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Abstract 
Self-organization denotes a class of instabilities in 

which a system spontaneously generates structure, diversity 
and/or specialization. From a thermodynamic point of view, 
transitions of this kind, which proceed against the general 
tendency for relaxation towards an unstructured equilibrium, 
can occur in energetically open systems and under far-from
equilibrium conditions. The exergy required to build up and 
maintain a non-equilibrium (so-called dissipative) structure 
can here be extracted from the continuous supply of energy 
(and/or resources) . 

The interest in self-organizing systems originates in 
the work on irreversible thermodynamics performed primarily 
by the so-called Brussels school. According to this school, 
developments in biological, ecological and social systems 
which involve qualitative change, diversification or increased 
complexity are also to be viewed as self-organizing processes. 
This applies for instance to the build-up of genetic information, 
the appearance of new species in an ecological system, the in
troduction of new techniques in a social system, the adoption 
of new scientific paradigms, and the penetration of new pro
ducts. 

In the present paper we analyse the basic ideas of 
self-organization in terms of concepts familiar to System 
Dynamics practitioners. Through a series of relatively simple 
models it is shown how System Dynamics can be used as an ef
ficient tool for modeling self-organizing systems. As a parti
cular example we consider the evolution of cooperative structu
res (RNA molecules with their associated enzymes) in a prebio
tic system. 

Introduction 

Is the American society stable with respect to a so-

cial or racial revolution? If the unemployment was to increase 
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would there be a kind of threshold value above which the so-

ciety becomes unstable, and a nationwide upheaval can be trig

gered by almost any outbreak of local unrest. 

These questions belong to a type that System Dynamics 

practitioners are not so used to consider. Nontheless, they 

appear to be quite relevant in discussing the possible future 

developments of USA and, more particularly, for assessing the 

limits to a contractive economic policy. 

On this background, one may ask if human societies 

are operating under such conditions that they are unstable 

with respect to certain small disturbances. And the answer 

to this question is clearly: yes, sometimes. The human popu

lation, for instance, may be unstable with respect to the 

spread of vira or bacteria from laboratories engaged in gene

tic engineering or production of biological weapons. In 15-

20 years, when less than half of the population has been 

vaccinated, the human race may be unstable with respect to 

the reappearance of smallpox. This implies that a local out

break of this disease could explode into a major epidemic 

wave which would propagate all around the world. Even more 

frightful, the terror balance may some day turn out to be 

unstable with respect to a small disturbance in the Middle 

East, or even in the electronic warning systems. 

These examples give an impression of what is meant by 

instabilities in social systems. All the examples may be con-

sidered as relaxation type transitions, however, which can 

occur in isolated systems. The main idea of Prigogine and his 

co-workers 11 • 2 ) is that human societies are open systems in 
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which large amounts of energy and resources are processed. 

These flows of exergy (useful energy) so to speak "lift" the 

systems far away from equilibrium and permit "upward transiti-

ons" in which structure is created, and diversity and specia-

lization spontaneously increased. The evolution of social 

systems is thus to be considered as a series of. instabilities 

leading to an increasing level of complexity. 

This is presumably a rather unfamiliar viewpoint to 

many system dynamicists. It also appears to conflict with 

the usual assumptions about the stability of social systems. 

With the present paper we would like to show how the notion 

of self-organization can be accomodated within System Dyna-

mics, and also to illustrate how System Dynamics can be used 

as a tool for modeling unstable transitions. The contention 

that social systems are stable to parameter fluctuations is 

a practical working hypothesis in many situations. It is not 

a scientific fact, however, and by incorporating the ideas of 

the Brussels school, system dynamicists can complement their 

understanding of evolving social systems. 

There may be some semantic problems 13 l, as there will 

often be when ideas from different disciplines are brought 

together. In particular, the word structure as applied by the 

Brussels school usually refers to the spatial and/or temporal 

variation of a distributed system. Therefore, self-organization 

in irreversible thermodynamics does not necessarily imply a 

change in the basic equations of motion, or in the loaical 

structure as represented by the System Dynamics flow-diagram. 



However, in the hierachy of successive bifurcations leading 

to different dissipative structures in a hydrodynamic system, 

for instance, the equations of motions to be used may change 

completely from level to level. Then, we have also a change 

in the logical structure. If we want to apply the idea to 

social systems, the self-organizing transitions must be re

presented as activations of various parts of or causal rela

tions in a flow-diagram. It is important to notice, however, 

that this activation occurs th h roug a spontaneous process, 

i.e. as a result of certain noise components becoming unstable. 

