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An algorithm for finding all the equilibrium points of a given non-linear dynamic 

model is proposed.. Such an algorithm would necessitate the general solution of a set of 
N non-linear algebraic equations. It is well known that no such method exists in 
general. Our method aims to work for a rather general subset of non-linear systems, 
namely when all non-linearities are expressed in polynomial terms. The significance of 
the method is that; i- it can greatly speed up model analysis by providing the 
equilibrium information prior to simulation, and ii- it can help verify the results 
obtained from simulations (numerical simulation may skip an existing equilibrium and 
“create” spurious equilibria).  The method is explained and demonstrated on two 
examples.  The algorithm works well, except when there are infinite number of 
equilibria on an N-dimensional plane. Current work focuses on this sub-problem. 
Finally, there are some issues of speed and numerical accuracy, the other two main 
topics of current and future research. 
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INTRODUCTION 
 
Given the following set of dynamic equations: 
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        (equation set 1) 
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it is a well known fact that there is no general method to solve this dynamical system of 
equations when if ,1 ’s are non-linear. Furthermore there is no general method to find 
even the equilibrium points of such a non-linear system. (Equilibrium points are 
constant solutions of (1), such that if xi start on them, they stay on them forever. i.e. 

0),...,,()( 21,1 == nii xxxftxD  for all i  and   t > 0). The non-linear problem is well 
summarized by Press and Flannery; “We can make an extreme, but wholly defensible 
statement: There is no good general method for solving systems of more than one 



  

nonlinear equations. Furthermore it is not hard to see why (very likely) there never will 
be any good general methods...” (Press and Flannery, 1986). 
 

Although system dynamics literature acknowledges the importance of equilibria and 
stability information (Aracil and Toro, 1988. Barlas and Çivi 1994), there is not much 
concrete research done on the topic. In more general literature there exist some 
numerical methods for solving non-linear systems of algebraic equations (Woodford, 
1992). These methods need an initial vector and starting with this vector they gradually 
converge to a solution by some search techniques. But, these methods cannot tell how 
many equilibrium solutions exist. So with trial and error, with different initial vectors, 
the procedure must be repeated. At the end, there is no knowledge as to what whether 
all possible equilibria are covered or not. This is similar to running a simulation 
program with different initial values to find the equilibrium points. There are also some 
analytic/symbolic methods that work for certain restricted, polynomial non-linearities. 
(Barlas and Çivi 1994. Jenner, 1963. Rayna, 1987). The problem is that these methods 
face too many implementation problems (numeric or symbolic) when applied to realistic 
models of even moderate size.  
 

The method that we propose is not a numerical method. It is essentially an 
analytical and symbolic method, supported with some numerical sub-procedures when 
needed. The main difference of our method and the ones in the literature is that our 
method does not need an initial vector and it aims to find all the solutions of the given 
system of equations. In this research we hope to develop a method that will find all 
equilibrium points of n  dimensional system of non-linear dynamic models for a very 
wide range of cases. The only assumption made is that if ,1 ’s can be any polynomial and 
any combination of polynomials using the four basic operators (addition, subtraction, 
multiplication and division) for all i. 
 
THE MAIN STEPS OF THE PROPOSED METHOD 
 
Step 1. Set all the equations in equation set1 equal to zero. 

 

























=

























=

























0

0
0

),,,(

),,,(

),,,(

21,1

212,1

211,1

2

1

�

�

�

�

�

�

�

�

�

nn

n

n

n xxxf

xxxf
xxxf

x

x
x

 

 
Step 2. Get rid of the division operator in above equation set with necessary 
multiplications by denominators. [See Appendix-2 for a technical note]. 
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         (equation set 2) 



  

Step 3. Derive one-dimensional polynomials in terms of each variable by a “reduction 
technique” applied to the above system of n equations. Since our reduction technique 
cannot work with division operators, the equation set 2 will be used. At the end, the 
reduction technique will produce distinct one-dimensional polynomials for each of the n 
variables. 

 
Steps of The Reduction Algorithm 

 
Step 3.1. Select a variable that is going to be kept and call it kx . The resulting 
polynomial will be only in terms of kx . The initial equation set consists of 
{ }nfff ,22,21,2 ,,, l , which will be updated by the “elimination procedure”.  

