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ABSTRACT 

Nonlinearity is the source of complexity. It gives rise to the 
change of system behaviors, the evolution of structures and 
such phenomena as bifurcation,~atastrophe,and even chaos. It is 
these phenomena,dovetailed with others , that weave out our 
multicolour and multifold world synergetically. · With the 
development of science and technology, people become more and 
more interested in and capable of .the study of 
nonlinearity so as to shed light on the nature of the world. In 
order to deal with nonlinearity more syst~matically, this paper 
elaborates a comprehensive description for the .dynamical 
system~ Then, we focus on the relationships between the 
characters of nonlinearity • We have successfully expounded some 
controversial concepts, cast new light on some important 
relations, and unified sever~! concepts which are the central 
topics of many modern theories. 

SYSTEM DESCRITION 

As we all know, system dynamics defines a system as a set in 
which its interacting and int~rdiffering parts organically link 
together so as to perform a certain goal. To lay a fundation 
for further development, we frame an axiomatical definition for 
dynamical system. Suppose V is a set which concludes the 
necessary elements of a system. X is the state space of the 
system, which consists of the description of everything one needs 
to know in order to describe how the system will change.From the 
viewpoint of S.D., the summer of the elements of the system wilf 
be greater than the whole because of the existance of interaction 
and interlimitation, namely,structure, between the elements.So, 
let R represents the set of all feedback relations among the 
partsand sub systems.Then, <X,R> can statically describe the 
system. 

To represent the system dynamically, 
transition' function •. Let X denote the 
transition itinction,T, is a function from X 
us the stat~of the system at timet if the 
at time 0. 

Thus, we reach: 

we introduce state 
state space,a state 
* V to X.T<x,t>gives· 
system was in state x 

Def. 1. A dynamical system is the trielement of 

<X ,R, T> ••••••••••••••••••••••• (1~ 
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To facilitate study,as X,R,T have their 
respectively, ·we have: 

own 

Def. 2. A dynamical syst~m can be described as 

CVi,X,R,Xo,F,I,P,G, t> ••••••••••• <2> 

• 
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components 

where Vi is the set of subsystems of the system, X is the state 
variable, R is the set of all feedback relations, Xo is the 
initial value of X, F is the exterior and interior force, I 
denotes infcirmation, P represents parameter,including decision 
parameter,G is differential operators (indicating space gradient> 
, and t is time. 

In this way, not only can we describe the complex nonlinear 
system, but we also can unify many important concepts underit and 
distinguish them clearly. For example, we are able to coalesce 
all the concepts of stability which have appeared or may emerge. 
Traditionally, we have 

Def.3. Liaponov Stability 
L~t dx/dt = f(x) be a dynamical system on X with equilibrium X*. 
If x<t> approaches x* as t goes to infinity,for any initial 
conditions,then we call the system is stable at x•. 

A newer concept of stability is: 

Def. 4. Structure Stability 

Let f : X ---> RAn define a vector field on some state space X. 
We say this system is structurally stable if small perturbations 
in f do not change the topological structure of the vector field. 

It is often of considerable interest ,especially in the study of 
chaos,to know how solution curves behave as we vary the initial 
conditions. 

Def. 5. Initial Value Stability 
Let f X----> RAn and let dx/dt = f(x) define a system of 
differential equtions with initial conditions x(0). If ther' is a 
d>0 such that ,when x<0> and yC0) are small enough, the absolute 
value of x<t,x(0)) and y<t,y(0)) is less thand,we call the system 
is stable to initial value. 

These three definitions of stability are what we know so far.They 
are of great significance in the study of nonlinearity. Now, we 
put them under one definition to see the natures both in common 
and in difference. 

Def. 6. Stability is the nature of a system to approach its 
original state after disturbtion. 

According 
change a 

to this 
little,we 

definition, if we choose time t in <2> to 
have Def.3., i.e., Liaponov stability; if 
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,instead ,we select Pin (2), we ~each Def. 4.; and so is Def. 5 
f 0~ :< ( 12)) • 

It is obvious,f~om the above analysis,that the th~ee definitions 
are diffe~ent in natu~e. F~om (2), we can also get diffe~ent 

definitions of stability o~ othe~ in te~ms of need. 