An alternative process in which hidden parts of a 

flow-diagram are activated when certain conditions are satis

f.ied by the system's macroscopic variables has been investi

gated by Barry Richmond{ 4 ). We have extended this work by 

assuming the activation of certain causal relations to be 

determined stochastically, and by introducing auxiliary con

ditions which evaluate the performance of the system and, 

for instance, stabilize particularly advantageous connecti

ons. We would like to refer to such a process as "stochastic 

re-causalization". It does not describe the spontaneous tran

sitions associated with self-organization in detail. Under 

certain conditions it may be a reasonable · approx~mation, 

however, which allows one to handle systems in which a large 

number of transitions are possible. 

Self-organizing processes in nature 

Self-organization is the thermodynamic term for a 
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class of processes by which a system under far-from-equilibri-

urn conditions spontaneously develops spatial structure and/or 

breaks into sustained oscillations. Light amplification by 

stimulated emission of radiation (Laser-action) is a typical 

example of self-organization. When a gas (a glass or a semi-

conductor) is pumped sufficiently above thermal equilibrium 

by illumination for instance with ultraviolet light, it may 

suddenly break into a qualitatively different mode of beha-

viour in which the emitted spectrum of incoherent light is 

replaced by a single line of sometimes extreme coherency. 

This transition occurs because, above a certain pumping thres-

hold, particular components of the system's random noise 

become unstable and start to build up exponentially until 

after many decades of amplification they are finally limited 

by non-linear processes. 

Another example of a self-organizing process is 

the Benard instability( 6 ). A few mm thick layer of oil in 

a pan is heated uniformely from below. As long as the tempera-

ture difference between the top and the bottom of the layer 

is sufficiently small, heat is transported up through the 

layer by conduction. If the heating is intensified., however, 

at a certain well defined temperature gradient, regular macro

scopic convection cells spontaneously appear(?). A transition 

has here occurred in which convection currents representing 

a high degree of organization have grown out of irregular 

molecular motions· or occasional hydrodynamic disturbances. 

The more detailed mechanism involved in the Benard 

instability is not so difficult to understand. It is related 
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to the decrease of the surface tension of a liquid with in

creasing temperature. Thus if for instance the temperature of 

a certain small area of the surface by a random fluctuation 

happens to be higher than elsewhere, oil is drawn away from 

this area along the surface. To replace it, oil will start to 

rise from below. The rising oil is warmer than the surface 

oil, however, and the local increase in surface temperature 

will therefore be enhanced. This establishes a positive feed 

back which in the end leads to the format 1'on of macroscopic 

convection cells. A threshold for the temperature gradient 

exists because the convection currents must overcome the 

friction associated with the finite viscosity of the oil. 

There is no reason to dwell t h · h oo muc w1.t this examp-

le, however, because we all know of self-organizing processes 

in our daily lives: the growth of snow crystals, the develop

ment of frostwork on our windows at wintertime, the formation 

of sand bars along a beach, the generation of characteristic 

washboard groves on top of the sand bars, the division of 

the earth's atmosphere into belts of opposite wind directions, 

and the formation of low-pressure cyclons, just to mention a 

few. None of these phenomena can be described on a purely 

deterministic basis because they originate in small irregula

rities which by virtue of an instability have grown into co

herent macroscopic patterns. 

Besides in lasers, self-organizing processes are 

technically employed in microwave generators, Gunn diodes, 

multivibrators, etc. In our more technically oriented re

search, two of us have been engaged vii th the study ·of self-
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organizing effects in connection with diffusion of surface ten-

sion active molecules through liquid-liquid interfaces and in

stabilities of cell membranes(B,g), and with the formation of 

acoustoelectric high field domains(lo,ll). 

The contribution that the Brussels school has made to 

the field (besides introducing the term self-organization) is 

mainly to establish the common thermodynamic principles for 

these far-from-equilibrium processes. At the same time, the 

Brussels school has generalized the idea by postulating that 

similar processes play a vital role in the evolution of biolo-

gical, ecological and social systems. From the thermodynamic 

point of view, the most fundamental features of such systems 

are the unidirectional transformation of large amounts of food 

or fuel of medium grade energy content into low grade waste 

(entropy) coupled with a simultaneous build-up of high-exergy 

structures. Through the degradation of resources, the systems 

- in stead of relaxing towards a state of thermal equilibrium 

where no life is possible - become capable of building up and 

maintaining a high degree of complexity. This is merely a re-

statement of the second law of thermodynamics, and the way such 

systems restructure themselves through non-linear interactions 

of sociological, economical or psychological nature, can be 

seen as an illustration of the concept of dissipative struc-

tures. 

