slope_of population  in absolute values 
is high and the  diference_between_maximum_and final population in absolute values si 
high too, then we can think that there has been a simulation run with a result similar to 
that if figure… which is clearly undesirable, we can call it a catastrophe.  
On the other hand, if the final population is neither too high nor too low and the 
maximum slope is small we can think that a curv similar to the one of figure… is 
shown, and we would say that the result is sustainable or good. 
 
 
 
 
 
 
We have used fuzzy logic to evaluate the response of the output values of some 
simulations of World 3. The population curve is the output that we select as most 
significant. We would say that the curve is a bad result (catastrophe) if the final value of 
the population is low, being this feature the most significant. But, the result is also bad 
if the peak of the population curve occurs very soon or if the final slope of the 
population is steep, which means that the population tends to decrease even more. 
Therefore, the following values of the population curve are treated: the final value, the 
year when the maximum is reached and the final slope of the curve. 
 
And the fuzzy logic is the one of the sentence: 
 
IF final population == low OR 
0.5*year of peak of population == low   
OR 0.7*final slope of population curve == low   

 result is a collapse 
 
 
In figure 11, 12 and 13 we can see several population curves and the results of the 
application of this sentence. We can see that those results classified with a 1 result in the 
“collapse” set correspond to curves with a very bad result: very low final population and 
steep declines. Those results with a value lower than zero have different degrees of 

population=8,000 Slope=-0.2

high

high good

if population is high and min slope is high then result=good

AND (min)

Figure 10: exmaple of aplication of fuzzy rules 



“badness”, which pretty much reflect how close they are to the characteristics expressed 
in the equation. Figure 14 describes the code needed to implement this program, which 
is very short. 
 

 
           
 
 
 
 
 
 

 
 
 
 
 
 
 

1900 2000 2100 2200
0

2

4

6

8

x 109

time

po
pu

la
tio

n

0.77

1900 2000 2100 2200
0

2

4

6

8

x 109

time

po
pu

la
tio

n

0.8

1900 2000 2100 2200
0

2

4

6

8

x 109

time

po
pu

la
tio

n

0.81

1900 2000 2100 2200
0

2

4

6

8

x 109

time

po
pu

la
tio

n

0.95

1900 2000 2100 2200
0

2

4

6

8

x 109

time

po
pu

la
tio

n

0.67

1900 2000 2100 2200
0

2

4

6

8

x 109

time

po
pu

la
tio

n

0.71

1900 2000 2100 2200
0

2

4

6

8

x 109

time

po
pu

la
tio

n

0.72

1900 1950 2000 2050 2100 2150 2200
0

2

4

6

8

x 109

time

po
pu

la
tio

n

0.53

Figure 11: Results of the use of fuzzy logic to the analysis of the population curve. The curve whose 
result of 0.53 is clearly the best result, the final population if not too low and it is more stable than in 
other results. The other results are similar, there are slight differences, for example, the curve with the 
result 0.71 has a steeper slope of the population but the curve with 0.72 has got a earlier peak. 

Figure 12: Results of the use of fuzzy logic to the analysis of the population curve. These curves are 
clearly worse than the ones of figure 11, and the result of the fuzzy logic shows it clearly with a 
higher value in the “catastrophe” set.  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Conclusions 
 
This paper has explored the possibilities that a programming language (Matlab-simulink 
in this case) gives us for programming and analysis of system dynamic models. Several 
analysis have been applied to the World 3 model programmed in Simulink: several runs 
with random parameters, collection of results of several simulation and calculation of 
interesting statistical indicators, screening, and also application of fuzzy logic for 
automatic characterization of output functions.  

1900 2000 2100 2200
0

2

4

6

8

x 109

time

po
pu

la
tio

n
1

1900 1950 2000 2050 2100 2150 2200
0

2

4

6

8

x 109

time

po
pu

la
tio

n

1

1900 2000 2100 2200
0

2

4

6

8

x 109

time

po
pu

la
tio

n

1

1 9 0 0 2 0 0 0 2 1 0 0 2 2 0 0
0

2

4

6

8

x  1 0 9

t im e
po

pu
la

tio
n

1

EQUIVALENT MATLAB CODE 
 
  P1=0.2; 
  P2=0.1; 
  sim(‘mymodel’) 
  final_pop=pop(length(pop)); 
  min_slope=min(deriv_pop); 
  final_pop_high=zmf(final_pop,3e9,7e9); 
  final_pop_low=1-final_opo_high; 
  slope_pop_low=zmf(slope_pop,-8e7,-6e7) 
  catastrophe=probor(slope_pop_low,min_pop_low) 
  plot(time,pop) 
  catastrofe 
 

Extract relevant 
parameters of 
output pop 

Calculate 
membership 
functions 
with the 
toolboxes 
functions 

Figure 14: Fuzzy logic process. One simulation run, extraction of the desired 
characteristics of the output and calculation of the fuzzy logic.

Choose the P1, P2,…PN parameters 
and run the simulation

Collect the desired results:
•Final value of pop(t), maximum
slope of pop(t), etc
•Calculate the membership
functions: 
final_pop_high, f
inal_pop_low,
slope_high,
slope_low..etc
•Calculate the fuzzy result:

Plot and show results

Calculate fuzzy logic 

Figure 13: Results of the use of fuzzy logic to the analysis of the population curve. The curves that 
obtain the value 1 are clearly the worse results, with very low final population and steep declines.  



 
All this enables a systematic analysis and programming of simulations and offers the 
possibility to analyse complex models as World 3 in a systematic way. The complete 
Simulink code of World 3 is available for those who would like to explore of modify 
this model in Matlab environment. 
 
The results of this paper show very promising possibilities. The use of fuzzy logic could 
ease the classification of results and enable a better global understanding of complex 
models. 
 
 
References 
 
Acharya, S. R. and Saeed, K. 1996. An attempt to operationalize the recommendations 

of the ‘Limits to growth’ study to sustain the future of mankind. System Dynamics 
Review Volume 12 Number 4,pp:281-304. 

 
 
Ford, A. and  Flynn, H. 2004. Statistical screening of system dynamics models. System 

Dynamics Review, 21(4): 273 – 303 
 
Güneralp, B. 2006. Towards coherent loop dominance analysis: progress in eigenvalue 

elasticity analysis. System Dynamics Review 22,(3): 263–289 
 
Kampmann, C. E. and Oliva, R. 2006. Loop eigenvalue elasticity analysis: three case 

studies. System Dynamics Review, 22(2): 
 
Meadows, D. H., Meadows, D. L., Randers, J., and Berhens 111, W. W. 1972. The 

Limits to Growth. New York: Universe Books. [Republished by Productivity Press, 
Portland, OR]. 

 
Meadows, D. H., Meadows, D. L., Randers, J. 1992. Beyond the Limits. Post Mills, 

Vermont: Chelsea Green Publishing Company 
 
Mojtahedzadeh M., Andersen D. and Richardson GP. 2004. Using Digest to implement 

the pathway participation method for detecting influential system structure. System 
Dynamics Review 20(1): 1–20 

 
Scilab http://www.scilab.org 
 
Wolstenholme, E. Using generic system archetypes to support thinking and modelling 

System Dynamics Review 20(4): 341-356 
 
 
 
 
 
 
 
 



 
 


