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ABSTRACT 

Studies of deterministic systems which exhibit apparently chaotic behavior are 
attracting much interest in disciplines ranging from physics to economics. A 
particularly interesting case of a simple electrical network has been studied 
recently in the physics literature with the objective of isolating minimal 
characteristics essential to chaotic behavior. A system dynamics formulation 
has been given to the numerical simulation of this system. Instructional 
laboratory exercises comprising both observations on the electrical circuit 
and computer simulation of the circuit are being implemented for upper level 
undergraduate and graduate students. 

INTRODUCTION 

In recent years much interest has developed in apparently chaotic behavior 
that occurs in deterministic systems, i.e., in systems governed by laws which 
include no explicitly random element. Systems from diverse disciplines have 
been studied, including physics (Eckmann, 1981; Ott, 1981) and economics (Day, 
1983). Many systems that have been studied fall into one or the other of two 
categories. In one category are systems which are physically simple but not 
very transparent from an analytical point of view, e.g., a dripping water 
faucet. In the other category are systems which obey a simple analytical law 
but which do not correspond very clearly to a physically realizable system, 
e.g., the by now classic logistic equation x'=4Kx(1-x). 

It is of particular interest then to note recent reports of chaotic behavior 
in a simple electrical network which is readily observable in the laboratory 
and which is governed by equations that are analytically solvable, in one 
configuration of the system, by elementary means (Rollins, 1982). Moreover, 
one aim of that work has been to determine the minimum essential physical 
attributes of the system which lead to the chaotic behavior. Recognition of 
the similarity in the behaviors of electrical networks and systems from 
diverse disciplines suggests that study of chaotic behavior in a simple 
electrical circuit promises to be of quite general appeal. 

The work which is reported here was undertaken with two rather different 
objectives in mind, one of a pedagogical nature and one related to possible 
system dynamics implications that might be inferred from this simple 
electrical system. A laboratory realization of the electrical network was 
desired in terms of apparatus available to an undergraduate instructional 
facility and which would yield experiments suitable as exercises for 
junior-senior-graduate level physics majors. It was also desired that a 
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computer simulation be available for use by the students. The computer 
simulation should be relatively straightforward in use and should yield 
results that are at least qualitatively similar to phenomena observed in the 
laboratory work. The intent of the instructional exercises is not to present 
a rigorous treatment of the area, which is mathematically sophisticated, but 
to provide some familiarity with phenomena and concepts. Although these 
experiments and computer simulations can be of interest to disciplines other 
than physics, the import of the work would be largely lost on students who do 
not have a modest degree of sophistication about electrical circuits. 

The second objective is more general in nature. In view of the fact that the 
features of the system which are essential to chaotic behavior can be identi
fied explicitly, it is interesting to examine those features in the system 
dynamics formulation. This should facilitate identification of analogous 
features in other system dynamics problems, including socio-economic systems. 
However, exploration of system dynamics ramifications of the work is not rela
ted to the immediate departmental educational objectives and has not been 
pursued much as yet. 

ELECTRICAL CIRCUIT 

The electrical circuit that demonstrates chaotic behavior, under suitable 
parameter conditions, is depicted in Fig. 1. The circuit is a series combina
tion of driving voltage, diode, inductance, and resistance. The network com
prising V, R', and C represents the diode. The resistance R may be comprised 
of three parts: a resistor inserted into the circuit, the resistance associa
ted with the inductor, and the output resistance of the driving voltage cir
cuit. The reactance of the inductance, at the driving frequency, should be 
much larger than the resistance. 

