

A Method For Finding Equilibrium Points of a Non-Linear
Dynamic Model

Yaman Barlas and Hakan Yaşarcan

Boğaziçi University, Dept. of Industrial Eng.
80815 Bebek, İstanbul - Turkey

Tel: ++(90) 212 263 15 40/1407-1408, Fax: ++(90) 212 265 18 00
ybarlas@boun.edu.tr, yasarcan@boun.edu.tr

An algorithm for finding all the equilibrium points of a given non-linear dynamic

model is proposed.. Such an algorithm would necessitate the general solution of a set of
N non-linear algebraic equations. It is well known that no such method exists in
general. Our method aims to work for a rather general subset of non-linear systems,
namely when all non-linearities are expressed in polynomial terms. The significance of
the method is that; i- it can greatly speed up model analysis by providing the
equilibrium information prior to simulation, and ii- it can help verify the results
obtained from simulations (numerical simulation may skip an existing equilibrium and
“create” spurious equilibria). The method is explained and demonstrated on two
examples. The algorithm works well, except when there are infinite number of
equilibria on an N-dimensional plane. Current work focuses on this sub-problem.
Finally, there are some issues of speed and numerical accuracy, the other two main
topics of current and future research.

Key words: equilibrium point, analysis, dynamic, non-linear model.

INTRODUCTION

Given the following set of dynamic equations:

























=

























),,,(

),,,(

),,,(

21,1

212,1

211,1

2

1

nn

n

n

n xxxf

xxxf
xxxf

x

x
x

l

o

l

l

D

o

D

D

 (equation set 1)








 =
dt
dxxthatNote i

iD

it is a well known fact that there is no general method to solve this dynamical system of
equations when if ,1 ’s are non-linear. Furthermore there is no general method to find
even the equilibrium points of such a non-linear system. (Equilibrium points are
constant solutions of (1), such that if xi start on them, they stay on them forever. i.e.

0),...,,()(21,1 == nii xxxftxD for all i and t > 0). The non-linear problem is well
summarized by Press and Flannery; “We can make an extreme, but wholly defensible
statement: There is no good general method for solving systems of more than one

nonlinear equations. Furthermore it is not hard to see why (very likely) there never will
be any good general methods...” (Press and Flannery, 1986).

Although system dynamics literature acknowledges the importance of equilibria and
stability information (Aracil and Toro, 1988. Barlas and Çivi 1994), there is not much
concrete research done on the topic. In more general literature there exist some
numerical methods for solving non-linear systems of algebraic equations (Woodford,
1992). These methods need an initial vector and starting with this vector they gradually
converge to a solution by some search techniques. But, these methods cannot tell how
many equilibrium solutions exist. So with trial and error, with different initial vectors,
the procedure must be repeated. At the end, there is no knowledge as to what whether
all possible equilibria are covered or not. This is similar to running a simulation
program with different initial values to find the equilibrium points. There are also some
analytic/symbolic methods that work for certain restricted, polynomial non-linearities.
(Barlas and Çivi 1994. Jenner, 1963. Rayna, 1987). The problem is that these methods
face too many implementation problems (numeric or symbolic) when applied to realistic
models of even moderate size.

The method that we propose is not a numerical method. It is essentially an
analytical and symbolic method, supported with some numerical sub-procedures when
needed. The main difference of our method and the ones in the literature is that our
method does not need an initial vector and it aims to find all the solutions of the given
system of equations. In this research we hope to develop a method that will find all
equilibrium points of n dimensional system of non-linear dynamic models for a very
wide range of cases. The only assumption made is that if ,1 ’s can be any polynomial and
any combination of polynomials using the four basic operators (addition, subtraction,
multiplication and division) for all i.

THE MAIN STEPS OF THE PROPOSED METHOD

Step 1. Set all the equations in equation set1 equal to zero.

























=

























=

























0

0
0

),,,(

),,,(

),,,(

21,1

212,1

211,1

2

1

�

�

�

�

�

�

�

�

�

nn

n

n

n xxxf

xxxf
xxxf

x

x
x

Step 2. Get rid of the division operator in above equation set with necessary
multiplications by denominators. [See Appendix-2 for a technical note].

