NONLINEARITY AND BIFURCATION 

The wo~ld we live in, both the natu~al wo~ld and the social 
wo~ld, is ve~y complicated.1t is of va~ious behavio~s and 
multicolou~. It is the o~ganic dovetail of dete~ministics and 
stochastics. One of the most essential cha~aters of this 
complexity is its evolution: it can perform shiftness from one 
phase to another quite different phas2. 

Example 1 Bernard FlowE!J 

This is a well known model. 

When dT = 0 ,<======>equilibrium (disorder) 
Increase dT, for small fluctuation=====>stable 
When dT overpasses the valve dT(c(IZ))), ====> eme~ges o~de~ 
If increase dT even mo~e ====> chaos 

This complexity,to a g~eat extent, · ~esults f~om the system's 
nonlinea~ity. Nonlinea~ity is the sou~ce of versitility and 
innovation. See Figu~e 1. F~om the figu~e, we can see, because 
of nonlinearity, the~e must be some b* such that f(b*) has two or 
more values: f1=f(b1*>, f2 = f(bl*). This ,in turn, results in 
choosing : fl or f2? 

fl ·····-··-----

f2 ••. ···-······· 

_,.' 
____ _.::, __ __. ___ b 

~-----~------------· b bl b2 bl 

Fi gLlre 1 Figure 2 
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The choosing process is definitely determined by chance. For 
instance, in the example of Bernard Flow, it is totally random as 
to appear which order : right rotation or left rotation.What is 
more, in nonlinear system, a very small factor can cause the 
value to change dramatically. As in Fig.l, at D<bi,d>,d>0,for a 
very small db, df jumps suddenly : 

(f1-f2)/(bi+db-bi) ----> infinite. 
This causes the system to change catastrophely at b(i). From 
Fig.l, we can also vis.ualize that the indispensible link between 
nonlinearity and complexity is bifurcation,i.e., the relation is 
as following : 

Nonlinearity ===> Bifurcation ===> Complexity 

Def. 7 For equation f <>~,b) = 0 ••••••••••• (3), 
toR. If there is a point (0,b(0)) satisfies: for any 
is a uncommon solution <:·~ b) ,:·~¢0, in 0( <0,b(0)) ,d> ,then 
0,b(0)) a bifurcation point. 

b belongs 
d>0,there 
we call ( 

Its meaning is conspicuous: from f<x,b) = 0,we can derive xi (b) 
such that f(xi(b),b) =0, Due to nonlinearity, when b has a very 
small altertation at some certain point, say, b(l), there will be 
great change:xi <b>,which is single,======>xi+(b),which has two 
values. xi(b) are the seeking goals of the system. Tracing the 
bifurcation chart <Fi~.2>,we know where the system will go.· 

Now, we give out some useful results: 

Theorem 1. If <0,b(0)) is a bifurcation point, 
then ,df/dx<0,b(0)) = 0 

<proof). If df/dx(0,b(0))¢0,from the existance 
implying function,it can be inversed.So, there is 
0<<0,bC0)),d(0)),equation (3)'s solution X(b)=0 <==> 
not the bifurcation point. Theorem 1 is important. 
an easy way to judge bifurcation. Unfortunatlly, 
sufficient. 

For eamaple. <1-b>x-yA3 
f (X, y, b)= l • ( :{ ..... 3+ ( 1-b) y 

then F<0,0;1>=0 
F ' < 0 , 0; 1 > =0 

But <0,0;1> is not the bifurc~tion point. 
since F<x.y;1>=0 

< 1-b) x-y .... ·3=0 
<==> xA3+(1-b)y=0 <==> x=y=0 

Theorem 2. Linearity ====> no bifurcation 

theorem of 
a d (0) >0, in 
(0 ,bC0)) is 
It gives out 
it is not 

<proof>. For system dx/dt = f<x>, if f(x) is linear, f<x> 
(a¢0, b¢0) 

ax+b 

so, dx/dt = ax+b ====> x=CEXP<at>>*<INT. CbEXP<-at)+c)) 
= b + c*EXP<at> 
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This is exponential mode, no bifurcation. 
theorem 1, dx/dt for some value of 
dx/dt=c*aexp(at)¢0, so no bifurcation) 

Theorem 3. Hopf Theorem <~ee [1J> 
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(if bifurcation, from 
the parameter, but, 

It gives out the situation from a focus to a limit cycle. 