The diode will alternately find itself in conducting and non-conducting 
states. For analytical purposes, the diode may be represented by an equi
valent circuit. When conducting, the diode is replaced by an e.m.f. (battery) 
of voltage V. The polarity of the e.m.f. is such that it opposes the forward 
current flow. This e.m.f. simulates the voltage drop across a forward biased 
diode, about 0.6 volt for a forward biased p-n junction in silicon. When in 
the non-conducting state, the diode may be replaced by a capacitor. With 
reference to Fig. 1, when the diode is in the conducting state, the resistance 
R' is considered negligible. When the diode is in the non-conducting state, 
the resistance R' is very large compared with the impedance of the capacitor C 
at the driving frequency. When the diode is non-conducting, the circuit is a 
driven R-L-C circuit. The resonance frequency for a series R-L-C circuit 
occurs when the reactances of the inductance and capacitance are equal. The 
investigations here are limited to driving frequencies that are within about 
twenty per cent of the resonance frequency. 

Two categories of diodes may be employed in order to investigate the onset of 
chaos. In one category are diodes in which the capacitance, under reverse 
bias, is considered to be independent of voltage across the diode. The cap
acitance in the real diode will always depend to some extent upon the voltage, 
but this dependence is neglected in the circuit analysis. In the other cate
gory are tuning diodes, or varactors, in which the capacitance depends strong
ly on voltage (Linsay, 1981; Testa, 1982). Analytic solution of the circuit 
equations is possible only for the first category. The instructional work, 
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Fig. 1. The electrical circuit: series combination of driving voltage 
(E), diode (V, R', C), inductance (L), and resistance (R). 

except perhaps for a subsidiary experimental demonstration, will be limited to 
the former category of diodes. 

The transition of the diode from the conducting state to the non-conducting 
state does not occur just as the current through the diode changes direction. 
With reference to Fig. 1, the current is positive (+)when the diode is non
conducting, and the current flows in the sense of the arrow. The current is 
negative (-) when the diode is conducting, and the current flows in the sense 
opposite to the arrow. Change in the state of the diode from conducting to 
non-conducting does not occur just as the current changes from (-) to (+). 
The transition to the non-conducting state is delayed by the "reverse recovery 
time" following the change in direction of current from (-) to (+) (Millman, 
1965, pp. 749-752). Computer simulations reported here assume the reverse 
recovery time is determined by the maximum magnitude of the diode current dur
ing the period of forward current flow immediately preceding the transition 
(Rollins, 1982). Recent work suggests a more complicated dependence of 
reverse recovery time on past history of the circuit in order to secure quanti
tative agreement between experiments and computer simulations (Hunt, 1984). 
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In an ideal diode, the forward bias voltage, V, would be zero, and the reverse 
recovery time would be zero. Departures from both of these idealized condi
tions are necessary in order to secure chaotic behavior. One might suspect 
that the onset of chaotic behavior is associated with non-linearity in the 
circuit due to a voltage dependent capacitance for the reverse-biased diode. 
It would be difficult to rule against this interpretation on the basis of 
experimental work because of the inevitable dependence of capacitance on vol
tage in a real diode. However, chaotic behavior was found in computer simula
tions with constant capacitance under reverse bias (Rollins, 1982). 

The occurrence of chaotic behavior and the behavior patterns that characterize 
the onset of chaos are very sensitive functions of diode properties. The 
reverse recovery time must be of the order of the period of the driving vol
tage, which in turn is about equal to the period of natural oscillations of 
the R-L-c circuit under reverse bias. In the present work, frequencies in the 
range of several hundred thousand hertz up to about one megahertz have been 
used. No chaotic behavior is noted for fast signal diodes. Power diodes and 
some tuning diodes show chaotic behavior, but the latter have voltage depen
dent capacitance under reverse bias. Hence, certain power diodes are deemed 
most suitable for the instructional work. 

There are additional practical considerations related to operation of the 
circuit in an instructional laboratory. The oscillator or signal generator 
that furnishes the driving voltage should have a low output impedance. 
Otherwise, loading of the generator by the circuit, which is considerable for 
large amplitude driving voltages and near resonance frequencies, will cause 
complications in circuit behavior. An impedance matching circuit capable of 
handling driving voltage amplitudes in the 10-20 volt range may have to be 
provided to go between the signal generator and the circuit. 