 
Step 3.2. Select a variable ix  to be eliminated such that ki ≠ . Eliminate ix  from 
the equations, using the “elimination procedure” [see Appendix-1]. As a result of 
this procedure, the number of the equations in the equation set is also reduced by 
one. 
 
Step 3.3. If the equation set is reduced to a single polynomial in terms of kx only, 
then end the reduction algorithm, otherwise go back to step 3.2 to select another 
variable to eliminate. 

 
The above reduction algorithm is applied for each of the variables to obtain the 
following polynomials: 
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           (equation set 3) 

 
Step 4. Find the real roots of each equation in set 3. In the literature there are different 
methods to find the roots of a given one-dimensional polynomial (Santina and 
D’Carpio, 1991). 
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Step 5. After step 4, there are nmmm *** 21 m  potential equilibrium points. But not all 
combinations of roots make all the equations in equation set 1 equal to zero, so they 
must be tested. If a root combination makes all the derivatives in equation set 1 zero, 
then it is an equilibrium point of this system. All the equilibrium points are thus 
determined. 
 
 
EXAMPLE 1 
 
Assume  the following non-linear dynamic model of order three: 
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         (equation set 1) 

 
Step 1. Set all the equations in equation set 1 to zero. 
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Step 2. Get rid of the division operator in the above equation set with necessary 
multiplications by denominators. [Appendix-2] 
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Step 3. Find one-dimensional polynomials for each variable by the reduction technique:  

 
The Reduction Algorithm (Iteration #1) 
 
Step 3.1. Select 1x  as the variable that is going to be kept. The initial equation set 
consists of { }3,22,21,2 ,, fff . 



  

Step 3.2. Select variable 2x  to be eliminated. (We do not currently have a rule for 
variable selection for elimination, so we select the variable with lower index). 
Eliminate 2x  using the elimination procedure: 

 
Elimination Procedure 

 
Step 3.2.1. The maximum powers of 2x  in each equation in the equation set 2 
are 2, 2 and 1 respectively. 
 
Step 3.2.2. Among these maximum powers, 1 is the minimum, so the last 
equation ( 3,2f ) is selected. 
 
Step 3.2.3. From 3,2f , 5.025.05.0 312 −−= xxx  is obtained. 
 
Step 3.2.4. Insert     x2  in the other two equations of equation set. 
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Do necessary simplifications and multiplications to get rid of the division 
operator. 

 









=












++−+−−

−+−−−−
0
0

481228203

4841212

1
2
1331

2
3

1331
2
3

2
1

xxxxxx
xxxxxx
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Step 3.2.5. Since variable   x2  is eliminated completely, the new equation set is 
the above equation set and this is the end of the elimination procedure. 

 
Step 3.3. There is more than one variable left in 2.1, so go back to step 3.2 to select 
another variable to eliminate. 

 
Step 3.2. (Second time in Iteration #1) This time eliminate   x3  using the elimination 
procedure: 

 
Elimination Procedure 

 
Step 3.2.1. The maximum powers of   x3  in each equation in the equation set 
2.1 are 2 and 2 respectively.  

 
Step 3.2.2. The maximum powers are equal, so we break the tie arbitrarily and 
select the equation with smaller index, i.e. the first equation in the equation set 
2.1. 

 
Step 3.2.3. From 1,1.2f , 4841212 1331

2
1

2
3 −+−−−= xxxxxx  is obtained. 



  

Step 3.2.4. Insert     x3
2 in the second equation of equation set 2.1, yielding 
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1 =++−+−−+−−−− xxxxxxxxxx  

 
and do necessary simplifications to obtain the following: 

 
   { } { }022526 1331

2
1 =−+−− xxxxx  

 
Step 3.2.5. Variable     x3  is not eliminated completely, so a new equation set is 
formed with the first equation of the equation set 2.1 and the above equation. 
The elimination procedure is thus repeated on  the following equation set. 
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Step 3.2.1. (Second time) The maximum powers of   x3  in each equation in the 
equation set 2.2 are 2 and 1 respectively.  

 
Step 3.2.2. Among these maximum powers, 1 is the minimum, so the last 
equation is selected. 
 

