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ABSTRACT 

A method is described and illustrated for explicit incorporation of and 
computation with ranges of initial conditions, functions, and parameter values 
in dynamic models using interval analysis. This approach is neither a statistical 
nor fuzzy set analysis but instead utilizes interval arithmetic which is 
particularly well suited for computerization. When a dynamic model is couched 
in interval analytic terms, ranges of all possible solutions are generated 
allowing not only an analysis of ranges of behavior modes but for sensitivity 
and stability analysis to be performed as a natural part of the model. Moreover, 
uncertainties such as specification, numerical method (e.g., numerical 
integration), and roundoff errors can also be analyzed in conjunction with or 
separate from the interval dynamic model. 

INTRODUCTION 

In analyzing system dynamic models, time is spent in searching for the conditions, 
if any, which generate different qualitative behavior modes. There are a number 
of reasons for being interested in the possibility of the model generating two 
or more behavior modes. In building confidence in models--see, e.g., Forrester 
and Senge (1980)--one would like to reject the models if changes in parameters 
yield anomalous behavior that appears to be unjustifiable. Secondly, the real 
problem that is being modeled may be multifacited so if the system itself is 
known to display more than one behavior mode, the system dynamicist must show 
that the model can capture these known dynamics. In cases where the system is 
very complex and a priori knowledge about the system relatively unknown, a good 
model might generate surprise behavior patterns, which actually may be contained 
in the data, but was not discovered until the model pointed out its existence 
and perhaps its importance. 

Another important reason for seeking methods for aiding in discovering different 
behavior modes is to bolster the modeler's argument against stressing the 
quantitative aspects of the problem, instead of paying more attention to the 
relationship between dynamic structure and the qualitative behavior of the system. 
In particular, if a modeler can show that under all reasonable ranges of parameter 
values, the model behaves in the same manner, and thus is insensitive to parameter 
changes, then the client, editor, and/or grant reviewer may feel less inclined 
to insist on elaborate aggregated statistical analysis of the past history of 
the system as the sole criterion of the model's validity. 
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Moreover, in recent years, there is a growing trend in the system dynamic 
literature to explore ways of performing sensitivity analysis on continuous 
nonlinear dynamic models (Tank-Nielsen 1980; Forrester 1983; Ford, Amlin, and 
Backus 1983; Graham and Pugh 1983). Obviously, methods for searching for 
different qualitative behavior modes would fall under the general heading of 
sensitivity analysis. Forrester (1983) and Graham and Pugh (1983) take an 
eigenvalue approach of linearizing the model around important operating points 
to assess possible behavior modes and to attempt to understand the role of each 
major loop in the model. On the other hand, Ford, Amlin, and Backus (1983) take 
a more global statistical approach to parameter sensitivity, which is somewhat 
similar to our method which uses interval analysis. In any event, all approaches 
to sensitivity analysis have to contend with several problems: 

(1} In large complex models, the potential number of combinations of initial 
states, parameter values, and shapes of table functions is enormous. In 
fact as will be seen, if in a linear model there are n (constant) parameters 
whose values are "fuzzy" but contained in a bounded interval, there are 2n 
combinations. For continuous functions or nonlinear models whose "fuzzy" 
domains and ranges are contained in bounded sets, there are, of course, 
uncountably infinite combinations. 

(2) Sensitivity analysis is frequently performed in situations where one must 
contend with noisy input functions, roundoff and numerical (e.g., 
integration) error, as well as specification error. 

(3} Attempting the classical strategy of keeping everything constant except one 
parameter or initial value may be somewhat misleading due to the interaction 
among parameters. Some qualitative behaviors may only show up under certain 
combination of parameter conditions. 

We are just learning to apply interval analysis to overcome these problems. The 
key idea is to locate those aspects of the model which are the most uncertain 
or fuzzy and to represent those uncertainties in terms of bands or intervals of 
values. For example, in specifying table functions, usually there are a few 
points where, from the logic of the situation, there is no uncertainty at all. 
The origin or th~ point (1,1) frequently are set up in multipliers to cut off a 
rate equation when inventories are zero or to insure that the multiplier has no 
influence under normal baseline conditions. On the other hand, parts of table 
functions may be extremely fuzzy. Interval analysis allows us to put bands 
around the more uncertain parts of table functions before the system is simulated, 
and therefore brings in a form of sensitivity analysis at an early stage of the 
model building process. 