=

























0

0
0

),,,(

),,,(

),,,(

21,2

212,2

211,2

�

�

�

�

�

nn

n

n

xxxf

xxxf
xxxf

 (equation set 2)

Step 3. Derive one-dimensional polynomials in terms of each variable by a “reduction
technique” applied to the above system of n equations. Since our reduction technique
cannot work with division operators, the equation set 2 will be used. At the end, the
reduction technique will produce distinct one-dimensional polynomials for each of the n
variables.

Steps of The Reduction Algorithm

Step 3.1. Select a variable that is going to be kept and call it kx . The resulting
polynomial will be only in terms of kx . The initial equation set consists of
{ }nfff ,22,21,2 ,,, l , which will be updated by the “elimination procedure”.

Step 3.2. Select a variable ix to be eliminated such that ki ≠ . Eliminate ix from
the equations, using the “elimination procedure” [see Appendix-1]. As a result of
this procedure, the number of the equations in the equation set is also reduced by
one.

Step 3.3. If the equation set is reduced to a single polynomial in terms of kx only,
then end the reduction algorithm, otherwise go back to step 3.2 to select another
variable to eliminate.

The above reduction algorithm is applied for each of the variables to obtain the
following polynomials:

























=

























0

0
0

)(

)(

)(

,3

22,3

11,3

oo

nn xf

xf
xf

 (equation set 3)

Step 4. Find the real roots of each equation in set 3. In the literature there are different
methods to find the roots of a given one-dimensional polynomial (Santina and
D’Carpio, 1991).

























































≡

































∗∗∗

∗∗∗

∗∗∗

nmnnn

m

m

n
XXX

XXX

XXX

setroot

setroot

setroot

,2,1,

,22,21,2

,12,11,1

2

1

,,,

,,,

,,,

2

1

l

o

l

l

o

Step 5. After step 4, there are nmmm *** 21 m potential equilibrium points. But not all
combinations of roots make all the equations in equation set 1 equal to zero, so they
must be tested. If a root combination makes all the derivatives in equation set 1 zero,
then it is an equilibrium point of this system. All the equilibrium points are thus
determined.

EXAMPLE 1

Assume the following non-linear dynamic model of order three:

































+
+−

−−−

−−

=



























2
12

32

12

3

32
3

21
2
2

31
2
2

2
1

3

2

1

xx
x

xx
x

xxx

xxxx

x

x

x

D

D

D

 (equation set 1)

Step 1. Set all the equations in equation set 1 to zero.



























=

































+
+−

−−−

−−

=



























0

0

0

2
12

32

12

3

32
3

21
2
2

31
2
2

2
1

3

2

1

xx
x

xx
x

xxx

xxxx

x

x

x

�

�

�

Step 2. Get rid of the division operator in the above equation set with necessary
multiplications by denominators. [Appendix-2]

















=
















+−+
−−−

−−

0
0
0

224
32

123

2
33221

2
2

31
2
2

2
1

xxx
xxxxxx

xxxx
 (equation set 2)

Step 3. Find one-dimensional polynomials for each variable by the reduction technique:

The Reduction Algorithm (Iteration #1)

Step 3.1. Select 1x as the variable that is going to be kept. The initial equation set
consists of { }3,22,21,2 ,, fff .

Step 3.2. Select variable 2x to be eliminated. (We do not currently have a rule for
variable selection for elimination, so we select the variable with lower index).
Eliminate 2x using the elimination procedure:

Elimination Procedure

Step 3.2.1. The maximum powers of 2x in each equation in the equation set 2
are 2, 2 and 1 respectively.

Step 3.2.2. Among these maximum powers, 1 is the minimum, so the last
equation (3,2f) is selected.

Step 3.2.3. From 3,2f , 5.025.05.0 312 −−= xxx is obtained.

Step 3.2.4. Insert x2 in the other two equations of equation set.









=












−−−−−−−−−

−−−−
0
0

)5.025.05.0(3)5.025.05.0(2)5.025.05.0(

)5.025.05.0(
2
3331311

2
31

31
2

31
2
1

xxxxxxxxx
xxxxx

Do necessary simplifications and multiplications to get rid of the division
operator.