AN INSIGHT ON THE WAYS TO COMPLEXITY 

As we stated before, nonlinearity makes it possible for system 
<1> to bifurcate,which results in complexitysince bifurcation can 
give rise- to the loss of structure stability,the shift of 
dorminant loop, catastrophe, and chaos.So far, there are many 
discussions on each of these phenomena.But,few attention has been 
paid to the relationships between them.In fact, there are strong 
linkages between them.By ~eans of bifurcation, it is possible for 
us to cast light on these linkages so that we can have a better 
understanding of the charateristics of nonlinearity such as 
aperioical solution, bifurcation, chaos, stability and attractor. 

1. Bifurcation versus Structure Stability 

One of the most important natures of bifurcation is that, the 
behavior of the system will show qualitative alteration when the 
parameter (p in <2>> changes a little. First of all, from 
section !.,structure stability is definitely different from 
Liaponov Stability. 

Example 2 

d(dx/dt)/dt + ~< = 0 
set x1=x, x2=dx/dt, 
x= <x2, -x 1 > 

If given a small enough disturbence 
d:<=<0 ,-ex2>, e<<1, then >~+dx 
:dCdx/dt)/dt+e<dx/dt>+x=0 for any 
e>0, the beh.viours are quite 
different. So,not structure stable. 
But for system d(dx/dt)/dt+adx/dt+x 
=0 a¢0, structure stable a=0, not 
so, a = 0 is the bifurcation point. 
<see figure 3JThus, we can study 
structure stability by bifurcation. 

Theorem 4. CY.Z.P.> 

Figure 3 

Structure Stability <===> No Bifurcation 

)( 

X 
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<proof>. In order to prove this theorem, we first have a deeper 
discussion of the concept of structure stability. 
Let us turn to a vector field dX/dt=f(x). We will take the state 
space of this system to be HAn • Let U be the space of all 
continnously differentiable functions fron HAn to RAn , and we 
endow U with the standand C ·· norm, i.e. , two fl.tncti ons are 
close if their values are close and their derivatives •re close. 
We can then think of a perturbation off as being a choice of any 
function in some E-ball around f. 

We want the topological structure of X=f(x) to be invariant with 
respect to small perturbation of f. So, we introduce the relevant 
concept, that is, topological equivalence. Roughly speaking, the 
flow of two dynamical systems on HAn are topologically equivalent 
if there is a homeomorphism h: HAn-->HAn that carries the orbits 
of one flow into the orbits of the other. We can think of this 
homeomorphism as being some continuous change of co-ordinates, 
so that topological equivalence of two flows just means that we 
can. find a continuous change of coordinates so that one flow 
look~ like the other. 

Thus, we can describe sturcture stability as following: 

A dynamical system dX/dt=f(x) on HAn is structurally stable if 
there is some neighborhood 6f f such that for every functinn g 
in that neighborho6d, the flow induced by dX/dt=g<x> is 
topologically equivalent to the flow of f. Loosely ·speaking, a 
dynamical system is structurally stable if small perturbations in 
the underlying function f do not change the qualitative nature of 
the flow. 

If a system is structure stable everywhere but there is a point 
<o,b(o)) which is the bifurcatin point of the s~stem. Then, in 
the neighborhood of (o,b<o>>, there must be another orbit of the 
system which is qualitatively different from the above one. That 
is, there is not any homeomorphism ho which is able to carry the 
first orbit to the second. So, the system is not structur~ stable 
at <o,(o)). This is contradict to the a~sumption. So, we reach: 

Structure stability ==> No Bifurcation. 