One of the potential strengths of interval analysis is its ability to handle any 
combination of bands of parameter values and to generate an envelope of output 
for each requested variable. The information per run about potential behavior 
modes is maximal, and, as we will demonstrate in a simple example, it would take 
many more runs with the classical approach to get similar information. In 
addition, we will also show how interval analysis can work with combination of 
parameter changes, and how those results could differ from changing one parameter 
at a time, even when using the extreme values of the parameters in each run. 
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INTERVAL ANALYSIS--INTRODUCTION 

Interval arithmetic is an algebraic and topological structure (Moore 1979 or 
Alefeld and Hertzberger 1983) which uses as its basic element of analysis closed 
and bounded real valued intervals A= [a1,a2J = {x: a1 ~x~a2 where al'a2,xe:real 
numbers}. The interval A is regarded as a number in much the same way as 
x = a+bi is regarded as a number. Interval numbers however not only possess 
an algebraic structure (different from real and complex numbers since the 
distributive law does not hold but a sub-distributive one) but, since an interval 
number is also a set, possesses a topological structure as well. We will be 
most interested in exploiting the algebraic structure as a tool in systems dynamic 
(SO). Since real numbers are a subset of interval numbers; that is, A= a= [a,a] 
is a real number (an interval of zero width); the methods developed herein are 
an extension of the "usual" SO approaches. 

The following notation will be used. When the context is clear, the capitalized 
letters A, B, C, X, Y, and Z denote interval variables. Otherwise, a superscript 
"I" is used; e.g., a1 = [a1,a2J. The capitalized letters F, G, and H will 
denote interval valued function counterparts to the real valued functions f, g, 
and h, respectively, and defined in what follows. When the context is not clear, 
an interval valued function is denoted as f 1(xi). 

The four categories of errors to be analyzed are: (i) model specification (or 
simply specification), (ii) data or measurement, (iii) numerical method or 
discretization, and (iv) truncation. Truncation error is of two types: 
(iva) numerical (finite numerical representation of an infinite numerical 
process), and (ivb) roundoff or finite state machine errors. The methods of 
interval analysis, which include interval arithmetic, will be used to explicitly 
incorporate errors ( i i), (iii), and ( i v) in dynamic mode 1 s. However, when 
quantitative (or qualitative) bounds are known for (i}, it too can be analyzed. 
It should be clear that quantitative (or qualitative) error bounds yield 
quantitative (or qualitative) solutions where by quantitative bounds is meant 
that bounds are known precisely. 

INTERVAL ANALYSIS--A SHORT REVIEW 

Though interval analysis has its roots in Archimedes' method to derive an 
approximation for ~ its formal study in numerical analysis began in 1962 when 
R. E. Moore published his Ph.D. thesis. An extensive literature now exists with 
over 757 citations in Moore (1979) alone. The interested reader is directed to 
the more recent Alefeld and Herzberger (1983) and Moore (1979) expositions. An 
extremely abbreviated synopsis is presented here. 

Interval arithmetic is defined as follows. 
A+B = [a1+b1,a2+b2J 

A-B = [a1-b2,a2-b1J 
AB = [min{c},max{c}] , 

Let A= [a1,a2J and B = [b1,b2J. 
(1) 

(2} 
(3) 

where c = {a1b1,a1b2,a2b1,a2b2}. If 0 ¢ B, then 
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A/B = [min{c},max{c}J , (4) 
where c = {a1Jb1,a1Jb2,a2/b1,a2/b2}. 

Assuming that the algebraic operations can be carried out exactly, each operation 
(1)-(4) above has the property that for any x E A, y E B, xoy E AoB, where o 
denotes one of the four a 1 gebra i c operations. On the other hand, for any z E AoB, 
there exists x E A and y E B such that z = xoy. However, this exact 
interval arithmetic (EIA) will not satisfy the above remarks when implemented on 
a computer. The presence of roundoff error in computer floating point 
representation of real numbers and in computer arithmetic cannot be guaranteed 
to produce the exact endpoints. By analyzing the accuracy of the floating point 
representation and arithmetic operations on a given machine, it is possible to 
"round 11 the machine-computed endpoints and floating point numbers to insure 
containment. We no longer have equality as in (1)-(4). The implementation of 
interval arithmetic in the presence of roundoff errors of particular machines 
is called rounded interval arithmetic (RIA) and FORTRAN-based RIA exist for CDC, 
DEC, Honeywell, IBM, and UNIVAC computers (Moore 1979, pp. 14-17) as well as 
general ALGOL 60 RIA's (Alefeld and Herzberger 1983, pp. 288-295). 