Step 3.2.3. From 2,2.2f , 
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Step 3.2.4. Insert     x3  to the first equation in equation set 2.2, yielding 
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and do necessary simplifications to obtain the following: 

 
{ } { }01656645233 1
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Step 3.2.5. Since variable 3x  is eliminated completely, the above is the new 
equation set and this is also the end of the elimination procedure. 

 
Step 3.3. End the reduction algorithm since there is just one equation left in the 
equation set and in terms of 1x  only. This equation 2.3 will be the first equation of 
equation set 3. (See below, the very end of this example).  

 
The Reduction Algorithm (Iteration #2) 
 
Step 3.1. Select 2x  as the variable that is going to be kept. The initial equation set 
consists of { }3,22,21,2 ,, fff . 



  

Step 3.2. Select variable 1x  to be eliminated. Eliminate 1x  with the elimination 
procedure: 
 

Elimination Procedure 
 

Step 3.2.1. The maximum powers of 1x  in each equation in the equation set 2 
are 2, 1 and 1 respectively.  
  
Step 3.2.2. Among these maximum powers, 1 is the minimum, in both the 
second and third equations. Arbitrarily break the tie and select the second 
equation that has smaller index. 

Step 3.2.3. From 2,2f , 
2

2
332
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2

1 2
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x
xxxxx −−=  is obtained. 

 
Step 3.2.4. Insert 1x  in the other equations in the equation set, and do necessary 
simplifications and multiplications to get rid of the division operator. 
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Step 3.2.5. Since variable 1x  is eliminated completely, the new equation set is 
the above set 2.4 and this is the end of the elimination procedure. 

 
Step 3.3. Since there is more than one variable in equation set 2.4 go back to step 
3.2 to select another variable to eliminate. 

 
Step 3.2. (Second time for Iteration #2) This time eliminate     x3  using the 
elimination procedure. 

 
Elimination Procedure 

 
Step 3.2.1. The maximum powers of   x3  in each equation in the equation set 
2.4 are 4 and 2 respectively.  

 
Step 3.2.2. Among these maximum powers, 2 is the minimum, so the last 
equation is selected. 

 
Step 3.2.3. From 2,4.2f , 2

2
232

2
3 234 xxxxx −−−=  is obtained. 

 
Step 3.2.4. Insert     x3

2 in the first equation of the equation set 2.4, and do 
necessary simplifications 
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after simplifying the above equations we obtain the following, which again 
includes an     x3

2 term: 
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According to the elimination procedure,   x3

2 must again be inserted in the 
above equation, yielding: 
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again simplifications are made: 
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and we obtain the following: 

 
   { } { }0418415 2
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Step 3.2.5. Since variable 3x  is not eliminated completely, the elimination 
procedure is repeated on the new equation set which is formed by the above 
equation and the second equation of the equation set 2.4.  
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Step 3.2.1. (Second time) The maximum powers of   x3  in each equation in the 
equation set 2.5 are 1 and 2 respectively.  

 
Step 3.2.2. Among these maximum powers, 1 is the minimum so the first 
equation of equation set 2.5 is selected.  
 

Step 3.2.3. From 1,5.2f , 3
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x
xxxx −−−=  is obtained. 

 
Step 3.2.4. Insert     x3  in the second equation of equation set 2.5, and do 
necessary simplifications to obtain the following: 
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Step 3.2.5. Since variable   x3  is eliminated completely, the new equation set is 
the above set 2.6 and this is the end of the elimination procedure. 

 
Step 3.3. End the reduction algorithm since there is just one equation left in the 
equation set and in terms of     x2  only. This equation 2.6 will be the second equation 
of equation set 3. (See below). 



  

Iteration #3 (The Reduction Algorithm) 
 
In this iteration, the reduction algorithm and the elimination procedure are applied 
once again to eliminate 1x  and 2x  exactly as discussed above to obtain a single 
polynomial in terms of 3x . We skip all the steps and directly present the end result: 
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The above equation is the third equation of equation set 3 below. 
 
The reduction algorithm thus gives the following polynomial equation set in terms of 
each variable: 
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Step 4. These polynomials are solved numerically, yielding: 
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Step 5. Step 4 implies 100 (4*5*5) potential roots. The combinations of roots that make 
all the equations in equation set 1 equal zero are the equilibrium points of the given 
system, which are found to be as follows: 
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When each equilibrium point is plugged back in the given equation set 1, we verify that 
they are indeed the equilibria of the model. 
 
 
 
 
 
 
 
 
 



  

EXAMPLE 2 (PREDATOR-PREY DYNAMICS) 
 
The following diagram belongs to one of the sample models packaged with the 
STELLA software: 

area

hare births hare deaths

hare density

hare birth fraction

lynx births
lynx deaths

lynx birth fraction

Hares

Lynx

hare kills per lynx

lynx death fraction  
 
The equations of the above model are as follows: 
 

 
 



  

In the original model, the variables “hare_kills_per_lynx” and “lynx_death_fraction” 
are graphical functions. For our purpose, we model them as polynomial functions of the 
variable “hare density”. (After  certain levels of hare density, they are assumed 
constants). The following graphs show how these variables depend on hare density: 
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This model, with the given equations, basically produces unstable growing oscillations 
as seen in the following figure: 
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Our purpose is to find all the equilibrium points of this unstable non-linear model. After 
making the necessary initial simplifications, the equations of the model yields the 
following three systems of equations: 
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 (equation set 1.1) 
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 (equation set 1.2) 
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    (equation set 1.3) 

 
Step 1. Set all the equations in equation set 1.1 equal to zero. 
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Step 2. There are no division operators in the above equation set, so equation 2 is 
obtained without any further effort. 
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Step 3. Find one-dimensional polynomials for each variable, by the reduction 
technique.  

 
Iteration #1 (The Reduction Algorithm) 
 
Step 3.1. Select h as the variable that is going to be kept. The initial equation set is 
{ }2,21,2 , ff . 
 
Step 3.2. Select variable l to be eliminated. Eliminate l with the elimination 
procedure: 
 

Elimination Procedure 
 
Step 3.2.1. The maximum powers of l in each equation in the equation set are 1 
and 1 respectively.  
 
Step 3.2.2. The maximum powers are equal, there are two minima. Break the 
tie arbitrarily and select the equation with smaller index, i.e. the first equation 
in the equation set. 
 

Step 3.2.3. From 1,2f , 
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Step 3.2.4. Insert l to the second equation in equation set 2, 
 

{ }0
2.010*2

12500001.0
2.010*2

12510*5
2.010*2

1253.0 2727
211

27 =

















+−
+









+−
−









+−
− −−

−
− hh

hh
hh

hh
hh

h  

 
do necessary simplifications and multiplications to get rid of the division 
operator. 

 
{ } { }03750125.010*25.6 238 =+−− hhh     (equation set 2.1) 

 
Step 3.2.5. End the elimination procedure since variable l is eliminated 
completely. Also eliminate the first equation so that the new equation set 
becomes equation set 2.1. 

 
Step 3.3. End the reduction algorithm since there is just one equation left in the 
equation set and in terms of h only. This equation 2.1 will be the first equation of 
equation set 3. (See below, the very end of this example). 

 
Iteration #2 (The Reduction Algorithm) 
 
Step 3.1. Select l as the variable that is going to be kept. The initial equation set is 
again { }2,21,2 , ff . 
 



  

Step 3.2. Select variable h to be eliminated. Eliminate h with the elimination 
procedure: 
 

Elimination Procedure 
 
Step 3.2.1. The maximum powers of h in each equation in the equation set are 2 
and 2 respectively.  
 
Step 3.2.2. The maximum powers are equal, there are two minima. Break the 
tie arbitrarily and select the equation with smaller index, i.e. the first equation 
in the equation set. 
 
Step 3.2.3. From 1,2f , 
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Step 3.2.4. Insert 2h  to the second equation in equation set 2, 
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do necessary simplifications and multiplications to get rid of the division 
operator. 

 
{ } { }00008.0625.06 22 =−+− hlhll  

 
Step 3.2.5. Since variable h is not eliminated completely, the elimination 
procedure is repeated on the new equation set which is formed by the above 
equation and the first equation of the equation set 2.  
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Step 3.2.1. (Second time) The maximum powers of h in each equation in the 
equation set are 2 and 1 respectively.  
 
Step 3.2.2. Among these maximum powers, 1 is the minimum, so the last 
equation is selected. 
 

Step 3.2.3. From 2,2.2f , 
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Step 3.2.4. Insert h  to the first equation in equation set 2.2, 
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do necessary simplifications and multiplications to get rid of the division 
operator. 



  

{ } { }04687513509672.0 345 =+− lll      (equation set 2.3) 
 
Step 3.2.5. End the elimination procedure since variable h is eliminated 
completely. Also eliminate the second equation so that the new equation set 
becomes the equation 2.3. 

 
Step 3.3. End the reduction algorithm since there is just one equation left in the 
equation set and in terms of l only. This equation in set 2.3 will be the second 
equation of equation set 3 below. 
 

The reduction algorithm thus gives the following polynomial equation set in terms of 
each variable: 
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Step 4. These polynomials are solved numerically, yielding: 
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Step 5. Step 4 implies 9 (3*3) potential roots. The combinations of these roots that 
make all the equations in equation set 1.1 equal zero are as follows: 
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But the 3rd point is outside the range of the equation set 1.1. So it can not be an 
equilibrium point. The equation set 1.1 thus has two equilibrium points. 
 
Since in this example the model consists of three different equation sets, we repeat the 
above steps for equation set 1.2 and equation set 1.3 and in each case we obtain (h=0, 
l=0) as the only point that makes the equations zero.  But this point is outside the range 
of both equation sets. So, the second and third equation sets of the model provide no 
additional equilibrium points. 
 
If we combine the above results obtained from the three equation sets of the model, we 
obtain the following equilibrium points: 
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When each equilibrium point is plugged back in the given equation sets, we verify that 
they are indeed the equilibria of the model. 



  

CONCLUSION 
 
An algorithm to find all the equilibrium points of a given non-linear dynamic model is 
discussed. The method aims to work for a rather general subset of non-linear systems, 
provided that all non-linearities are/can be expressed in polynomial terms. The 
significance of the method is that; i- it can greatly speed up model analysis by providing 
the equilibrium information prior to simulation, and ii- it can help verify the results 
obtained from simulations (numerical simulation may skip an existing equilibrium and 
“create” spurious equilibria).  The method is demonstrated on two examples.  The 
algorithm works well, except when there are infinite number of equilibria on an N-
dimensional plane. Future work will focus on this problematic case. Finally, there are 
some issues of speed and numerical accuracy, the other two main topics of current and 
future research. The method can be coded in the future as an integral part of the existing 
System Dynamics software. 
 
 
APPENDIX 1. THE ELIMINATION PROCEDURE 
 
The elimination procedure starts with n variables and n equations. At the end it gives n-
1 equations with n-1 variables. 
 
Steps of The Elimination Procedure 
 
Step 1. Find the maximum powers of the variable ix  in each equation from the given 
equation set. (Note that ix  is the variable that is selected for elimination). 
 
Step 2. Among these maximum powers, find the minimum power (p) that is non zero. 
Select this equation (that gives the minimum of the maximum powers). 
 
Step 3. From selected equation obtain  
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V is the variable set including all the variables of the given equation set except ix . 

Step 4. Insert p
ix  in the other equations of the given equation set and do the necessary 

multiplications to get rid of the division operator [Appendix-2]. Check if  there is no 
{ }pkxk

i ≥:  term left. Else, do the same insertion recursively until no { }pkxk
i ≥:  is left 

in these equations. 
 
Step 5. If variable ix  is eliminated completely, also eliminate the selected equation and 
end the procedure. Otherwise update the equation set using the selected equation, return 
back to step 1 of the elimination procedure and apply it on the updated equation set.  
 
(Note that ix  and the given equation set were determined by the reduction algorithm.) 



  

APPENDIX 2. GETTING RID OF THE DIVISION OPERATOR 
 
Assume that the following is the given equation: 
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The wrong way of getting rid of the division operator would be a division cancellation 
to yield the following: 

 
01),( 121 =+= xxxf  

 
The method presented does not allow division cancellations, because such cancellations 
may result in loosing some of the roots. The proper way of getting rid of divisions is to 
multiply the equation by the necessary terms. So after multiplying all terms by 2x , the 
given equation becomes: 
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