On the other hand, if the system have not any bifurcation points, 
but the system experiences the process of loss of structure 
stability at a certain point. We can easily trace this point to 
find that this is a bifurcation point. Of course, this will not 
be the case. That is to say, 

No Bifurcation ==> Structure Stability 

Structure stability is of great significance both in society and 
nature.The existance of structure stability is the prerequisite 
for system to exist. The loss of structure •tability is the 
condition for system to change. It caus~s the dominant loops of 
the system to shift so the system can evolute. At the same 
time,the loss.of structure stability may lead to chaos. It also 
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expounds why system dynamics models are often insensitive • 

• 2. Bifurcation versus Shift of Dominant Loop 

In the study of dynamical system,it is of great importance to 
study system's dominant loops at a given time, so that we can 
get the developing picture of the system in our hand. Here , we 
shall study SDL through bifurcation and structure ~tability. 

<Traditionally, we study SDL by eigenvalue and Lioponov methods, 
but they are abstract and, to some extent, not tangible> 

Def.B. for system dx/dt=f<x>, f belongs to C<V>, we define Loop 
Polarity=sign(Cdx/dt)/dx) 

TheoremS. SDL<=>change sign((dx/dt)/dx> 
<=>change sign(df/dx) 
<=>there is xi* such that (df/dx) <xi*>=0 
<=>xi* are f(x) 's max or min points. 

The.proof is easy. 

Meaning of theorem 5: From this theorem, we can study the shift 
of dominant loops by a new tool. In 1984 SD International 
Conference, a paper put forward the guess that 

Bifurcation<===> SDL <see[3J). 

By our stud~, this guess is not correct.The rational relation 
between them is : 

Theorem 6. Bifurcation ====> SDL 
<proof>. from theorem 2, 

Bifurcation=====> df/dx<0,b(0)) =0 
from theorem 5, df/dx = 0 <===> SDL 
So, bifurcation ====>df/dx = 0 <===> SDL 

But,this is not sufficient,i.e., we can not have df/dx = 0 ===> 
Bifurcation. <see example 2> 

From theorem 4 and theorem 6, we have : 

Theorem 7. The loss of structure stability =====> SDL 
<proof>. Loss of Structure Stability <===> Bifurcation ===> SDL 

3. Blfurcation versus Catastrophe Theory 

fn order to study how structure change occur, we need catastrophe 
theory. Let's consider some dynamical system given by f:X*<A>--> 
RAn , dx/dt=f<x,b>. Here the system is thought of as parametrized 
by some parameters a=(al, ••• ,ar). Now, suppose we think of the 
parameters. as changing slowly over time. Most of the time, 
there will not be radical changes in the qualitative nature of 
the dynamical system. Howerer, sometime we do get real structural 
change. 

For example, consider: 
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Example 3. dx/dt=xA2+a 

If a>0, there are no equilibria of this system. 
If a=0, there is only one equilibrium :· x*=0 
If a<0, two equilibria : xl*=-SQRT<a> 

X2*=SQRT(a) 

The topologi~al nature of this system undergoes a radical change 
as a passes through zero. We say b=0 is a catastrophe point for· 
the system Cdx/dt)=xA2+a 

Theorem 8. Bifurcation point <==> Catastrophe point. 

Theorem 9.Loss of Structure Stability <==>·Catastrophe Point 

4. Bifurcation versus Chaos 

Bifurcation means, in mathematics, that a very small change in 
initial values will cause a fundamental qualitative difference in 
the long run. <see Fig.l) ·This is, roughly speaking, chaos. 
Chaos i$ a newly developed studying field. It has great 
interrelation with almost all the scientific branches which study 
nonlinearity. By our study, we find that bifurcation not only 
redounds to the ~esolution of chaos, but it is also the necessary 
condition for chaos to occur. 

Ending Words 

Nonlinearity study is an arduous task~We can imagine how 
difficult it is when we consider that only a very small portion 
of the majestic mathematics edifice deals with non linearity, and 
that nearly all models in socio-economic sciences directly or 
indirectly handle problems with linear theory. Fortunately, more 
and more calibers have become engrossed in this field. of late and 
we can envesion a bright future soon. 
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