=












++−+−−

−+−−−−
0
0

481228203

4841212

1
2
1331

2
3

1331
2
3

2
1

xxxxxx
xxxxxx

 (equation set 2.1)

Step 3.2.5. Since variable x2 is eliminated completely, the new equation set is
the above equation set and this is the end of the elimination procedure.

Step 3.3. There is more than one variable left in 2.1, so go back to step 3.2 to select
another variable to eliminate.

Step 3.2. (Second time in Iteration #1) This time eliminate x3 using the elimination
procedure:

Elimination Procedure

Step 3.2.1. The maximum powers of x3 in each equation in the equation set
2.1 are 2 and 2 respectively.

Step 3.2.2. The maximum powers are equal, so we break the tie arbitrarily and
select the equation with smaller index, i.e. the first equation in the equation set
2.1.

Step 3.2.3. From 1,1.2f , 4841212 1331

2
1

2
3 −+−−−= xxxxxx is obtained.

Step 3.2.4. Insert x3
2 in the second equation of equation set 2.1, yielding

{ } { }048122820)4841212(3 1

2
13311331

2
1 =++−+−−+−−−− xxxxxxxxxx

and do necessary simplifications to obtain the following:

 { } { }022526 1331

2
1 =−+−− xxxxx

Step 3.2.5. Variable x3 is not eliminated completely, so a new equation set is
formed with the first equation of the equation set 2.1 and the above equation.
The elimination procedure is thus repeated on the following equation set.









=












−+−−

−+−−−−
0
0

22526

4841212

1331
2
1

1331
2
3

2
1

xxxxx
xxxxxx

 (equation set 2.2)

Step 3.2.1. (Second time) The maximum powers of x3 in each equation in the
equation set 2.2 are 2 and 1 respectively.

Step 3.2.2. Among these maximum powers, 1 is the minimum, so the last
equation is selected.

Step 3.2.3. From 2,2.2f ,
52

226

1

1
2
1

3 +
−+=

x
xxx is obtained.

Step 3.2.4. Insert x3 to the first equation in equation set 2.2, yielding

{ }048
52

226*)412(
52

22612 1
1

1
2
1

1

2

1

1
2
12

1 =












−+








+
−++−









+
−+−− x

x
xxx

x
xxx

and do necessary simplifications to obtain the following:

{ } { }01656645233 1

2
1

3
1

4
1 =+−−+ xxxx (equation set 2.3)

Step 3.2.5. Since variable 3x is eliminated completely, the above is the new
equation set and this is also the end of the elimination procedure.

Step 3.3. End the reduction algorithm since there is just one equation left in the
equation set and in terms of 1x only. This equation 2.3 will be the first equation of
equation set 3. (See below, the very end of this example).

The Reduction Algorithm (Iteration #2)

Step 3.1. Select 2x as the variable that is going to be kept. The initial equation set
consists of { }3,22,21,2 ,, fff .

Step 3.2. Select variable 1x to be eliminated. Eliminate 1x with the elimination
procedure:

Elimination Procedure

Step 3.2.1. The maximum powers of 1x in each equation in the equation set 2
are 2, 1 and 1 respectively.

Step 3.2.2. Among these maximum powers, 1 is the minimum, in both the
second and third equations. Arbitrarily break the tie and select the second
equation that has smaller index.

Step 3.2.3. From 2,2f ,
2

2
332

2
2

1 2
3

x
xxxxx −−= is obtained.

Step 3.2.4. Insert 1x in the other equations in the equation set, and do necessary
simplifications and multiplications to get rid of the division operator.









=












+++

−−−+
0
0

428

81383

2
2
3

2
232

4
3

3
32

2
3

2
23

3
2

4
2

xxxxx
xxxxxxxx

 (equation set 2.4)

Step 3.2.5. Since variable 1x is eliminated completely, the new equation set is
the above set 2.4 and this is the end of the elimination procedure.

Step 3.3. Since there is more than one variable in equation set 2.4 go back to step
3.2 to select another variable to eliminate.