It is necessary to monitor certain voltages or the current in the circuit. 
Measurements in the instructional laboratory will be limited to monitoring the 
current and the driving voltage. The former is monitored by observing the 
voltage drop across a resistor inserted in the circuit, e.g., R in Fig. 1. 
The two voltages will be observed on the channels of a dual channel oscillo
scope. Instant photographs of the screen may be made in order to have a 
permanent record of the observations. This procedure is satisfactory for the 
observation of waveforms with periodicities up to perhaps sixteen times the 
period of the driving voltage. Higher periodicities can be found in the 
computer simulations and might be expected in the laboratory. 

In the development work for the laboratory experiments and in research reports 
in the literature, additional types of observations have been made, which are 
deemed less suitable for the instructional laboratory. It is interesting to 
know the voltage across the diode. However, the impedance across the diode is 
very large, and any system attached across the diode for observational pur
poses is likely to alter the circuit in a significant manner. Thus, the 
circuit of Fig. 1 should be replaced by a more complicated circuit, which must 
include the input circuit to the· test instrument and the connecting cable. 
Although interesting effects will be observed, the representation of the cir
cuit for analytical purposes may become obscure. Similar remarks apply to the 
making of observations of the voltage across the inductor. 
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Most studies in the research literature have employed a spectrum analyzer in 
order to monitor operation of the circuit. The analyzer determines the fre
quency components present in, for example, the current and displays peaks 
representative of the relative amplitudes of the various frequency components. 
Such an instrument greatly facilitates identification of the frequency struc
ture of the system response, especially for the higher periodicities. A 
spectrum analyzer has been employed in the development work but is not planned 
for inclusion in the instructional laboratory. The controlling consideration 
is that the analyzer is expensive, and no such instrument is available, except 
on a temporary loan basis, for instructional usage. Even if such an instru
ment were available, observations with the oscilloscope would be stressed 
because they provide a more literal representation of circuit operation. 
However, instructional laboratory work should be devoted, in part, to famili
arization of the students with state-of-the-art instrumentation capapilities. 
Hence, inclusion of spectrum analyzer observations would be a worthwhile 
supplement. 
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Fig. 2. Feedback structure of the system dynamics problem. 
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SYSTEM DYNAMICS FORMULATION 

The circuit of Fig. 1 may be described by a set of two first-order, coupled 
differential equations 

di/dt -Ri/L - q/LC + eL 

dq/dt = i - q/R'C - V/R' 

(1) 

(2) 

Here, e is the time-dependent driving voltage of amplitude E, and q is the 
charge on the capacitor. The symbols in these equations are proportional to 
the corresponding physical quantities when measured in conventional units but 
are not equal to the physical quantities. In order to eliminate superfluous 
variables and avoid very large or very small numbers, which is advantageous 
for computer analysis, all quantities have been scaled in terms of "natural" 
units, defined in such a way as to be appropriate to this particular problem. 
For example, times are measured in terms of a unit of time that is about equal 
to the period of natural oscillations of the series R-L-G circuit. 

The feedback loops implicit in the equations may be visualized in terms of the 
system structure depicted in Fig. 2. The diagram has been drawn for the 
analytically solvable case in which the capacitance C does not depend upon the 
voltage across the capacitor. However, inclusion of this complication would 
not upset solution of the equations in a conventional system dynamics numeri
cal integration of the equations. 

A property of the system that is essential to chaotic behavior is incorporated 
into the R1 '-R~' part of the diagram. R1 ' and R2 ' denote the two values that 
the resistor R of Fig. 1 may assume in order to simulate conducting and 
non-conducting states of the diode. A time delay in the transmission of this 
information to the system, dependent upon the current, is indicated, and there 
will be no chaotic behavior if this delay time is too small. No chaotic be
havior occurs if the parameter V, the diode forward bias, becomes too small. 