The essential condition of RIA is that AoB c AOB where o is (1)-(4} and o 
indicates the use of RIA. It follows from monotonicity that, ifF is a rational 
expression in the interval variables x1,x2, •.• ,Xn, then F<X1,x2, ••• ,Xn) c 

F(Xl'X2, ••• ,Xn) where F indicates the use of RIA in the evaluation of F. Suppose 
that f is a real valued function defined on the interval A. Consider next the 
problem of finding the exact values f(x), x E A on a computer. First, x might 
not be representable exactly and would itself have to be replaced by an interval 
containing x. Second, f might (usually does) involve arithmetic operations 
leading to roundoff errors. Third, f might contain irrational expressions and 
even be transcendental leading to approximation procedures when computed. 

The concept of interval extension (or range} of functions is introduced to deal 
with these problems. The interval valued function F of n variables x1,x2, ••• ,Xn 

is an ini;er:val extension of the function f if F(xl'x2, ••• ,xn} = f(xl'x2, ••• ,xn}. 
To simplify the exposition, we treat the one variable case, where the extension 
to the n variable case is easily accomplished. The range of a real valued 
function f(x), x EX, is denoted RF = {f(x): x EX}. It is proved in Moore 
(1979, p. 22) that ifF is a rational interval function and an interval extension 
off, then Rf c F. Therefore, at least formally, there is a means of dealing 
with the "usual .. SO models possessing rational functions and table functions. 
In general under some conditions on f, f can be approximated by a rational 
function where the bounds of approximation are well known. These bounds are 
added (and subtracted) to form an interval extension formulation. 

However, serious problems exist in obtaining a "suitable" interval extension 
function F for f in the sense that F(X} is as close as possible to RF; i.e., 
such that ~[Rf-F(X)J < E where ~ is the measure (absolute value) on the real 
numbers, Earbitrarilysmall. The following example from Alefeld and Herzberger 
(1983, p. 25) illustrates the problem. 
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Let f(x) = x(1-x) where we have F1(X) = x-x2, F2(X) = X(1-X), F3(X) = 
! - (X-i)(X-i), and F4(X) = ! - (X-i) 2 as interval extensions of f(x), 
x EX= [0,1]. Rf = [0,!], and applying (1)-(3), we obtain F1(X) = [-1,1], 
F2(X) = [0,1], F3(X) = [O,i], and F4(X) = [0,!]. As it turns out, to obtain 
a "minimal" interval extension, centered forms such as F4(X) above are usually 
used (Ratschek and Rokne 1984, pp. 30-92, 103-110). It is assumed in what follows 
that by interval extension F, the minimal interval extension is meant. 

SENSITIVITY AND STABILITY ANALYSIS 

Sensitivity Analysis: Once the dynamic model is couched in interval analytic 
terms and arithmetically performed using EIA or RIA, sensitivity analysis can 
be done very simply. This is because variations in the parameters, initial 
conditions, and even the error bounds themselves can be viewed as intervals. If 
all interval variations are zero width intervals, "traditional .. sensitivity 
analysis is obtained. However, when one or more are intervals of width greater 
than zero, the full range of all possible solutions results. Therefore, interval 
dynamic models are an extension of 11 traditional 11 sensitivity analysis. Actually, 
in view of the incorporation of truncation and numerical errors, the computed 
solution is usually (always) a larger range of values containing the actual range 
of values of the solution. 

Stability Analysis: There are two ways which this analysis can proceed, 
empirically or directly. Once an equilibrium point has been found, the empirical 
method takes variations in the parameters using various interval values of the 
parameters and executes the interval version of the dynamic model to see how the 
final solution is changed. Thus, the empirical method is a sensitivity analysis 
about the equilibrium point and can be carried out using the techniques already 
described. 