Step 3.2. (Second time for Iteration #2) This time eliminate x3 using the
elimination procedure.

Elimination Procedure

Step 3.2.1. The maximum powers of x3 in each equation in the equation set
2.4 are 4 and 2 respectively.

Step 3.2.2. Among these maximum powers, 2 is the minimum, so the last
equation is selected.

Step 3.2.3. From 2,4.2f , 2

2
232

2
3 234 xxxxx −−−= is obtained.

Step 3.2.4. Insert x3

2 in the first equation of the equation set 2.4, and do
necessary simplifications

3x2
4 + 8x2

3 x3 +52x2
3x3 + 39x2

4 + 26x2
3 + 32x2

2x3
2 +24 x2

3 x3 +16x2
2 x3

− 16x2
2x3

2 +9x2
4 + 24 x2

3 x3 +16x2
2x3 +12x2

3 + 4x2
2()





 





 
= 0{ }

after simplifying the above equations we obtain the following, which again
includes an x3

2 term:

{ } { }0416146033 2
2

2
3

2
2

3
23

3
2

4
2 =−+++ xxxxxxx

According to the elimination procedure, x3

2 must again be inserted in the
above equation, yielding:

(){ } { }0423416146033 2

22
2
232

2
2

3
23

3
2

4
2 =−−−−+++ xxxxxxxxxx

again simplifications are made:
{ } { }04324864146033 2

2
3
2

4
23

3
2

3
23

3
2

4
2 =−−−−++ xxxxxxxxx

and we obtain the following:

 { } { }0418415 2

2
3
23

3
2

4
2 =+++ xxxxx

Step 3.2.5. Since variable 3x is not eliminated completely, the elimination
procedure is repeated on the new equation set which is formed by the above
equation and the second equation of the equation set 2.4.

{ }0
428

418415

2
2
3

2
232

2
2

3
23

3
2

4
2 =













+++

+++

xxxxx
xxxxx

 (equation set 2.5)

Step 3.2.1. (Second time) The maximum powers of x3 in each equation in the
equation set 2.5 are 1 and 2 respectively.

Step 3.2.2. Among these maximum powers, 1 is the minimum so the first
equation of equation set 2.5 is selected.

Step 3.2.3. From 1,5.2f , 3
2

2
2

3
2

4
2

3 4
41815

x
xxxx −−−= is obtained.

Step 3.2.4. Insert x3 in the second equation of equation set 2.5, and do
necessary simplifications to obtain the following:

{ } { }01614438028433 4
2

5
2

6
2

7
2

8
2 =++++ xxxxx (equation set 2.6)

Step 3.2.5. Since variable x3 is eliminated completely, the new equation set is
the above set 2.6 and this is the end of the elimination procedure.

Step 3.3. End the reduction algorithm since there is just one equation left in the
equation set and in terms of x2 only. This equation 2.6 will be the second equation
of equation set 3. (See below).

Iteration #3 (The Reduction Algorithm)

In this iteration, the reduction algorithm and the elimination procedure are applied
once again to eliminate 1x and 2x exactly as discussed above to obtain a single
polynomial in terms of 3x . We skip all the steps and directly present the end result:

{ } { }01628025611 4

3
6
3

7
3

8 =+++ xxxx

The above equation is the third equation of equation set 3 below.

The reduction algorithm thus gives the following polynomial equation set in terms of
each variable:

















=
















+++

++++

+−−+

0
0
0

1628025611

1614438028433

1656645233

4
3

6
3

7
3

8
3

4
2

5
2

6
2

7
2

8
2

1
2
1

3
1

4
1

xxxx
xxxxx

xxxx

 (equation set 3)

Step 4. These polynomials are solved numerically, yielding:

















≡
















22.122230} 1.092711, 0.275888, 0.000000, ,{-0.218102
} 0.000000 0.207741,- 0.327439,- 1.009382,- ,{-7.061498

1.130873} 0.236070, 0.880820,- ,{-2.061881

2

1

nsetroot
setroot
setroot

Step 5. Step 4 implies 100 (4*5*5) potential roots. The combinations of roots that make
all the equations in equation set 1 equal zero are the equilibrium points of the given
system, which are found to be as follows:

