COMPUTER SIMULATION 

The conventional system dynamics procedure for computer simulation of the 
circuit is to numerically integrate the differential equations (1) and (2). 
However, advantage may be taken of the fact that the equations can be solved 
analytically, provided the capacitance is assumed independent of the voltage 
across the capacitance, i.e., independent of q. An alternative way of writing 
the circuit equatioons, the more customary way, is 

di/dt + iR = V + e 

d 2Q/dt 2 + R dQ/dt + Q = e 

(diode conducting) 

(diode non-conducting) 

The Q here is not the q of Fig. 1, but is related to i according to 

i = dQ/dt • 

The driving voltage is 

e = E cos(~t + G) 

(3) 

(4) 

(5) 

(6) 
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E is the amplitude of the driving voltage, Q is the angular frequency of the 
driving voltage, and G is a phase angle. In the natural units employed here, 
the natural frequency of the R-L-C circuit is unity to a sufficient approxi
mation. 

The intrinsic non-linearity of the system occurs in switching between the two 
differential equations. For an ideal diode, transition from conducting to 
non-conducting state occurs as the current goes from (-) to (+). In the prac
tical diode, the need to sweep out minority current carriers near the p-n 
junction causes a delay that is assumed to obey (Rollins, 1982) 

(7) 

The magnitude of the largest forward current that occurred prior to the transi
tion is denoted I • I and td denote empirical parameters that depend on the 
particular diode.m Forcan idea~ diode, transition from non-conducting to con
ducting state occurs when the v~ltage drop across the diode passes through 
zero. For the practical diode, a forward bias is required, and transition is 
delayed until the voltage across the capacitance C reaches the value V, with 
polarity as indicated by the battery in Fig. 1. 

It proves to be a tedious business to search for interesting behavior pat
terns. The computer program utilized for that purpose carries through the 
algebra associated with the analytic solutions of the differential equations 
(3) and (4), switches between equations in accordance with time lag (7) and 
bias voltage V, and matches solutions smoothly upon switching. Some special 
features were included in the program to accommodate several categories of 
behavior patterns and to facilitate running through many diode on-off cycles 
in order to establish the periodicity, if any, of a pattern. Although this 
procedure for finding interesting behavior patterns was deemed more convenient 
than the more conventional system dynamics procedure, the results are equi
valent to direct use of equations (1) and (2), which are more obviously 
connected with the feedback structure indicated in Fig. 2. 

COMPUTER SIMULATION RESULTS 

Behavior patterns of the circuit are sensitive functions of the several para
meters that are available, which include: amplitude of driving voltage (E), 
two parameters that specify delay time in switching from the conducting to the 
non-conducting state (td and I ), the forward bias voltage of the diode (V), 
the resistance in the c1gcuit (~), and the frequency of the driving voltage 
(Q). The absence of some parameters that one might expect, e.g., the induc
tance and the capacitance, is due to the scaling of parameters in natural 
units, which essentially converts quantities into dimensionless ratios and 
reduces the number of independent variables to a minimum. 

A myriad of behavior patterns can be produced by choice of the several para
meters. Limited investigations have been carried out for variation in some 
parameters, e.g., Rand Q. More extensive investigations have been carried 
out for variation in the amplitude of the driving voltage (E), the bias 
voltage (V), and the delay time as affected by tdo" 

An interesting sequence of patterns may be observed as some parameter is 
monotonically changed. Table 1 provides a record of the nature of behavior 
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patterns observed as the delay time parameter tdo is increased. Larger values 
of tdo correspond to longer delay times in switching from the conducting to 
the non-conducting state. The entry "period 5," for example, denotes that the 
response of the circuit is periodic with a period equal to five times the 
period of the driving voltage. The notation "unstable" denotes that no 
periodicity can be identified for the response of the system, and the state 
may be termed "chaotic." Perusal of the td values may convey some feeling 
for the seemingly erratic sequences observe8 and the sensitivity of the re
sponse patterns to parameter values. The sequence listed is not intended to 
imply the absence of other patterns for intermediate values of td • For 
example, the range td = 6.35 - 6.495 is denoted "unstable." How~ver, there 
might be one or more 0windows" of stability in this range that have not been 
detected. One such window that was detected occurs at tdo = 6.5, where a 
stable pattern of periodicity 16 was found. Roundoff in the numerical compu
tations effectively introduces noise into the system, and it is well known 
that noise upsets the stability of a system, especially in a region of great 
parameter sensitivity. Thus, a marginally stable pattern may not appear in a 
computer simulation. 