The direct method requires an interval analytic eigenvalue solver. For example, 
the power method could be used in the following way. Implement the power method 
in the usual fashion with real numbers and usual arithmetic. Once the algorithm 
reaches a predetermined tolerance, perform the power method one more time using 
RIA and theoretical error bounds where the first inputted value in the interval 
power method is an interval of zero width equal to the last iterate of the real 
number power method. Then perform one step of the interval power method. If the 
QR algorithm is used, an interval version would have to be used. Lastly, if the 
dimension of the matrix A is not prohibitively large, then the zeros of 

P(AI) = det(AI - AIII) (5) 
can be solved by techniques found in Alefeld and Herzberger (1983, pp. 101-112). 

TWO EXAMPLE IMPLEMENTATIONS 

Salient features of the interval analytic approach to SO are demonstrated by the 
following two simple examples. EIA is used here merely to simplify the analysis. 

A Simple, Linear One-level Discrete Dynamic Model: To illustrate the application 
of interval analysis, consider 
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x{k+1) = a*x{k) + b , 
x{O) = 1.0 , a= -1.0 , b = 4.0 ; k = 0,1, ••• ,5 , 

whose properties are known (Goldberg, 1958). 

(6) 

This is an extremely simple difference equation which is not often seen or used 
in system dynamics. First it should be noted that the model with those specific 
values of a and b will generate oscillatory behavior, even though it is of first 
order. This points out the qualitative differences between the dynamics of 
differential and difference equations. Oscillatory behavior does not emerge in 
a first-order differential equation system, but can arise in a system described 
by a difference equation, such as the one above. A first-order difference 
equation might be useful in describing how people manage systems in which the 
only information comes at a sampled interval. For example, the second author 
has worked with doctors who get information about their diabetic patients on a 
daily basis. A poor doctor might only pay attention to one state variable, such 
as amount of sugar in the blood. If the sampling rate is too slow, the doctor 
can cause tremendous oscillations in the patient by prescribing more insulin to 
counter the rising blood sugar level. 

The output of this oscillatory model would be 3.0, 1.0, 3.0, 1.0, etc. How would 
one apply interval analysis to this simple model? The first step is to define 
the intervals around each of the parameters and the initial value of x. 

Suppose that a e: A= [al'a2J, be: B = [bl'b2J, and x{O) e: X(O) = [x1 (0),x2(0)]. 
Then, X(k+1) = A*X(k) + B, where X(k) = [x1 (k),x2(k)J and* and+ are performed 
using (3) and (1). Given variations so that a2 ~ 0 and b1 ~ 0, the interval 
model becomes 

= a1*x2(k) + b1 if x2(k) ~ 0 
x1(K+1) 

a2*x2(k) + b1 if x2(k) ( 0 
a2*x1(k) + b2 if x1(k) ~ 0 

x2(k+1) = 
a1*x1(k) + b2 if x1(k) < 0 

(7) 

Let A = [-1.1,-0.9], B = [3.9,4.1], and X(O) = [0.9,1.1]; then (7} yields 
Table 1, where the lower bound x1(k), upper bound x2(k}, center= !Cx2(k) -
x1(k)), and width= (x2(k)- x1(k)) of the generated interval [x1(k),x2(k)J 

are listed. The interval [x1(k),x2(k)J in Table 1 is the envelope of all possible 
trajectories generated by the simultaneous variations in the parameters a, b, 
and initial value x(O) given by A, B, and X(O). To attempt to duplicate the 
information gained in the one implementation of the interval model (7), the 
classical approach might be performed six times, taking the extreme value at 
each end of the three variations A, B, and X(O) and keeping all other values 
constant. This is done and listed in Table 2. 
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k 1 2 3 4 5 6 

x1(k) 2.69 0.281 2.0531 -0.3318 1.42257 -1.01149 

x2(k) 3.29 1.679 3.8471 2.25221 4.46499 2.81969 
Center 2.99 0.98 2.9501 0.96020 2.94378 0.9410 
Width 0.6 1.398 1.794 2.58402 3.04242 3.83118 

TABLE 1--Envelope of Trajectories 

24 25 
-18.8693 -9.76447 

12.4222 24.852 
-3.22352 7.54587 
31.2915 34.6207 

The six classical sensitivity analyses for (6) would be to consider the following 
substitutions one at a time holding other values at their original values: 
a= -1.1, a= -0.9, b = 3.9, b = 4.1, x(O) = 0.9, and x(O) = 1.1, which would 
be A = [-1.1,-1.1], B = [4.0,4.0], X(O) = [1.0,1.0]; A= [-0.9,-0.9], and so 
on when (7) is used. The results are (min and max values underlined): 

k 1 2 3 
a = - . 

x(k) 2.9 0.81 3.109 
a = -0.9; 

x(k) 3.1 1.21 2.911 
b = 3.9; 

x(k) 2.9 1.0 2.9 
b = 4.1; 

x(k) 3.1 1.0 3.1 
x(O) = 0.9; 

x(k) 3.9 0.9 3.1 
x(O) = 1.1; 

x(k) 2.9 1.1 2.9 

4 5 6 

0.5801 3.36189 0.30192 

1.3801 2.75791 1.51788 

1.0 

1.0 

0.9 

1.1 

2.9 

3.1 

3.1 

2.9 

1.0 

1.0 

0.9 

1.1 

Center 3.0 1.01 3.0045 0.9801 3.0599 0.9099 

Width 0.2 0.4 0.209 0.8 0.604 1.216 

TABLE 2--Six Classical Sensitivity Analyses 

24 25 

-7.0069 11.7076 

2.0171 2.18461 

1.0 2.9 

1.0 3.1 

0.9 3.1 

1.1 2.9 

-2.4949 6.9461 

9.0240 9.523 

If simultaneous variations of (6) were executed with the left and right bounds 
of A, B, and X(O); i.e., using a= -1.1, b = 3.9, and x = 0.9, and then using 
a= -0.9, b = 4.1, and x(O) = 1.1; we obtain the following: 

k 

x(k) 
x(k) 
Center 
Width 

1 2 3 4 5 6 

2.91 0.699 3.1311 0.4558 3.3986 0.1615 
3.11 1.301 2.9291 1.4·638 2.7826 1.5957 
3.01 1.0 3.0301 0.9598 3.0908 0.8786 
0.2 0.602 0.202 1.0080 0.6163 1.4342 

TABLE 3--Simultaneous Variations 

24 25 
-7.5705 12.2275 
2.0735 2.2338 

-2.7485 7.2307 
9.644 9.9937 

Note that model (6) implementations were unable to capture the full effect of 
the interaction of the errors as can be seen by comparing Table 1 to Tables 2 and 
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3. To capture the complete interaction of three pairs of variations [a1,a2J, 
[b1,b2J, and [x1(0),x2(0)] of the constant parameters a, b, and x(O), eight runs 
of (6) must be made and in general a linear model with n interval variations of 
(constant) parameters requires at least 2n runs to guarantee the capture of the 
full effect of interactions of the n variations. lt requires one run of the 
interval model to obtain the same information. When the model has--a continuous 
function which changes monotonicity over the variations and subsequent generated 
values of the state variable, more than 2n runs (in fact an uncountably infinite 
number in many cases) would be required to guarantee one had obtained all possible 
interactions of the variations, but requires~ run of the interval model. 

A Predator-Prey Model--The Kaibab Plateau Model (Goodman 1980, pp. 377-388): 
The second example presented is closer to home. This model has been used 
frequently in the system dynamics literature for teaching purposes and a DYNAMO 
version can be found in Goodman (1980). There are three levels in this model: 
deer, predators, and food. The inputs are total area (AREA) = 800,000 acres, 
average food per deer (AFPD) = 1.0 units, and the removal rate of predator (RF). 
The time period starts in 1900 with the deer population (DP) = 4000, predator 
population (PP) = 8000, food capacity (FCAP) = 350,000, and available food for 
deer (F) = 350,000 units. In 1905 a bounty on predators is given so that RF = 0.2 
from 1905 on. The time increment (DT) = 0.1 is used. 