In this way, self-organization becomes a paradigm of 

evolution through instabilities, a paradigm which complements 

the more mechanistic view of classical System Dynamics. 
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It is also possible that self-organization can occur 

in a model which unintendedly becomes unstable to computatio

nal noise. We shall not enlarge on this problem, however, but 

rather try to show how self-organizing processes can be hand-

led with System Dynamics. 

As easy as lifting a feather 

November 7, 1917 is presumably one of the most sig

nificant dates(lZ) in modern history. This was the day when 

Lenin and his bolschevist·s took power in the Russian Capital 

Petrograd. Eight months before, the Zar regime had stopped to 

function. On top of centuries of impoverishment and injustice, 

the enormous problems associated with the war had strained 

the system above a cri t.ical threshold. The population had 

revolted all over the country, and the soldiers had refused 

to fight. 

The fall of the Zar regime left a political vacuum. 

Officially, the country was ruled by a provisional govern-

ment, but the authority of this government was very limited. 

In these months, the political scene was dominated by libe

rals and socialists who hoped for the rise of a decentrali-

zed and democratic society. But the population was impatient: 

"The revolution has already lasted for 6 weeks, and nothing 

has changed", wrote dissatisfied peasants to the government. 

Workers, soldiers and farmers formed soviets, committies and 

councils. Hitherto forbidden political parties started a 

hectic campaign to prepare for the election of a constituent 
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assembly, and national minorities raised demands for home-rule 

and independence. 

Under these conditions, the bolschevists could take 

power through a minor operation involving armed workers and 

soldiers from the garrisons in Petrograd, and within a few 

days a new government had been established with the promises 

of "pease" and "bread". "It was as easy as lifting a feather", 

Lenin is reported to have said. (The real build-up of a new 

power structure was a tremendous task which lasted decades 

rather than days, and in· which terror and civil v1ar were sig

nificant tools). 

It is not our purpose in the present paper to discuss 

a model of the Russian revolution. Rather, we would like to 

use some af the characteristic elements of the revolutionary 

process to illustrate unstable transitions in social systems. 

These elements are: 

(1) the sudden break-down of an apparently stable structure 

when strained above a critical level, 

(2) the creation of a "vacuum" in which several rivaling, 

more or less organized activities explode, and 

(3) the rather unexpected appearance of a new dominant po

wer which suppresses all alternatives. 

As vle shall show it is quite possible to represent these ele

ments in a System Dynamics model. 

The flow diagram of figure 1 shows a schematic repre

sentation of the.basic elements of an unstable social process. 

As long as the indicator of social tension IST is .below a 

certain threshold value (threshold for social tension THST), 
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the system is in stable equilibrium in a state in which the 

whole population of 20 million people is politically indif

ferent (politically indifferent persons PIP). Indeed there 

is always a small generation of political activists, but un-

der normal conditions their number is vanishing small. As 

examples of such activists, the model considers left wing 

extremists LWE, moderate political activists MPA, and right 

win9 extremists RWE. 
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Figure l. To illustra
te the basic ideas of 
unstable transitions 
in social systems, this 
figure shows the flow
diagram of a schematic 
model of social revolu
tion. 

The generation of political activists is represented 

by the three rate variables: net generation of left wing ex

tremists NGLWE, net generation of moderate political activists 

NG~IPA, and net generation of right wing extremists NGR\~E. 

Each of these rate variables has a random accession term pro

portional to the normal accession rate, and to .the fraction 

of remaining political indifferent persons. There is also 

a defection term which is modelled as a relaxation process, 

i.e. it is proportional to the number of activists of each 

kind divided by the corr~sponding average association time. 

Together these two mechanisms produce a "back-ground noise" 

of activists of the order of a few thousands. 

If the indicator of social tension IST becomes lar-

ger than the threshold value THST, the system is no longer 

stable in its original (ground) state, but positive feed

back loops are activated which generate an exponentially 

rising number of activists in each of the three groups. 

There is now a characteristic incubation period before the 

number of activists has grown by the 3-4 orders of magni

tude necessary for it to become comparable with the total 

population. When this occurs, however, the non-linearity 

associated with the total number of people being constant 

sets in, the exponential growth ceases, and one group of 

activists become dominant. Which group that is going to win 

depends crucially upon the parameters used to specify the 

random accession· rates, the defection rates, and the rein-

forcing positive loops. 
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The DYNAMO-program for the simple model of a social 

revolution is given in the appendix. Figure 2 shows a charac-

teristic simulation result. The indicator of social tension 

(which in general could be defined as an endogenous variable) 

has here been taken to increase linearly from 0 to 2 during 

the first 20 time units,. and hereafter to remain constant. 

The system then becomes unstable at time 10. After an incuba-

tion period of 7-8 time units, the number of activists become 

large enough to be distinguished from zero on the DYNAMO-plot. 

The number of political indifferent persons then drops dra

matically, and after a short struggle the moderate political 

activists take over the political scene. 

Figure 3 shO\>lS similar results only with the modifi-

cation that the average association time for left wing extre-

mists has been increased from 2 to 3 time units. This relati-

vely small parameter change is sufficient for the left wing 

extremists to become completely dominant. 

The above model is an idealized model of a self-or-

ganizing process. With a few modifications it could represent 

for instance the growth of modes in a laser above the pumping 

threshold. For a distributed system in which the self-organi-

zing process produces a spatial structure, the three level 

variables would represent amplitudes or intensities of va-

rious spatially defined eigen-functions. Our model could also 

serve as a kind of switching module in a larger System Dyna-

mics model, i.e. as a module which driven by the occurrence 

of instabilities would activate various causal rel~tions or 

hidden parts of a flow-diagram. 

139 

Figure 2. Simulation results obtained with the schema
tic model of social revolution. In this run.the mode
rate political activists are seen to win. 

Figure 3. Same as figure 2 except that a relatively 
small parameter change now leads· to the result that 
left wing extremists take power. 
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Self-organization in a mutating two-species system 

Self-organization can occur under somewhat different 

conditions with respect to the noise amplitude. In the simple 

model of a social revolution discussed in the preceding sec-

tion, the background noise of political activists was relati-

vely strong, and as a consequence the outcome of the revolu-

tionary process was mainly determined by the strength of the 

positive growth loops. As an example of the opposite situa-

tion we shall now consider a system which is unstable from 

the very beginning, but for which the self-organizing tran-

sition is triggered by a relatively infrequent random event. 

Under these conditions th'ere is a considerable uncertainty 

with respect to when the transition will occur. 

Figure 4 shows the flow-diagram for an ecological 

system in which a population of species A is in equilibrium 

with a resource pool RES. To indicate that we are consider-

ing an open system, there is a continuous in- and out-flow 

of resources as modeled through the rate-variables RIF (re-

source in-flow) and ROF (resouce out-flow). There is also a 

resouce usage rate RUR which is proportional to the number 

of species A NA and to the individual resource consumption 

MCA (metabolic constant for species A). The specific resour-

.ce availability SRA, i.e. the amount of resources per unit 

of population influences the net growth rate for species A 

NGRA. In particular, there is a characteristic value of 

SRA above which the growth rate turns positive. 

However, th~ system also includes the infrequent but 

possible event of a mutation by which an individual (or a 

pair) of species A is transformed into species B. Everything 
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Figure 4. Flow-diagram for a unstable ecological system. 
With the self-organizing transition being triggered by a 
relatively infrequent mutation, there is a considerable 
uncertainty with respect to when the transition occurs. 

that has been said about species A also holds for species B, 

except that individuals of species B are assumed to have a 

better resource utilization. As a result the population of 

species B can maintain a positive net growth rate and reduce 

the resource pool at a value of the specific resource availa

bility SRA which is too small for the population of species 

A to grow. The system is thus unstable in its initial state. 

If a mutation occurs, the system performs a transition from 

its original state into a new state in which the population 
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of species B is in equilibrium with the resource pool, while 

population A is extinguished. 

The occurrence of a mutation can be expressed as< 13 , 14 l 

HR.KL=CLIP(O,l,NNAB.K,NMF.K*NA.K*DT) 

NNAB.K=NOISE()+.5 is here a random number uniformely distri

buted between 0 and 1. NMF is the normal mutation frequency, 

and·NMF.K*NA.K*DT thus gives the probability that a mutation 

will occur in the time-step DT. The CLIP-function compares 

the random number with the probability for a mutation to oc-

cur, and if NNAB.K happens to be smaller than the mutation 

probability, this is taken to mean that a mutation does occur 

(15) 

Figures 5 and 6 show the simulation results obtained 

with two different initiations of DYNAMO's noise-function. 

The initial population of species A is 4000, and the normal 

mutation frequency is 2·10-5 . In figure 5, the mutation oc-

curs before time 20 while in figure 6 the mutation does not 

occur until about time 45. This illustrates the sensitivity 

of an unstable macroscopic system (thousands of individuals) 

to a small random fluctuation. As shown in the flow-diagram 

of figure 4, we have extended the model a little by assuming 

that species B produce a refuse at a rate which is propor-

tional to the population size. The model also assumes that 

the produced refuse is eliminated with a certain characteri-

stic time constant ARET. Figures 5 and 6 show how the refuse 

(or waste) builds up in the two simulation runs. 
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Figure 5. Simulation results obtained with the model of a 
mutating two-species system. The self-organizing transition 
occurs at time 18. 

specieGA 

'lo'U.te 

./r~so:;n;es 

,. 
e e 

Figure 6. Same as figure 5 except that the simu~ation ha7 
been run with another initiation of DYNANO's no~se-funct~on. 
The transition now occurs at time 45. 
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The above process is an unstable transition. One species com-

peting another species away from the scene is not ~ ~ a 

self-organizing processes, however. This requires in general 

the emergence of additional species and/or the division of 

function (creation of niches) . It might be though that spe

cies B have a higher degree of internal sophistication than 

species A, and that the level of complexity for the system 

is increased in this way. 

It is also possible, however, to make the system per

form a self-organizing transition which is more similar to the 

dramatic cbange in the mode of behaviour which characterizes 

. (16) self-organizing processes.in thermodynam~c systems . To do 

this we only have to add the assumption that the metabolic 

biproducts (refuse) produced by species B with a certain de

lay become poisonous to this population. (The corresponding 

causal relation is indicated with four small arrows in figure 

4, the total DYNAMO-program can be found in the appendix). 

When a mutation occurs, the system now transfers from its ori-

ginal stationary state into a self-sustained strongly non

linear oscillation (a limit cycle). This is illustrated in 

figure 7. When looking at this figure it should be recalled 

that the dramatic macroscopic oscillations in the bi-stable 

system are the result of the mutation of one single indivi-

dual. 

Information crisis in a prebiotic system 

The most fascinating of all self-organizing.processes 

is the development of life out of the simple organic and inor-
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Figure 7. Self-sustained oscillations in the ~acros~op~c. 
two species system upon the mutation of one s~ngle ~nd~v~
dual of species A into species B. 

ganic compounds of primordial world. Exactly how things hap

pened when life began some 3 billion years ago is not known, 

but we have some general conceptions about the kind of proces

ses which took place, and the conditions under which they oc

curred. It is very clear that the evolution must have faced 

several severe information crises in which new principles of 

organization had to be found to protect the information al

ready developed and to make continuation of the information 

build-up possible. One such crisis was solved through the 

development of cells, but even before that time the develop

ment of sufficiently long RNA-molecules had to find a solu-

tion. 

Even at the molecular level, the evolution of life 

c&n be interpreted in terms of Darwinian principles of natu-
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ral selection. It is a trial and error process in which a 

wide spectrum of randomly produced structures are tested with 

respect to their ability to survive under the given condi

tions (l7 ' 18 ) . For simple molecules, the ''competition" is a 

question of rate constants in the formation process and resi-

stance to decomposition. 

A basic step in the evolutionary process was the de-

velopment of self-replicating RNA-molecules. (The appearance 

of DNA presumably occurred at a somewhat later stage). This 

introduced a first order autocatalytic process or, in System 

Dynamics terms, a positive feedback in the generation process. 

RNA-molecules are threadlike structures build up as chains of 

nucleotides. Each nucleotide consists of a sugar, a phosphate 

compound and a nitrogen containing organic base. The sugars and 

phosphates are linked toqether to form the "back-bone" of the 

molecules, while the genetic information is encoded as a 

particular sequence of the four possible, pairwise comple-

mentary bases. 

In a replication process, the string of nucleotides 

serves as a template along which complementary nucleotides 

are assembled according to the base pairing rules. With cata-

.lyzing effects from various inorganic compounds and from 

miscellaneous primitive proteins, chemical forces and thermo-

dynamic laws permit the formation of RNA strings with up to 
I 

about 100 nucleotides, corresponding may-be to today's trans-

fer RNA-molecules. At this stage, the information build-up 

is terminated by inevitable errors in the replication pro-
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cess. However, the information carried by such RNA-molecules 

is not sufficient for them to produce more specific proteins, 

and without the enzymatic effects of such proteins, the neces-

sary error suppression in the replication process can not be 

achieved. 

To overcome this "crisis" and make possible the pro-

duction of RNA-molecules with several thousands of nucleotides, 

a new principle of organization had to be developed. Eigen 

<
17 •18 ) has suggested that this was acomplished through the 

formation of cooperative structures (so-called hypercycles) 

between different RNA-subsystems. Such a hypercycle would re

sult if one type of RNA-molecule by chance happened to pro-

duce a protein which could facilitate and stabilize the pro-

duction of another type of RNA-molecules, and if at the same 

time the second type of RNA-molecules produced a protein 

which could assist the replication of the first RNA-molecules. 

In the beginning, such a narrow closed loop would 

probably not have occurred. Rather, the simple proteins pro-

duced by a given type of RNA-molecules would be relatively 

unspecific and would catalyse the replication of a great 

many other molecules. Other types of RNA-molecules might 

also start to produce relatively unspecific, slightly enzy-

matic proteins, and at a certain time, a reinforcing possi-

tive loop involving a large number of RNA-subsystems could 

be established. The formation of such a hypercycle would 

give the involved. RNA-systems an advantage over other RNA

systems with respect to their rate of production (a second 

order autocatalytic process), it would stabilize the total 

information carried by the cooperating RNA-systems, and it 
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would permit the gradual development - hand in hand - of lon

ger and longer RNA-molecules and of more and more specific 

proteins. 

It is such formations of cooperative structures and 

the associated build-up of genetic codes that we have started 

to investigate by means of System Dynamics. Clearly, we are 

here dealing with a self-organizing process in the sense that 

more and more complex structures are generated. The process 

also involves characteristic spontaneous transitions starting 

as random mutations at the level of individual molecules and, 

if a positive feed-back is established, proceeding through 

amplifications over tens of decades until macroscopic num

bers of mutants have been produced. 

When several RNA-subsystems are considered, the num

ber of possible couplings quickly becomes very large, and 

combinatory problems become significant. At the same time, 

DT-problems tend to arise when a system between periods of 

relatively slow development several times has to make tran

sitions involving amplification from 1 to say 10 30 molecules. 

For these reasons we have decided to model the self-organi

zing process in an approximative manner for which we have in

troduced the term "stochastic re-causalization". 

In a stochastic re-causalization process it is as

sumed that all RNA-molecules of a given type mutate at one 

and the same time, i.e. the very rapid amplification proces

ses are simulated by CLIP-functions which suddenly change 

the properties of a macroscopic number of molecules. In the 

flow-diagram this corresponds to random generation (and/or 
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disconnection) of causal links between RNA-subsystems. Each 

of these connections originate in the pool of proteins pro

duced by one type of RNA-molecules and terminates in the re

plication rate of another type of RNA-molecules. Since ampli

fication from molecular level only occurs when a hypercycle 

is established, only such combinations of causal links which 

give rise to closed loops are allowed. 

The stochastic generation of causal links is comple

mented by functions that continuously evaluate the perfor

mance of the produced structures and stabilize reinforcing 

connections. This expresses the principle of natural selec

tion which in the present context is a result of the compe

tition between RNA-subsystems for resources. 

It is relatively simple to give examples of re-cau

salization phenomena in social systems. One could think for 

instance of a company which "happened" to start a collabora

tion with a former competitor. Such a collaboration could im

ply division of markets or of product selections, or one com

pany could start to produce semi-manufacture for the other. 

If this problem was extended to consider the establishment 

of mutually beneficial cooperative structures between several 

companies, it would resemble our RNA-problem a good deal. 

Stochastic re-causalization and formation of RNA-hypercycles 

At the present stage, our model of RNA-hypercycle 

formation operates with 3 RNA-subsystems, only. Figure 8 

shows the flow-diagram for each of these subsystems. RNA

strands of type I=l,2,3 are synthesized from mono-nucleotides 
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Figure 8. Flow
diagram for an RNA
subsystem. The model 
consists of three 
such sectors, a 
resource sector and 
a module that con
trols the stochastic 
intersector connec
tions. 

through base-pairing. The rate of this process RNAIS depends 

upon the amount of RNAI already formed, the concentration of 

nucleotides NUC and the efficiency of the replication pro-

cess EFRI. This efficiency again depends upon possible ca-

talyzingeffects of simple proteins produced by other RNA-

·molecules. The produced RNA-molecules are subject to decompo-

sition through hydrolysis and other processes, and the rate 

of decomposition RNAID is determined as the amount of RNAI 

multiplied by .a characteristic decay constant DCR. 

Proteins (poly-peptides) of type I are synthesized 

from mono-peptides (amino acids) by RNAI-molecules at a rate 
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which is determined by the amount of RNAI-molecules, the con

centration of mono-peptides PEP, and the efficiency of protein 

synthesis EFP. Also proteins decompose, and the characteristic 

decay constant for this process is DCP. 

Besides the three RNA-subsystems, the model also in-

eludes resource pools for mononucleotides and amino acids. 

We are considering an open system, and these resources are 

therefore continuously supplied. Finally, the model includes 

a set of equations that specify the random coupling and de-

coupling of RNA-subsystems. The re-causalizations are treated 

as Markov processes according to a formalism that we have 

previously described( 13 • 14l. Figure 9 gives an overview of 

some of the 21 possible hypercycles and combinations hereof 

which can exist with 3 RNA-subsystems. 

Figures 10 and 11 give examples of the obtained si-

mulation results. On each figure we have plotted the quanti-

ties of each of the three types of RNA. The states of the pos-

sible subsystem to subsystem connections are indicated through 

the values (!=connected, O=disconnected) of the dummy variab-

les plotted as A,B,C,D,E and F. From the variation of these 

dummies one can determine the development in the structure 

of the system. On figure 10 for instance, a hypercycle be

tween subsystems 1 and 2 is established at about time 24. The 

amounts of RNAl and RNA2 hereafter increase significantly, 

while the amount of RNA3 is reduced. Figure 11 shows how the 

formation of a hypercycle including all the RNA-subsystems 

can lead to sustained oscillations in the system. The occur-

renee of such limit cycles has previously been established by 

Eigen (l 9 ). 
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Figure 9. 11 out of 
the 21 possible hyper
cycles and combina
tions hereof which 
can exist in a model 
with 3 RNA-subsystems. 
In the case of four 
RNA-subsystems there 
can be about 500 
different combina
tions of hypercycles, 
each with its charac
teristic mode of be
haviour for the sy
stem as a whole. 

It is characteristic for the re-causalization model 

that there is an uncertainty both with respect to which kind 

of hypercycle that happens to be established, and with re-

spect to the time that this occurs. 

Conclusion 

We have discussed how instabilities in energetically 

open systems can lead to self-organizing processes. Such transi

tions exemplify the break down of the law of large numbers. Amp

lification of random noise plays a significant role, and the ave-

153 

Figure 10. Simulation results obtained vlith the model of RNA 
hypercycle formation. In this run, a hypercycle involving 
RNA-subsystems 1 and 2 is generated at about time 24. 

z=~=zzzz~=====z:zzk=========;=z=======~=zzz=z=== 

' 

Figure 11. Same as figure 10 only with a different initia
tion of DYNAMO's noise function. A hypercycle involving all 
three RNA-subsystems is here generated, and the system starts 
to oscillate violently. 
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rage macroscopic variables are insufficient to determine 

system development. We have also shown how self-organizing 

transitions in social and biological systems can be modeled 

with System Dynamics. This requires methods capable of hand-

ling stochastic processes, but otherwise it does not imply 

expansions or generalizations of System Dynamics as a model-

ing technique. 

Rather, it is the ideas that we have come to connect 

with System Dynamics about the stability of social systems 

which have to be complemented. We consider these ideas as a 

practical working hypothesis in many real life problems, and 

may be also as part of a tactical defence towards econome-

tries. They do not constitute an indisputable truth, however. 

According to the Brussels school, the evolution of social and 

biological systems can be considered as a series of unstable 

transitions interrupted by periods of more deterministic 

development. As we have tried to illustrate, this can be a 

very fruitful viewpoint, and we feel that it can be accomo-

dated in System Dynamics without changing any of the more 

fundamental principles. 

Self-organizing phenomena are not at all uncommon in natural 

sciences, and there is no reason to expect that the introduc-

tion of such processes in System Dynamics should weaken or 

undermine its basic ideas. 

155 

Appendix 

Since the models are small and the DYNAMO equations 

at certain points a little unusual we have found it reasonable 

to list below the complete programs for the simple model of 

social revolution and for the model of self-organization in 

a mutating two-species system: 

* 5If1F'LE t10DEL OF SOCIAL F.:EI/OLUTIDt~ <F.:EVOL1> 
NOTE · 
l ..PIP. 1'-:=PIF'. ,J-(C:•T> O·IGL~JE. cfl(+t-JGt1PA. cTI::+t-JGR~JE. cTK> 
N PIP=PIPI 
C PIPI=2E? 
L LWE KzLWE cf+CDT>CNGLWE cTK) 
1-l UJE=1. 4E3 
l rlPA. IC:zt·1PA. ,J+<DT> CNI3t-1PA. cTIO 
t~ MPA=3. 6E3 
L Rl·JE. l(zF:l~E. ,J+ (CoT) O·JI3Rl~E. cTIO 
1-l f:(~JE=1. 5E3 

R NGU~E. ~~_L=«PIP. 1(/PIPD,HJAU~E*<NOISEO+. 5))-(U~E IVATU~E'• 
l< +<.U.JE. I':.<H1GF.:U.JE*MIST. KHPIF'. K/PIPD . .. 
C NAU~E=O. 8E3 
C ATU.JEz2 
C ~113F.:U~E=2. 4 
F.: t·JGt1F'A. f(L=((PIF'. K/PIPI>'t'NAt1PA*(NDISEO+. 5))-(MF'A IUATt1PA) 
;,; +<t·lPR. l(*i'1GF.:~1PA*MIST. 10 (PIP. 1(/PIPI) . . . 
,~ NAt1PA=2. 4E3 . 
C An1PA=3 
C t1GRt1PA=1. 9 

f::: t·JGF:l·JE. KL=<<PIP. IVPIPD*I·JRf:::l·JE*<NDISEO+. 5)>-<Rl~E. K.-'ATRl•JE) 
:'< +<.F.:l·JE. f~.*MGRF.:1·JE*t1IST. IOCPIF·. K/PIP!) . 
C NAF.:l~E=Cl. 6E3 
C RTF.:1·JE=1. 9 
C MGF:F.:1~E=1. $' 
A MI!:·T. 1'-:=t1R:X:((), IST. 1,::-THST) 
C THST=1 
A IST. f::=TR8LE( ISTL TIME. ICc), ,:;o, 2()) 
T I STT=(l/2/2/2 
SPEC DT=. c)!:•/LENGTH=6cVPL TPEF.:=1 
PLOT IST=*/PIPzi.. U·JE=L .. ~1PA=M, F:l~E=R(''l, ~,E,. .. , RUN •. L '. 
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*' SELF-DF.:GANIZRTIDt-1 IN A MUTATING HID-SPECIES S'iSTEM <MUTAi) 
t·IDTE 
L RES. f(=RES. ,J+<DT)(RIF .•. W-RDF. Jf<-RUR. JK> 
N RES=RESI 
C RESI=6E4 
F: F.:IF. KL=t~RIF 
,~ t·~RIF=iE4 

F: F.:OF. KL=F£S. 1(,.-'ARL T 
C ARLT=iO 
P RUR. f<L=MCR*I·lA. l<+~lCB*NB. 1,~ 
,~ MCA=1 
C ~1C8=:t 

A SR8. K=RES. 1<.-1 (1-JR. K+NB. I() 
L t·lR. I<=NA. J +( DT) <t·lGF:A. JK -MR. JfO 
N NA=<NRIF-<RESI/ARLT))/MCA 
R l·lt3RA. I<L=NA. l<*l•1GRRH•1RAA. K 
C MGRA=2.0 
R t·1f':RR. k=TRBLE<~le::RAT, SF:R. k: .. (), 30 .. 5;• 
T t·iF.:Af'IT=-1/-. 'i'/- . . :: .. 1 ()/ . • :: • .1. 9/1 
L t·lE:. 1<=1~8. J + < [)T) O·K;RB. Jf( +MR. JIC• 
t·l NB=O 
F: t·lGf':E:. KL=NB. K*MGRB*i'1RRB. K 
C Mt::;F.:8=2. o 
A MRA8. I<=TA8LE:<r1F:A8T .• SRR. k+F:A~18-(DRE:F. k*()REF. k) .. 0 .• 3() .• 5> 
T t1F.:AE:T=-i/-. :;·,.·'-. ,:;/()/ .• ~/. 9/i 
C PAt·18=:::. o 
F.: t·iR. f::L=CLIP((), 1, W·IAB. f(, I·IMF*NA. K*DT>-CLIP(O, 1, NNBA. 1(, Nt1F*NB. K*DT> 
A t·lt~RE:. I<'=ND!SE:< )+. 5 
A l·lNBA. f::=t·IDISEO+. 5 
C W·1F=2E-5 
L REF. K=REF .. J+([.'T) <RFGR. •. !1::-RFE:R. Jle:) 
l·l f':E:F=() 
R RFGF.:. KL=I·18. f<*SRFG 
C SRFG=. 8E-4 
F.: F.:FEF.:. KL=REF. fVARE:T 
C: Af':ET=3o 
A DF.:EF. f<=St1DOTH<F.:EF. fC SMT> 
C: St'lT=i() 
SPEC DT=. i..-'LENGTH=200/PL TPER=4 
PLOT NR=R .. N8=8/RE:S=f':/REF=l~ 
RUN 
I·ID I SE 234567 
RUt·l 
NOISE 457c:83 
RUII 
l·lO I SE: 7'284.0:5 
F.:Ut·l 
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