tdo 

0 - 0.90 
0.91 - 3.32 
3.35- 3.70 

3.71 
3.75 
3.82 
4.5 
5.5 
6.2 
6.3 

Table 1. 
time lag 

-8.7 
0 

-7.4 
-10.6 
-6.4 
-6.6 
-6.8 
-3.3 

0 
-0.4 

Period tdo 

1 6. 35 - 6.495 
2 6.500 
4 6.505 - 6. 7 
9 6.8 
5 7.0 
9 7.3 

10 7.35 
7 7.4- 9 

28 10 
21 11 

Exemplary sequence of behavior patterns 
parameter tdo is varied. 

Unstable 

-2.1 0 -11.4 
-11.2 0 -1.2 
-11.3 -2.5 -11.7 

0 -8.9 -9.2 
-11.7 -1 o.o -9.3 
-3.4 -9.7 -2.6 

-10.6 -1 o. 7 -9.8 
-8.8 . -6.2 0 

-11.1 -8.0 -11.3 
-10.5 -9.2 -9.3 

Period 

unstable 
16 

unstable 
11 

unstable 
25 

unstable 
3 

10 
unstable 

observed as the 

Period 9 

0 
-9.0 
-1.4 

-10.8 
-5.7 
-8.8 
-1.9 

-10.8 
repeats 

Table 2. Exemplary sequence of current values for an unstable case. In 
the last column is a corresponding sequence for a pattern of period 9. 

An exemplary set of numbers that are monitored in the search for periodicities 
is listed in Table 2 for an unstable pattern. The numbers represent the 
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current in the circuit at a particular juncture in the computational cycle. 
The zeros do not have any particular significance. The diode switching cycles 
fall into a few categories. When one particular category is recognized, the 
next computational cycle begins with current equal to zero. The essential 
point is that the pattern of numbers repeats if the circuit evolves into a 
periodic state. Some features of the "chaotic" patterns are suggested by the 
table. The numbers lie within some limited range, which seems to extend from 
0 to perhaps about -12 for the case illustrated. All numbers within this 
range are not equally likely. Values around -10 occur frequently, while 
values around -5 have not appeared. 

Detection of very long periods can be difficult. It is possible that such a 
period may be identified erroneously as unstable because the pattern of num
bers within the long period tends to be similar to an unstable pattern, and 
one may simply not look long enough for periodicity. The problem is aggra
vated by long transient behavior. One does not know a priori what starting 
conditions to use for a computation, and the stable pattern may emerge only 
after many computational cycles. It is observed that in some regions of para
meter space, approach to stability is very slow. In fact, even short periodi
cities can be missed if an unfortuitous choice of starting conditions coin
cides with a region of slow convergence. 

In the last column of Table 2 is listed the sequence of current values found 
for a pattern of periodicity 9. (The periodicity is not to be inferred from 
counting the numbers, which total only eight in this instance.) 

Typical plots of system response, current vs. time, are shown in Figs. 3 and 
4. A sequence of period doublings, from period 1 (same as driving voltage) to 
period 2 and then to period 4, is shown as Fig. 3. A period 3 pattern, which 
is a frequently observed period both in computer simulations and in experi
ments, is shown in Fig. 4, along with a plot of the driving voltage. The 
phase relationship between driving voltage and current is a starting parameter 
whose correct value is not known a priori. Only after enough computational 
cycles have elapsed for the response to evolve into a stable pattern can the 
proper phase relationship, as depicted in the figure, be determined. 