The equations of the model are: 
Food per deer FPD = F/DP (8) 
Food ratio FR = FPD/AFPD (9) 

(1) DEER SECTOR 
Deer growth rate factor DGRF = DGRFT(FR) Table Function (10) 
Deer net growth rate DNGR = DP*DGRF (11) 
Deer density DD = DP/AREA (12) 
Deer kill ratio DKR = DKRT(DD) Table Function (13) 
Deer predator rate DPR = PP*DKR (14) 

(2) PREDATOR SECTOR 
Predator growth rate factor PGRF = PGRFT(DKR) Table Function (15) 
Predator net growth rate PNGR = PP*PGRF (16) 
Predator bounty removal PBR = PP*RF (17) 

where RF = 0.0 for 1900 until 1905 and RF = 0.2 from 1905 on. 
(3) FOOD SECTOR 

Food capacity fraction FTFCAP = F/FCAP (18) 
Food regeneration rate (years) FRT = FRTT(FTFCAP) Table Function (19) 
Growth rate (units) GR = (FCAP-F)/FRT (20) 
Food consumption rate per deer FCPD = FCPDT(FR) Table Function (21) 
Food consumption (units) FC = DP*FCPD (22) 

(4) INCREMENT 
Deer population DP: = DP + DT(DNGR-DPR) (23) 
Predator population PP: = PP + DT(PNGR-PBR) (24) 
Food available F: = F + DT(GR-FC) (25) 

The interval analytic model at first glance would appear to be a straightforward 
substitution of each variable with interval variables, each algebraic operation 
with RIA (or as in our example EIA), and each table function with an interval 
table function. However, if this were done, intervals whose widths are too large 
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ensue. This is most clearly seen in (17) and (24). Let the interval containing 
PBR at period k be denoted [PBR1(k),PBR2(k)J and likewise for the other variables. 
Since P > 0 and RF > 0, using interval multiply (3), (17) becomes: 

PBR1(k) = PPl(khRFl(k) (26) 
PBR2(k) = PP2(k)*RF2(k) • (27) 

Using interval add (1) and subtract (2), (24) in a straightforward substitution 
becomes: 

PP1(k+1) = PP1(k) + DT(PNGR1(k) - PP2(k)*RF2(k)) (28) 
PP2(k+1) = PP2(k) + DT(PNGR2(k) - PP1(k)*RF1(k)) • (29) 

However, the interval arithmetic is removing a predator bounty kill PP2(k)*RF2(k) 
associated with the largest value of the predator population PP2(k) from the 
smallest value of the predator population PPl(k). Clearly, PPl(k) does not 
experience that removal PP2(k)*RF2(k). It does however experience a maximal 
removal of PP1(k)*RF2(k). For PP2(k+1), the smallest removal of PP2(k) by bounty 
hunters is required coupled with the largest growth of the predator population. 
Thus, the correct interval for (24) is: 

PP1(k+1) = PP1(k) + DT(PNGR1(k) - PP1(k)*RF2(k)) (30) 
PP2(k+1) = PP2(k) + DT(PNGR2(k) - PP2(k)*RF1(k)) • (31) 

There are two approaches to converting a system dynamic model into an interval 
model when it is represented as in this example, by a list of interconnected 
equations. The first way would be to analyze the set of equations carefully to 
determine how the endpoints of the interval variables are to be formed as was 
done for (30) and (31) above. The second approach would be to state the model 
in its vector function representation which for the discrete-time model is: 

+ ++ 
x(k+1) = f(x(k);k) • (32) 

Then transform (32) into its interval representation recalling that interval 
function evaluation must be performed. That is, (32) becomes: 

+ ++ 
X(k+1) = F(X(k);k) • (33) 

The transformation of (8)-(25) into an interval model is given below where the 
minima and maxima are taken with respect to the (constrained) state variables 
DP(k) E [DP1(k),DP2(k)], PP(k) E [PP1(k),PP2(k)], and F(k) E [F1(k),F2(k)]. 

DP1(k+1) = min{DP(k) + DT[DNGR(k) - DPR(k)]} 
= min{DP(k) + DT[DP(k)*DGRFT(FR(k)) - PP(k)*DKRT(DD(k))]} , (34) 

where FR(k) = F(k)*AFPD/DP(k) and DD(k) = DP(k)/AREA. When average food per 
deer AFPD and/or area are themselves positive width intervals, then the minimum 
in (34) must also include these two (constrained) variables. Moreover, if or 
when the left end of the deer population DP1(k) goes to zero, a suitable 
interpretation of FR(k) must be made or the model halted. The right end of the 
deer population thus becomes: 

DP2(k+1) = max{DP(k) + DT[DP(k)*DGRFT(FR(k)) - PP(k)*DKRT(DD(k))]} • (35) 
Likewise, 

PP1(k+1) = min{PP(k) + DT[PP(k)*PGRFT(DKR(k)) - PP(k)*RF(k)]} (36) 
PP2(k+l) = max{PP(k) + DT[PP(k)*PGRFT(DKR(k)) - PP(k)*RF(k)]} • (37) 

When RF(k) E [RF1(k),RF2(k)J is an interval of positive width, then the min/max 
above must include it in addition to those of the three state variables. Here 
DKR(k) = DKRT(DD(k)) and PGRFT(DKR(k)) is a function of a function; i.e., a 
composite function. 

F1(k+1) = min{F(k) + DT[GR(k) - DP(k)*FCPDT(FR(k))]} (38) 
F2(k+1) = max{F(k) + DT[GR(k) - DP(k)*FCPDT(FR(k))]} , (39) 
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where GR(k) = (FCAP- F(k))/FRTT(F(k)/FCAP). As before, when FCAP belongs to 
a positive width interval, then the min/max must incorporate these variations. 
In (34)-(39) DT, the time increment, is considered as a zero width interval. 

What happens then when we transform (8)-(25) "blindly" into an interval model 
as illustrated by (27)-(29)? When a straight substitution is made, it would be 
equivalent to moving the min/max of (34)-(39) inside the parentheses; that is, 
we are obtaining an interval, while guaranteeing to contain all possible 
trajectories due to the variations, which is nevertheless far too wide, rendering 
potentially "meaningless" results. The interval model (34)-(39) takes min/max 
in tandem. For example, consider what occurred in (26) and (28) and compare this 
to (36). The minimum in (36) is taken as PP(k) varies over [PP1(k),PP2(k)] (and 
the other state variables of course) so that the· worse case interval 
PNGRl(k) - PP2(k)*RF2(k) = PPl(k)*PGRFT(OKR(k)) - PP2(k)*RF2(k) of (28) would 
not occur for (36) since PP(k) will be the same value throughout (36). Clearly, 
{34)-(39) require a range function analysis or an analytic min/max solution. 
However, before computing, the following simplification can/should be made: 

DP(k+l) = min{DP(k) + DT[DP(k)*DGRFT(Fl(k)*AFPDl/DP(k)) 
- PP2(k)*DKRT(DP(k)/AREA2}]} , (34') 

where DP(k) E [DPl(k),DP2(k)]. 
DP2(k+l) = max{DP(k) + DT[DP(k)*DGRFT(F2(k)*AFPD2/DP(k)) 

- PPl(k)*DKRT(DP(k)/AREAl)]} , (35') 
where DP(k) E [0Pl(k),DP2(k)]. 

PPl(k+l) = min{PP(k) + DT[PP(k)*PGRFT(DKRl(k)) - PP(k)*RF2(k)] 
= min{PP(k)[l + DT(PGRFT(DKRl(k)) - RF2(k))]} 
= PPl(k)[l + DT(PGRFT(DKRl(k)) - RF2(k)]} , (36') 

where PP(k) E [PPl(k),PP2(k)]. 
PP2(k+l) = PP2(k)[l + DT(PGRFT(DKR2(k)) - RFl(k)]} • (37') 

Equations (38) and (39) do not simplify due to the nonlinearity of GR(k) and 
DK(k}*FCPDT(FR(k)). 

CONCLUSIONS 

An analysis of Tables 1, 2, and 3 indicates that interval analysis is able to 
capture the full effect of parameter uncertainty in one pass which would require 
the full range of parameter permutations for sensitivity. Secondly, once a set 
of equations is put into an interval analytic setting, which in view of (26)­
(29) is not always a one-to-one correspondence between algebraic operations, the 
full range of sensitivity analysis can be performed either in the usual fashion 
or in a way which analyzes effects due to multiple variations. One is assured 
of obtaining the full range of permuted variations in a single analysis. 

Secondly, it is clear from the second example, (8)-(37'), that care must be taken 
in transforming a model into an interval analytic setting. Whether the effort 
involved in doing this is worth the gain accrued in being able to model explicitly 
parameter, numerical, and roundoff errors will, of course, depend on the purpose 
for which the model serves. However, it has been demonstrated that the methods 
of interval analysis can be used to perform just such a task. 
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