===
===
===
===

=

























)., x.-, x.(x
).-, x.-, x.(x
)., x.-, x.-(x

)., x.-, x.-(x

th
rd
nd
st

092711120774101308731
218102032743902360700
275888000938218808200
1222302206149870618812

point mequilibriu 4
point mequilibriu 3
point mequilibriu 2

point mequilibriu 1

321

321

321

321

When each equilibrium point is plugged back in the given equation set 1, we verify that
they are indeed the equilibria of the model.

EXAMPLE 2 (PREDATOR-PREY DYNAMICS)

The following diagram belongs to one of the sample models packaged with the
STELLA software:

area

hare births hare deaths

hare density

hare birth fraction

lynx births
lynx deaths

lynx birth fraction

Hares

Lynx

hare kills per lynx

lynx death fraction

The equations of the above model are as follows:

In the original model, the variables “hare_kills_per_lynx” and “lynx_death_fraction”
are graphical functions. For our purpose, we model them as polynomial functions of the
variable “hare density”. (After certain levels of hare density, they are assumed
constants). The following graphs show how these variables depend on hare density:

Graph 1

hare kills per lynx

lynx death fraction

Graph 2

17:02 05 Mar 2001 Paz

0.00 150.00 300.00 450.00 600.00

hare_density

1:

1:

1:

0,00

150,00

300,00
1: hare kills per lynx

1

1

1

1

Graph 2 (hare_kills_per_lynx)

17:03 05 Mar 2001 Paz

0.00 30.00 60.00 90.00 120.00

hare_density

1:

1:

1:

0,00

0,30

0,60
1: lynx death fraction

1

1

1

1

Graph 1 (lynx_death_fraction)

This model, with the given equations, basically produces unstable growing oscillations
as seen in the following figure:

16:55 05 Mar 2001 Paz

0.00 12.50 25.00 37.50 50.00

Years

1:

1:

1:

2:

2:

2:

15000,00

40000,00

65000,00

500,00

700,00

900,00

1: Hares 2: Lynx

1
1

1
1

2

2

2

2

Graph 1 (Hare & Lynx Populations)

Our purpose is to find all the equilibrium points of this unstable non-linear model. After
making the necessary initial simplifications, the equations of the model yields the
following three systems of equations:

0000,100&0
00001.010*53.0

002.010*225.1
211

29

>>>












+−−

−+
=













−

−

hlfor
hllhl

hllhh
l
h
D

D

 (equation set 1.1)

000,100000,500&0
2.0

002.010*225.1 29

>>>






 −+

=










 −

hlfor
l

hllhh
l
h
D

D

 (equation set 1.2)

000,500&0
2.0

50025.1
>>







 −

=












hlfor
l

lh
l
h
D

D

 (equation set 1.3)

Step 1. Set all the equations in equation set 1.1 equal to zero.









=












+−−

−+
=













−

−

0
0

00001.010*53.0
002.010*225.1

211

29

hllhl
hllhh

l
h
�

�

Step 2. There are no division operators in the above equation set, so equation 2 is
obtained without any further effort.









=












+−−

−+
−

−

0
0

00001.010*53.0
002.010*225.1

211

29

hllhl
hllhh

 (equation set 2)

Step 3. Find one-dimensional polynomials for each variable, by the reduction
technique.

Iteration #1 (The Reduction Algorithm)

Step 3.1. Select h as the variable that is going to be kept. The initial equation set is
{ }2,21,2 , ff .

Step 3.2. Select variable l to be eliminated. Eliminate l with the elimination
procedure:

Elimination Procedure

Step 3.2.1. The maximum powers of l in each equation in the equation set are 1
and 1 respectively.

Step 3.2.2. The maximum powers are equal, there are two minima. Break the
tie arbitrarily and select the equation with smaller index, i.e. the first equation
in the equation set.

Step 3.2.3. From 1,2f ,
hh

hl
2.010*2

125
27 +−

= − is obtained.