EXPERIMENTAL RESULTS 

Experiments have been conducted using a variety of diodes. Chaotic behavior 
has been observed in power diodes that have long reverse recovery times and in 
tuning diodes that have voltage dependent capacitance under reverse bias, but 
not in signal diodes that have short reverse recovery times. The qualitative 
behavior of the circuits is generally similar to the results of computer simu
lations. An approach to chaos scenario of the period doubling type, i.e., 
periodicities l, 2, 4, 8 ••• , has been observed, along with de-bifurcations 
(periodicities ••• 4, 2, 1) and other patterns, including periodicities of 3, 
5, etc. Chaos regions interspersed with windows of stability have been 
observed. 

For the most part, investigations in parameter space involve changes in the 
amplitude of the driving voltage, although effects of changing driving fre
quency or circuit resistance have been examined briefly. Some parameters are 
not amenable to clean experimental study. Changes in the switching delay 
characteristics require a change in diode type, and that effectively changes 
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the circuit in other ways as well. The diode forward bias voltage is that 
appropriate to a silicon p-n junction in all cases. 

No effort has been made as yet to match parameters in the computer simulations 
to a particular experimental circuit in order to secure quantitative agreement 
between the two studies. Photographs of several experimental response 
patterns are shown in Fig. 5. 

r ON ~OFF~ ON ~ OFF 4'-- ON 

r ON ~OFF~ r ON OFF 

. 
). . 

). 

Fig. 3. Current vs. time for cases with periodic! ties 1, :r~ and 4. 
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T= 3 \ 

Fig. 4. Currrent vs. time for case with periodicity 3. Plot of driving 
voltage vs. time, with stable phase relationship relative to current, is 
also shown. 

The term "universality" has come to denote certain quantitative features of 
the approach of a system to chaotic behavior that seem to be common to diverse 
systems, independent of specific system details. The "Feigenbaum number" 
characterizes the period doubling scenario that is found for many systems. In 
terms of the amplitude of the driving voltage, we may define 

En+l - En 
d (8) 

n En+2 - En+l 
For n large, d converges to the Feigenbaum number, 4.6692 •• (Feigenbaum, 

n 
1979). Here E denotes the amplitude of the driving1voltaRe that just causes 
the period of ~he system response to change from 2n to 2 , measured in 
multiples of the period of the driving voltage. Thus, when E reaches the 
value E3 , the period changes from 4 to 8. Often, convergence of d is rapid 
and a good approximation to the Feigenbaum number may be found fornlow values 
of n. A rough experimental determination has been made for a period doubling 
sequence which demonstrated periodicities 1, 2, 4, 8, and 16. The values 
found were d2 = 3.9 and d3 = 4.5. 

CONCLUDING REMARKS 

Both experiments and computer simulations amply demonstrate the rich variety 
of behavior patterns and sequences of patterns that can occur for a relatively 
simple, deterministic system. In some regions of parameter space, arbitrary 
starting conditions quickly lead to stable patterns of low periodicity. In 
other regions, long-lived transients ensue which eventually lead to complex 
patterns that are stable but of very long periodicity. Finally, unstable or 
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Fig. 5. Photographs of oscilloscope displays of current vs. 
experimental response patterns of periodicities 1, 2, and 4. 
trace in each photograph shows the driving voltage. 

time for 
The lower 
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chaotic behavior occurs in certain regions of parameter space. 

A loose characterization of the elements essential to chaotic behavior in the 
system studied here includes the following. There are two distinct states in 
which the system may reside (conducting and non-conducting states of diode). 
Behavior within one state may be described by linear equations, but the 
transition between states introduces non-linearities. There is a bias in the 
system such that a system variable must "overshoot" its idealized transition 
value before the transition can occur (forward diode bias voltage). There is 
a time delay in the system such that the reverse transition occurs later than 
it would in an ideal system (diode reverse recovery time). 

In regard to the time delay, the results of one series of computer simulations 
are suggestive, albeit certainly not conclusive. Simulations were made with a 
fixed time delay, i.e., a time delay that did not depend on any system vari
able. (In subsequent simulations, the delay depended on the diode current.) 
A wide variety of behavior patterns was observed, including long periodi-
c! ties. However, in regions of parameter space similar to those employed 
later, no clear case of chaotic behavior was noted. 

The richness of possible results, both in computer simulations and in experi
ments, has both advantageous and disadvantageous implications for instruc~ 
tional applications. On the one hand, student interest should be enhanced by 
the potential to investigate interesting situations where neither the student 
nor the professor can predict the outcomes. On the other hand, endless time 
can be devoted to aimless probings in parameter space without coming upon some 
of the important behavior patterns. 

Tentative plans call for a series of projects. One project, preferably the 
first in the series, will be computer simulations of classic problems, e.g •• 
the logistic equation, but with stipulated procedures for the most part. 
Several phenomena that are common to a broad range of systems will be encoun
tered in the simplest possible mathematical context, including the period 
doubling scenario and the Feigenbaum number. Experience can also be gained 
with additional conc'epts that have not been described here. A rescaling 
parameter, usually denoted as a, describes the spacing of elements in the 
patterns that develop during the sequence of bifurcations (Feigenbaum, 1979; 
Schuster, 1984, pp. 33, 35). The rate of convergence from arbitrary starting 
conditions towards a stable pattern or, in a chaotic region, the rate of 
divergence from initially nearby starting conditions may be described in terms 
of the Liapunov exponent (Schuster, pp. 18-22, 34). Another project will be 
the experimental work with the R-L-diode circuit, with stipulated procedures 
chosen to reproduce interesting patterns that have previously been identified. 
Complementary to the experimental work will be computer simulation of the 
diode circuit, again with stipulated procedures. Finally, the students will 
be asked to utilize the experience gained in the structured projects to 
conduct some investigations of their choice, both with the experimental 
apparatus and by computer simulation. 

It is a pleasure to acknowledge assistance with both the analytical and 
experimental parts of this work given by Professors M. R. Flannery, J. Ford, 
R. F. Fox, and R. Roy. 



-236-

REFERENCES 

Day, Richard H. "Dynamical Systems Theory and Complicated Economic Behavior," 
1983 International System Dynamics Conference, Chestnut Hill, Mass., 27-30 
July 1983. Supplement, Paper Number 2. 

Eckmann, J. P. "Roads to Turbulence in Dissipative Dynamical Systems," 
Reviews of Modern Physics, Volume 53, Number 4, Part 1, October 1981, pp. 
643-652. 

Feigenbaum, M. J. in Stochastic Behavior in Classical and Quantum Hamiltonian 
Systems, G. Casati and J. Ford, editors. ~erlin: Springer-Verlag, 1979, pp. 
163-166. 

Hunt, E. R., and R. W. Rollins. "Exactly Solvable Model of A Physical System 
Exhibiting Multidimensional Chaotic Behavior," Physical Review A, Volume 29, 
Number 2, February 1984, pp. 1000-1002. -

Linsay, Paul s. "Period Doubling and Chaotic Behavior in a Driven Anharmonic 
Oscillator," Physical Review Letters, Volume 47, Number 19, 9 November 1981, 
pp. 1349-1352. 

Millman, Jacob and Herbert Taub. Pulse, Digital, and Switching Waveforms, New 
York: McGraw-Hill, 1965. 

Ott, Edward. "Strange Attractors and Chaotic Motions of Dynamical Systems," 
Reviews of Modern Physics, Volume 53, Number 4, Part 1, October 1981, pp. 
655-671.-

Rollins, R. W. and E. R. Hunt. "Exactly Solvable Model of a Physical 
System Exhibiting Universal Chaotic Behavior," Physical Review Letters, Volume 
49, Number 18, 1 November 1982, pp. 1295-1298. 

Schuster, Heinz Georg. Deterministic Chaos. Weinheim, FRG: Physik-Verlag, 
1984. 

Testa, James, Jose Perez and Carson Jeffries. "Evidence for Universal Chaotic 
Behavior of a Driven Nonlinear Oscillator," Physical Review Letters, Volume 
48, Number 11, 15 March 1982, pp. 714-717. 