Step 3.2.4. Insert l to the second equation in equation set 2,

{ }0
2.010*2

12500001.0
2.010*2

12510*5
2.010*2

1253.0 2727
211

27 =

















+−
+









+−
−









+−
− −−

−
− hh

hh
hh

hh
hh

h

do necessary simplifications and multiplications to get rid of the division
operator.

{ } { }03750125.010*25.6 238 =+−− hhh (equation set 2.1)

Step 3.2.5. End the elimination procedure since variable l is eliminated
completely. Also eliminate the first equation so that the new equation set
becomes equation set 2.1.

Step 3.3. End the reduction algorithm since there is just one equation left in the
equation set and in terms of h only. This equation 2.1 will be the first equation of
equation set 3. (See below, the very end of this example).

Iteration #2 (The Reduction Algorithm)

Step 3.1. Select l as the variable that is going to be kept. The initial equation set is
again { }2,21,2 , ff .

Step 3.2. Select variable h to be eliminated. Eliminate h with the elimination
procedure:

Elimination Procedure

Step 3.2.1. The maximum powers of h in each equation in the equation set are 2
and 2 respectively.

Step 3.2.2. The maximum powers are equal, there are two minima. Break the
tie arbitrarily and select the equation with smaller index, i.e. the first equation
in the equation set.

Step 3.2.3. From 1,2f ,

l
hlhh 9

2

10*2
002.025.1

−

+−= is obtained.

Step 3.2.4. Insert 2h to the second equation in equation set 2,

{ }000001.0
10*2

002.025.110*53.0 9
11 =







 ++−−− −

− hll
l

hlhl

do necessary simplifications and multiplications to get rid of the division
operator.

{ } { }00008.0625.06 22 =−+− hlhll

Step 3.2.5. Since variable h is not eliminated completely, the elimination
procedure is repeated on the new equation set which is formed by the above
equation and the first equation of the equation set 2.









=












−+−

−+ −

0
0

0008.0625.06
002.010*225.1

22

29

hlhll
hllhh (equation set 2.2)

Step 3.2.1. (Second time) The maximum powers of h in each equation in the
equation set are 2 and 1 respectively.

Step 3.2.2. Among these maximum powers, 1 is the minimum, so the last
equation is selected.

Step 3.2.3. From 2,2.2f ,
2

2

0008.0625.0
6

ll
lh

−
−= is obtained.

Step 3.2.4. Insert h to the first equation in equation set 2.2,

{ }0
0008.0625.0

6002.0
0008.0625.0

610*2
0008.0625.0

625.1 2

22

2

2
9

2

2

=












−
−−









−
−+

−
− − l

ll
ll

ll
l

ll
l

do necessary simplifications and multiplications to get rid of the division
operator.

{ } { }04687513509672.0 345 =+− lll (equation set 2.3)

Step 3.2.5. End the elimination procedure since variable h is eliminated
completely. Also eliminate the second equation so that the new equation set
becomes the equation 2.3.

Step 3.3. End the reduction algorithm since there is just one equation left in the
equation set and in terms of l only. This equation in set 2.3 will be the second
equation of equation set 3 below.

The reduction algorithm thus gives the following polynomial equation set in terms of
each variable:









=












+−
+−−

0
0

4687513509672.0
3750125.010*25.6
345

238

lll
hhh (equation set 3)

Step 4. These polynomials are solved numerically, yielding:









≡








746.934} 648.848, {0,
163245.55} 36754.45, {0,

l

h

setroot
setroot

Step 5. Step 4 implies 9 (3*3) potential roots. The combinations of these roots that
make all the equations in equation set 1.1 equal zero are as follows:

















==
==

==
=

















746.934)l 163245.55,(h
648.848)l 36754.45,h (

0)l 0,h (

point 3
point 2

point 1

rd
nd
st

But the 3rd point is outside the range of the equation set 1.1. So it can not be an
equilibrium point. The equation set 1.1 thus has two equilibrium points.

Since in this example the model consists of three different equation sets, we repeat the
above steps for equation set 1.2 and equation set 1.3 and in each case we obtain (h=0,
l=0) as the only point that makes the equations zero. But this point is outside the range
of both equation sets. So, the second and third equation sets of the model provide no
additional equilibrium points.

If we combine the above results obtained from the three equation sets of the model, we
obtain the following equilibrium points:









==
==

=








648.848)l 36754.45,h (
0)l 0,h (

point mequilibriu2
point mequilibriu1

nd
st

When each equilibrium point is plugged back in the given equation sets, we verify that
they are indeed the equilibria of the model.

CONCLUSION

An algorithm to find all the equilibrium points of a given non-linear dynamic model is
discussed. The method aims to work for a rather general subset of non-linear systems,
provided that all non-linearities are/can be expressed in polynomial terms. The
significance of the method is that; i- it can greatly speed up model analysis by providing
the equilibrium information prior to simulation, and ii- it can help verify the results
obtained from simulations (numerical simulation may skip an existing equilibrium and
“create” spurious equilibria). The method is demonstrated on two examples. The
algorithm works well, except when there are infinite number of equilibria on an N-
dimensional plane. Future work will focus on this problematic case. Finally, there are
some issues of speed and numerical accuracy, the other two main topics of current and
future research. The method can be coded in the future as an integral part of the existing
System Dynamics software.

APPENDIX 1. THE ELIMINATION PROCEDURE

The elimination procedure starts with n variables and n equations. At the end it gives n-
1 equations with n-1 variables.

Steps of The Elimination Procedure

Step 1. Find the maximum powers of the variable ix in each equation from the given
equation set. (Note that ix is the variable that is selected for elimination).

Step 2. Among these maximum powers, find the minimum power (p) that is non zero.
Select this equation (that gives the minimum of the maximum powers).

Step 3. From selected equation obtain

)'(
)',,,,,(132

Vjwheresxotherf
Vjwheresxotherxxxxf

x
jrdenominato

j
p

iiiinumeratorp
i ∈

∈
=

−
�

V is the variable set including all the variables of the given equation set except ix .

Step 4. Insert p
ix in the other equations of the given equation set and do the necessary

multiplications to get rid of the division operator [Appendix-2]. Check if there is no
{ }pkxk

i ≥: term left. Else, do the same insertion recursively until no { }pkxk
i ≥: is left

in these equations.

Step 5. If variable ix is eliminated completely, also eliminate the selected equation and
end the procedure. Otherwise update the equation set using the selected equation, return
back to step 1 of the elimination procedure and apply it on the updated equation set.

(Note that ix and the given equation set were determined by the reduction algorithm.)

APPENDIX 2. GETTING RID OF THE DIVISION OPERATOR

Assume that the following is the given equation:

01*),(
2

21
21 =+=

x
xxxxf

The wrong way of getting rid of the division operator would be a division cancellation
to yield the following:

01),(121 =+= xxxf

The method presented does not allow division cancellations, because such cancellations
may result in loosing some of the roots. The proper way of getting rid of divisions is to
multiply the equation by the necessary terms. So after multiplying all terms by 2x , the
given equation becomes:

0*),(22121 =+= xxxxxf

REFERENCES

Aracil, J and Toro M., 1988. Qualitative Analysis of System Dynamics Ecological
Models, System Dynamics Review 4: 56-60.

Barlas, Y and Çivi, H., 1994. Designing General-Purpose Algorithms For Equilibria
and Stability Analysis of Non-Linear Dynamic Models, Boğaziçi University Research
Paper, Istanbul.

Jenner, W.E., 1963. Rudiments of Algebraic Geometry, Oxford University Press: 6-
26.

Press W.H., Flannery B.P. 1986. Numerical Recipes. Cambridge University Press.
Rayna, G., 1987. Reduce Software for Algebraic Computation, Springer-Verlag.
Santina Mohammed S. and D’Carpio-Montalvo Paul. 1991. Analytical, Numerical,

And Computational Methods For Science and Engineering. Prentice-Hall International,
Inc.

Woodford, Chris. 1992. Solving Linear and Non-linear Equations. Ellis Horward
Limited.

	Elimination Procedure
	Elimination Procedure

	Go Back:

