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Abstract 

Pressures from human induced climate-change, pollution, and fossil fuel scarcity 

stimulate interest in alternative fuel vehicles, and in particular hydrogen fuel cell vehicles 

(HFCV’s). The transition from internal combustion engine vehicles to HFCV’s is complex 

as various ‘chicken-egg’ mechanisms interact in a highly integrated fashion, and the 

mechanisms are highly non-linear.  This paper focuses on one of the most critical 

chicken-egg problems: the mutualistic dynamics of HFCV adoption and its fueling 

infrastructure. The effects of local demand-supply interactions on these dynamics are 

explored in depth.  

This paper develops a dynamic, behavioral model of vehicle adoption and fueling 

infrastructure with explicit spatial structure. Simulations are performed for a reduced 

version. First, basic behavior is analyzed and shown to be robust. Further, a 

homogeneous market with strategically locating fuel-station entrants yields fast transition 

through the formation of adoption clusters (niches). However, under heterogeneous 

conditions the same micro-mechanisms can obstruct the emergence of a sustainable 

market. Policy implications are significant.  

This spatial behavioral dynamic model (SBDM) can be used to compare targeted 

entrance strategies for hydrogen fuel supply. Insights can be used for an aggregate 

HFCV transition model that includes other mechanisms. Finally, the paper should 

stimulate a discussion on merits and limitations of spatial modeling as applied to more 

general socio-economic issues. 

  
                                                      
1 I am grateful to John Sterman for many fruitful discussions. 
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Introduction 
Interest in alternative fuel vehicles (AFV’s) and especially hydrogen fuel cell vehicles 

(HFCV’s) is on the rise. Much work explores potential opportunities for success (such as 

in (Lovins and Williams 1999)). However, while AFV’s offer many long-term socio-

economic advantages, adoption is hindered by the fact that few costs and performance 

factors are currently positive for hydrogen (e.g. (Romm 2004)). Many symbiotic 

interactions yield various so-called chicken-egg dynamics. For instance, investment in 

HFCV’s and associated infrastructure will not take place while adoption is uncertain, 

adoption will not occur without such investment.  Consequently, policy analysis to 

overcome these increasing returns to adoption (Arthur 1989) often proposes creating 

“momentum” by independently seeding one of the  chicken-egg dynamics. 

 

Large system transition dynamics (Kemp 1994) as these are much more complex than 

simple chicken-egg analogies suggest. They are determined by the interplay of several 

endogenous factors, such as consumer acceptance of new technologies, automotive 

learning-by-doing, vehicle performance, technology spillovers across competitive 

platforms, technology and investment synergies with non-automotive fuel cell 

applications, and government incentives.  It is far from obvious how interactions among 

these factors generate a pattern in which the market conditions change such that 

HFCV’s can successfully penetrate the market. Inability of governments to understand 

and anticipate the interactions of these dynamics have contributed to prior failures to 

stimulate transitions of considerable less complexity. For instance, Californian wind 

power collapsed (Karnoe 1999; Kemp 2001) after a huge surge; similarly, few alternative 

fuel have generated a sustainable share in the transportation market (Flynn 2002). For 

policy design to effectively stimulate adoption on a large scale, a quantitative, integrative, 

dynamic model with a broad boundary, long time horizon, and realistic representation of 

decision making by individuals and other key actors is essential.  

 

This paper is part of a research program that attempts to explore this for the early stages 

of the HFCV transition (see also (Struben 2004)).  The focus is on one of the 

mechanisms in more dept: the dynamics resulting from mutualistic interactions between 

HFCV adoption and its fueling infrastructure. Prior attempts to stimulate adoption of 

alternative vehicles, such as CNG, have foundered (Flynn 2002). In response, the 

infrastructure problem in the context of a prospective hydrogen economy has already 
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sparked various amounts of research from government, industry and academia. (Jensen 

and Ross 2000) map the challenge of developing an infrastructure for a transition to 

hydrogen by considering the on-board technologies, storage devices, delivery to the 

vehicles. Their conclusion, based on qualitative arguments is that 10-15% of the 100,000 

US refueling stations should be to maintain “tens of thousands of HFCV’s within the next 

decade. In a more recent study (Farrell, Keith et al. 2003) take a wider approach and 

develop guidelines to introduce hydrogen at minimum cost. They suggest to develop 

several protected niches for the initial adoption wave by a small number professional 

firms, of make-to-order fleets (incentive for innovation), intensively used along a limited 

number of point-to-point routes or within a small geographic area. (Melaina 2003) 

studies transition scenarios towards mass production, by comparing cumulative capital 

costs and cost of hydrogen and steady installation of hydrogen stations, including 

learning effects with exogenous diffusion rates . (Mintz, Molburg et al. 2003) compare 

central versus distributed supply options. 

 

Studies as these as well as aggregate integrative ones are important. However, they are 

based on simplistic assumptions about the “chicken-and-egg problem” and how it relates 

to other hydrogen adoption challenges. For instance, fuel station entry and location 

decisions and consumer adoption of HFCV are predominantly driven by local 

interactions between the two: the propensity of households to purchase HFCV’s 

depends on the availability of fuel near the routes they drive, while entrepreneurs and 

hydrogen distributors firms seek to locate fueling infrastructure to maximize expected 

profits. Further, population density is non-uniform and consumers are heterogeneous on 

many dimensions including driving habits, income and preferences.  

 

To what extend can policy to generate sustainable take-off be supported by models that 

are approached by a simple uniform, mean-field perspective? The relevance of this 

question is illustrated by Figure 1. Left shows, for reference, the population distribution of 

California. The other show a proxy for availability of service, for gasoline (middle) and 

electric vehicles (right). Service is here approximated by fuel stations/person within a 

radius of 40 miles, relative to the average for that fuel. White areas are unpopulated, in 

the light areas service is below 50% of the average, medium dark areas have 0.5 - 4 

times the average, dark areas have more stations per person.  
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Figure 1 – a) California population distribution and road infrastructure, and b,c) service 
stations per person normalized to average per type: b) gasoline (ng = 8374; 1 station every 
4,000 persons), c) electricity (ne=541; 1 station per 64,000 persons). Darker areas 
correspond with higher service. Complied from different sources ((Department of Energy 
2004)). 

 

The current fuel station infrastructure for gasoline is abundant (8374 fuel stations on a 

population of 34 million). Further, while highest close to transportation hubs/large roads, 

service appears to be close to uniformly/perfectly mixed distributed over the population2. 

However, the fuel/maintenance network has adjusted to the driver population (and vice 

versa) over a time span of over 100 years. The issue becomes clearer from Figure 1c) 

that exhibits an example of an emergent alternative fuel supply (electric). First, nearly all 

of the 512 high-voltage recharging stations are located in a few isolated “niches”.  

Further, availability of service is concentrated in urban sectors.  

 

Unanticipated problems associated with the early dynamics of co-evolution between 

infrastructure and adoption during transitions are not unique, for example the telephone 

was nearly absent in rural areas (Fischer 1992). Similarly, the electric vehicle in the early 
                                                      
2 The mean variance ratio of service is about 0.25, confirming the notion of a uniform distribution. 
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1900’s had good coverage in metropolitan areas as Manhattan, Pittsburgh and New 

Haven with electricity supply- and maintenance points. It was however very costly to 

maintain inventories and installations of the non-standardized new products and batte

quality of electric vehicles could never improve through experience of longer distance 

trips, as was the case for internal-combustion-engine (ICE) vehicles. This in turn yielde

little incentives for investors and repair shops to provide costly service (Kirsch 2000). 

The situation for hydrogen supply might be much more sensitive to successful policies

as relative up front investments, as well as multiplicity of stakeholders are many orders 

of magnitude higher than for electric charging stations. Further, HFCV will have to 

compete against a fully penetrated sustainable ICE-system. To overcome issues as

these, current proposals include “energy parks” that make use of local 

complementarities (Clark, Rifkin et al. 2005). While potentially spurring 

supply, they might also reinforce segregation of early service supply, reducing 

attractiveness for larger scale usage, further complicating the subsequent dyna

explore issues like this, spatial models are needed. 

 

ry 

d 

 – 

 

entrance of fuel 

mics. To 

his paper develops a dynamic behavioral model of adoption and infrastructure with 

e 

. 

me key 

A simple model of randomly distributed stations 

 to generate a high demand 

y, 

d by the 

T

explicit spatial structure. Any other relevant adoption mechanisms, such as word-of-

mouth, learning-by-doing/using complicate dynamics and are ignored here and will b

explored elsewhere. In what follows I first demonstrate how assumptions of static 

equilibria / mean-field interactions are not sufficient to capture the problem at hand

Thereafter I discuss a general formulation of a spatial-behavioral dynamic model 

(SBDM) in detail. Next, an analysis with a reduced version of the model shows so

dynamic characteristics. Finally I propose how to go forward with this research. 

 

How can vehicle adoption and fuel infrastructure co-evolve

market as it exists for gasoline? What type of models produce valuable insights for polic

relative to the efforts of creating them? For this problem, especially the early stages of 

the transition dynamics are of interest. To illustrate that aggregate, mean-field 

assumptions are problematic consider first the question how adoption is affecte

availability of fuel stations. Cumulative adoption fraction adF  for a given station density, 
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found by summing adopters that experience a critical service level c  multiplied by the 

probability of occurrence 

cA

cp over all potential levels of coverage: 

  (2.1) 
0

*
s

ad c c
c

F A
=

= ∑ p

dt

The population level adoption for a given coverage is derived by integrating over the 

product of a population density function for critical service levels and adoption fraction 

given service relative to a threshold t at: ,c ta

  (2.2) ( ),
0

*c t c tA aρ
∞

= ∫
In other words, in this model, the equilibrium adoption profile is determined by two 

aggregation effects. First there are non-homogeneous characteristics of service 

availability .3 Assuming for instance a standard logit-utility model for population 

adoption, the combined effect of all these factors can be captured by one sensitivity 

parameter

,c ta

tσ .4 A second determinant of the equilibrium adoption is a distribution of 

preferences tρ  that captures the heterogeneity within the population with respect to 

individuals’ adoption threshold. This threshold depends on the demographic, 

socioeconomic, and other characteristics of the population. For instance urban travelers 

can be expected to have a lower threshold than average, while the poor, those in rural 

areas and those who drive long distances to multiple locations will have a higher 

threshold. Most generally we can assume a symmetric two parameter function with 

average tµ  and sensitivity tσ . 

 

Suppose further the assumption that station entrance is uncorrelated with household 

distribution, adopters or with that of other stations. While clearly a false assumption, this 

allows determining analytically a static equilibrium adoption profile – that is, one that is 

history independent5.  To see this, consider a geographical area of square miles and a A

                                                      
3 Note that the first moment results for adoption fractions are independent of the geographical distribution of 

the population, this as a result of the assumption on random station entrance. 
4 For instance, a larger (smaller) population corresponds to a more uniform (homogeneous) distribution of 

factors, approximated by a lower (higher) tσ . 

5 Note further that this is a necessary implicit assumption behind static equilibrium models 
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distribution of service stations  and households h, each having the same desired 

driving range of rd miles (Figure 2a) (A full derivation is provided in Appendix 1 – random 

model). Defining the number of stations in one’s drives area as a metric for service,  

because of the Poisson properties of the model, the probability of having at least 

stations within one’s driving range can be derived analytically and equals: 

is

c

 
1

0

*1 ;
!

c
d

c
S Ap e

A

γ
µ

γ

µ µ
γ

−
−

=

= − =∑  (2.3) 

whereµ represents the mean number of stations per driving area , and thus the mean 

coverage for  stations and driving range . Figure 2b) shows four adoption profiles, with a 

standard Logit formulation for  and

dA

S dr

,c ta tµ equaling the current average station density. Two 

different sensitivities, correspond with a ‘large’ and “small” population size ( { }0.5,2tσ = ), and 

distribution in preferences is either ‘uniform’ or is ‘homogeneous’( [ ]0,2 ;t tt U tµ µ∈ = ). 

 

 

A
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h
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(relative to California gasoline equilibrium)
0 1

A
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Figure 2 a) Hypothetical area A with S stations si randomly distributed. Households located in h 
have driving radius rd and mobility within disc Ad b) static adoption profiles for increasing station 

density, for 4 combinations of population distributions and preferences. 

 

Increasing size/uniformity in the distribution of population strengthens a decreasing 

returns effect, and yields more relative adoption for low station densities. Second, 

uniformity in the distribution of preferences/circumstances diminishes a threshold effect, 

also yielding faster adoption for low distributions.  
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While the foregoing model is overly simplistic and its assumptions of uncorrelated station 

entrance are wrong, a key point can be learned: heterogeneity can matter a lot. This 

effect becomes larger when assuming that station location decisions are strategic, that is, 

when entrance is higher for areas that have higher expected profitability. The 

combination of stratification and heterogeneities might further strengthen driver adoption 

locally. However, the implications of this are not necessarily positive – as was argued to 

be the case for the electric vehicle in the introduction. This, however, can never be 

tested with a model with aggregate assumptions. 

 

Modeling local interactions 

This problem is part of a class of diffusion models that incorporate the presence of a 

spatial component. Spatial modeling allows heterogeneities or local deviations away 

from the global mean to be introduced in cases where these phenomena can drastically 

affect the global dynamics. Since (Turing 1952) introduced physio-chemical diffusion 

reaction structures, or “Turing Structures”, research in this area has increased. These 

types of spatial patterns are increasingly likely to be found where the movement and 

range of influence of actors is small compared to the global scale, leading to strong local 

correlations. Due to the increasing processing capabilities, problems as these are 

addressed more, in both the natural and social sciences, on problems related to 

statistical physics (Ising models), material physics (crystal growth and the process of 

solidification, or, dendrites - (Langer 1980)), and organic surface growth (diffusion limited 

aggregation, (Witten and Sander 1981)), Aggregration - and geographical economics 

(e.g. von Thunen’s land use model, (Krugman 1996)), and transportation research 

(Domencich, McFadden et al. 1975; Ben-Akiva and Lerman 1985). Co-evolutionary 

diffusion problems are increasingly studied (e.g. (Keeling 1999)). 

 

A useful model should track the interaction of a supply-side that involves fuel and other 

services (stations) and a demand-side (drivers, miles driven and fuel consumption) in an 

as simple possible way, but not too simple to not be able to capture the central to the 

problem, the effect of local interactions. Spatial dynamics are driven by two types of 

interactions: self-induced and from underlying heterogeneities. In the light of this, 

especially three assumptions are revisited of which the first two are of the self-induced 
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type and the third is the result of underlying heterogeneities. First, the assumption of 

absence of (local) strategic behavior is relaxed. Entrants form expectations about the 

profitability of a particular location, depending on the (expected) concentration of 

demand but also to existing supply from other stations – this also implies introducing 

time dynamics. Second, as a result of this is essential to introduce more sophisticated 

behavioral assumptions on the psychology of adoption and driving behavior. For 

instance, while attractiveness should increase with increasing coverage within one’s 

driving range, more frequented regions will count more heavily; on the other hand, if 

barely frequented, but important destinations are not covered how attractive will it be to 

adopt? Finally, the population distribution is not homogeneous (illustrated by Figure 1, a), 

influencing effective coverage and baseline attractiveness for entrance.

 9



 

The model 
this section describes a generic version of the model. Figure 3 offers a compact 

representation of the model structure.  Top shows a hypothetical geographical 

landscape of area “A” is shown that is divided in a grid of so-called “patches”.6   

 

 

xh,yh

geographical area A w ith  stations S  and drivers D

dx
dy

xs,ys

stations S  in  
(xs ,ys) a t tim e t

drivers  D  in  (x h,yh) 
a t tim e t

 

Drivers xhyh

Stations
xs,ys

expected
profits in xs,ys

demand in
region of

xs,ys competition
in region of
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+

+

+

-

station entranc
e in xs,ys

+

+

fuel supply
coverage in

region of xh,yh
+

driver
adoption in

xh,yh

+

vehicle miles
in xh,yh

+

Queueing in
region of xh,yh

-

+

attractiveness of
region xh,yh
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-+

Reciprocity

B1

Competition

Market Growth

R2a
/m

Crowding

R1m

B2a
/m

R1a

Propensity to
drive for drivers

in xh, yh

Normal Vehicle
Miles

 
Figure 3 – Basic model structure. Top: geographical area “A” contains drivers D  and stations S, 

both distributed in homogenous patches of size dxdy. Bottom: conceptual representation of causal 

structure for interaction between households in (xh,yh) and stations in (xs,ys).  

 
                                                      
6 In this paper the patches are either depicted as squares, to illustrate the operational idea of a grid of finite sized, 

connected elements, and sometimes depicted as “dots”, to create a sense of infinitesimal size, relative to the other 

dimensions. 
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Each patch potentially contains drivers of HFCV’s in their home location and stations S. 

While distributions are spatially heterogeneous, each individual “patch” has area *dx dy , 

chosen to be small enough so that they can be considered homogeneous. The d  

populations interact across space: households situated in a particular patch ( ),h h

ifferent

x y  

adopt with increasing fuel supply within their region; for instance coming from n

( ),

 locatio  

s sx y  as shown. Likewise, potential fuel/service station entrants consider the relative

eness for locating at a particular site by estimating expected profitability in the 

different regions, derived from actual sales and expected drivers and competitive effect

Further, while dynamics for driver adoption and vehicle miles are spatially dependent, 

 

attractiv

s.  

her 

 vehicle, subsequently use it 

 

hile for each location drivers and their vehicle miles are treated as continuous 

ations 

 and 

the behavior in each location can be described by the same structure that is described 

below for one arbitrary location. Figure 3 , bottom, shows a conceptual diagram. When 

stations increase, coverage in the region increases, that in turn leads to driver adoption 

In addition the vehicle miles for adopters also increase. In turn, with increasing total 

demand, attractiveness to enter by fuel stations also increases that again leads to hig

coverage in (somewhat different) neighboring regions.  

Households face two types of decisions: adopting a HFC

driving vehicle miles. Following (Domencich, McFadden et al. 1975), these choices are

modeled hierarchically (nested). 

 

W

variables that adjust deterministically as a function of attractiveness, individual st

enter in discrete time. Thus, following the typology of (Keeling 1999), the model is a 

hybrid between a metapopulation (patch) model and interacting particle system (as 

cellular automata). Aggregate behavior is derived after capturing individual adoption

mobility at patch level by integrating over each patch and averaging over ensemble 

outcomes.
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Demand dynamics 

Household adoption 

The structure for household adoption is shown in Figure 4 and is discussed below. 

Adopted
Households

Average trip
effort

Adoption

Household
density

-

Indicated
Adoption

+

Time to
adopt

-

+ Indicated
adoption fraction

+

Utility to
adopt

+

+

Utility of not
adopting

-

Other adoption
factors+

Trip effort t

+

 
Figure 4 – Household adoption structure 

 

The level of adopted households of type∂ , ah∂ ,in an arbitrary location, adjust to the 

indicated level  over an adoption time *
ah ∂

aτ  (see Appendix 1 for the clarification of 

indices) 

 

 
*

a a

a

ad h h h
dt τ

∂ ∂ ∂−
=  (2.4) 

Indicated households are the product of household density, hρ
∂ , and the indicated 

adoption fraction : *a ∂

 * *a hh ρ *a∂ ∂= ∂  (2.5) 

The adoption fraction is derived through a multinomial logit formulation that is in line with 

those used in transportation research (e.g. Domenchich and McFadden 1975;(Ben-Akiva 

and Lerman 1985) and in the automobile industry (Berry e.a. 1995; Train 2004), The 
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indicated adoption fraction is given by the utility of adoption, relative to the sum of utility 

of adoption and an (unknown) alternative aU ∂
naU ∂ (no adoption), or 7 

 * a

a n

Ua
U U

∂
∂

a
∂ ∂=
+

 (2.6) 

Utility of not adopting includes utility of all alternatives (in particular, the gasoline vehicle). 

This utility is defined to equal one8: 

 1naU ∂ ≡  (2.7) 

Determinants of utility are, vehicle related factors , such as net vehicle performance 

and price, insurance cost, yearly fuel (cost relative to the alternative); socio-economic 

factors (per type and/or location), given by the vector

aV

i
ase

JJJG
 ( { }, , ;i l l∈ ∂ ∂ ); and, average 

effort required to drive, . For this model, all factors except efforts are assumed 

constant and are replaced by one vector

e∂

i
aE
JJG

. Further, assuming utility to be 

multiplicatively separable in its determinants: 9 

 ( ) ( ) ( ),i i
a a aU f E c f E f∂ ∂= = e∂

JJG JJG
 (2.8) 

with l ,/j j n jx x x≡  being the normalized attribute j  and l( )jf x  chosen to be 

exponential:10  

 l( ) l( )exp 1jjf x xβ j
⎡ ⎤= −
⎣ ⎦

 (2.9) 

Here jβ captures the sensitivity to a fractional change in the attribute11. The one parameter 

formulation is justified as long as the region of operation is small, which is the case for 

                                                      
7 An individual adopts once its perceived utility exceeds that of alternatives, while for aggregate adoption a 

univariate binary formulation is appropriate 
8 As utility of the alternative is fixed, IIA, embedded in equation (2.6) is of no concern. 
9 Utility is also derived from the purpose of the trip, but as this is identical for all alternatives and can be 

ignored. 
10 ,n ix  are the normal, or indifference points, defined such that when all attributes equal their indifference 

points, utility equals one. 
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our problem that involves early stages of adoption12. Further, data (such as parameter 

estimations, trip tables) are available from related research. 

Aggregate effort is a weighted average over the coverage of each trip part of the trip setT , 

 ,Te e∂ ∂≡  (2.10) 

where T indicates a weighted averaging. 

 

 

Vehicle miles 

The key variable of interest is determining the local demand per driver as a function of 

service availability.  This entails determining the adopter’s vehicle miles, through a 

convolution integral over desired trip frequency times distance per trip and the relative 

attractiveness per trip, as a function of effort. Trip effort, besides having a fixed 

component, is a function of refilling hassle, which depends on travel distance/time to a 

service station, refilling time, and risk to be out of fuel. This all depends on station 

concentration (and demand).  

 

To represent heuristics that constitute “average efforts” one could make use of the 

technique of Voronoi diagrams (e.g. (Okabe, Boots et al. 1992)), often applied to 

determine effective coverage in spatial related problems (e.g. for cellular phone 

networks). This method would imply determining the nearest service station to each 

location and allows uncovering several characteristics parameters. However, a key 

implication of assuming strategic fuel station entrance is their non uniform (nor 

randomly) distribution in space. The same then holds true for a driver’s efforts (or 

                                                                                                                                                              

a
∂

1na
∂

11 Note that the model can be used to intitalize parameters by applying it to conventional gasoline U as the 

utility of adopting gasoline and settingU ≡  for all other options. However, it must be noted that for that 

vehicle more “unobserved” factors play a role.  
12 To examine the effect of trip coverage on utility over all ranges (zero stations to “full coverage”, where all 

locations contain a station) a functional form form that exhibits an s-curve is desired – which will require one 

more parameter. For instance the logistic formulation can be used: ( ) ( )( )0.51/ 1 exp 4* e ef e eβ∂ ∂⎡ ⎤= + − −⎣ ⎦
, 

with being the locus where f equals 50% of its range. This expression has been used for testing the 

model under extreme conditions. 

0.5e
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expected efforts) to obtain service. This in turn necessitates the derivation of efforts for 

each individual trip, rather than using any mean field approximation from each adopter’s 

home location, or the Voronoi technique.  

 

 

ah∂

t
θ td

Figure 5 modeling driving behavior. An individual trip t of length d in polar coordinates. Right shows 
a typical spatial count of trips for a hypothetical individual.  

 

As shown in Figure 5, individuals are assumed to have a probabilistically fixed driving 

pattern in space and time, defined through trip destinations t , and frequencies ,tf ∂ that 

differ per location and type. For each trip several modes of transportation are compared, 

of which the most favorable is selected. Thus, individuals, once owning a HFC vehicle, 

consider on a per trip basis, weather to use it or not. The total miles for an individual can 

be found by integrating over all potential angles and length: ( ),

,

2 * ,t t

r

m d f r dr
θ

dθ θ∂ ∂= ∫ : 

From hereon, notation ( ),r θ will be replaced by the single letter t . 

 

Trip frequencies and utility to drive 

The structure of the trip frequency are shown in Figure 6 and explained below.  
Normal trip
frequency

Time to adjust
propensity

+

Trip propensityTrip frequency

Utility of not
driving trip

Trip effort

+

Trip propensity
adjustment

Indicated
propensity to drive

-
-

-

+
+

Utility of
driving trip

-

+

Other effects on
utility of driving trip

+

 
Figure 6 Vehicle miles of trip t 
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The average trip frequency (trips/year) per person while using the HFCV is the product 

of the propensity ,t
dp∂ to drive trip t (with the HFCV) and the normal trip frequency:13 

 , , *t t
d n

,tf p f∂ ∂= ∂  (3.1) 

Propensity per trip (given t ) adjusts over an adjustment time T ∂∈ Tτ to its indicated level 

* ,t
dp ∂ : 

 
, * ,t t

d d

T

d p p p
dt τ

,t
d

∂ ∂ ∂−
=  (3.2) 

which is defined to be of univariate binary form, identical to (2.6): 

 
,

* ,
,

t
t d

d t
d n

Up
U U

∂
∂

,t
d

∂ ∂=
+

 (3.3) 

Utility of not using the vehicle is defined to equal one,14 

 , 1t
ndU ∂ ≡  (3.4) 

and similarly to the case of adoption (see equation (2.8), utility has two main  

components:15  

 ( ) ( ) ( ), ,, *t i t i
d d dU f E e f E f e∂ ∂= = ,t∂

JJG JJG
 (3.5) 

where { },i i
d d dE V se=
JJG JJJG

( { }, , , , ,i l t l lt t∈ ∂ ∂ ∂ ) and functional forms are identical to 

equation(2.9). 

                                                      

13 One can obtain a distribution for  ( )( ), , , |t
n nf f l t r θ∂ ≡ ∂  (for instance) by transforming to polar 

coordinates, and demanding that the integrated vehicle miles ( )
( ), , , a nl r

, ,1/ 2l t tH h d f m∂ ∂ =
θ∂∫ and the integrated 

trip frequency  ( )
( ), , , a n Tl r

, ,1/ l tH h f F∂ ∂ =
θ∂∫  observed/desired. Similarly one can constrain the frequency through 

higher moments, or particular distributions as a function of ( ),r θ . 

14 Note that the utility has three components: the fixed utility of doing the trip, the fixed effort, or hassle of 

doing the trip and the hassle of doing the trip as a function of availability of service. 

15  Second order effects such as habitualization are ignored. All else equal, considering this in combination 

with equation (2.6), implies that if utility equals one, the trip pattern will be identical to that for gasoline 

vehicles 
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Trip effort 

Average trip effort is determined by capturing the average experienced effort over the 

whole trip (Figure 7). Consider a driver on a trip from San-Francisco to Los-Angeles, 

starting at a half-full tank. Non-uniformity of service availability requires averaging over 

all points underway ( ) where service requirements can occur. u

Trip effort

re lative service
distance of trip

through station s

Average risk of fuel
shortage at point u

through station s

Crowding at
station s

Share of trip to
station s at need u

Average Effort of
Service at point u

Effort of refueling in
station s at need u+

+

+

+

+

<Average Effort of
Service at points u'>

+<Effort of Refueling in
station s' at need u>

Share of trip to
station s' at need u

-

-

+

+

+

+

+

 
Figure 7 deriving the trip effort 

 

When it is assumed that service requirements are uniformly distributed over the whole 

trajectory, trip effort, relative to the normal effort  equals t
ne

 
,*t U

ft
t
n

tp e
e

e =  (3.6) 

where t
fp is the probability of refueling for trip t , ,t U  indicates the averaging over all 

underway locations of trip t and  is the normal effort per trip – for instance as  

experienced with gasoline times the same probability of refueling. 

t
ne

 

Average experience of effort entails integrating over effort for all underway sites: 

 ,

0

1 t
t U t u

t
u

e
d =

= ,e∫  (3.7) 

where is the trajectory distance.  td
 

For averaging over contributions of all service locations to an underway location, the 

respective efforts are weighted by the share distribution of demand:  
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 , , , , , ,t u S t u s t u s

s

e σ= ∫ e  (3.8) 

with the share that station s receives in case of  requirements at u being a function of the 

relative attractiveness of all stations: 

 
( )
( )

, ,
, ,

, ,

t u s
t u s

t u l

l

f e

f e
σ =

∫
 (3.9) 

The functional form is identical to (2.9). Sensitivity parameter sβ is bounded below zero. 

If a driver has complete control and full information on where to make use of the service, 

it selects the station that requires least effort over the whole trip ( sβ → −∞ ). On the 

other extreme, if a driver would distribute its demands randomly 0sβ = . Thus for the 

sensitivity parameter holds: 0sβ−∞ < ≤  

 

Actual effort is represented by a linear combination of the different factors that contribute 

to this, each potentially having a different weight of importance16: 

 , , , , ;
iiu s u s t u s

iIe e w e w 1= = =∑ ∑  (3.10) 

As discussed, three factors are considered to constitute the endogenous trip effort. First, 

there is hassle associated with driving further than the desired trip trajectory (indicated 

as trip-distance, or td ); second, with limited supply, there is a risk of getting out of fuel, 

or hassle to tank much earlier than needed (risk, or ); finally, when locally demand 

exceeds supply, people will have to wait too long, increasing the annoyance of refilling 

(time to fill, or tf ) (For instance, first phase service stations are expected to have 

capacity for not more than 10-15 vehicles per day). Thus:  

ri

 { }, ,i td ri tf≡  (3.11) 

First, people prefer to drive a minimum distance/time, relative to a direct trip to the final 

destination (Figure 8 a), represented by:17 

                                                      
16 Note that represents the cost of the attribute i relative to that of i’.  '/i iw w
17 There is a significant difference in terms of the effect of this factor between 1D and 2D. This will be 

discussed later 
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,

, ,
t s

t u s
td t

de
d

=  (3.12) 

with is the shortest trip distance via the service station. This effect captures that for a short trip 

a deviation weights much heavier than for a large trip. 

,t sd

The second attribute captures that individuals prefer to refill as close as possible to the underway 

location where the need occurs (Figure 8 b), and thus prefer a shorter distance between an 

underway location and the actual location of the station: 

 
( ), ,

u s
t u s
ri

ff

abs d d
e

dα

−
=  (3.13) 

where ,f fd α are the driving range between refills (tank range) and the fraction of the 

range that is considered to be critical for refills.  

 

 

h

ds

t

s2

dt

ds-t

ds,t = ds + ds-t

h

du -ds

u t
s1

du

b) risk

a) Relative service distance

 
Figure 8) Endogenous determinants of trip efforts; a) service distance relative to the normal trip 
distance. b) out-of-fuel-risk when the station distance is further than the desired refuel distance 

underway. The third (refill time) is not shown here. 

 

The final term in (3.11) represents the total relative capacity in a location: 

 max 1, /s s s
fte R K⎡ ⎤= ⎣ ⎦  (3.14) 
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with sR  being the total revenues per location, is the total capacity for the 

patch ( are the total number of stations in the location and is the normal capacity per 

station). 

*s
nK s k=

s nk

 

Effective trip distance and shares 

Effective trip length is the sum over the normal trip trajectory (being twice the distance, 

or, ) times the probability of not having to refill and the expected length of a trajectory 

through a service station times the probability of having to refill18: 

2 t
nd

 ( ) ( )1 2 *t t t t t
f n f f nd p d p d d t⎡ ⎤= − + +⎣ ⎦  (3.15) 

The probability to fuel is equal to the trip distance divided by half the distance between 

two refills (or, tank range): 

 
2

0.5*

t
f

t
f

dp
d

=  (3.16) 

Where the expected length of a trajectory through a service station is the integration 

over trajectories, times their shares: 

 

 , , , , ,

,

t t U S t s t u
f f

u s

d d d σ= = ∫ s  (3.17) 

Average effort of trips for adoption 

Perceived effort of driving (see equation (2.10)) for an individual that considers adoption, 

is a function of the actual efforts per trip. It is assumed that the time to learn about the 

efforts is short relative to the adoption rate. Thus it can be approximated by a weighted 

averaging over the efforts of the individual trips. The weighting does not necessarily 

have to be a linear weighted average: 

 ( ),

1/

, , 1;
t

t tT t

tt

e e w e w
ε

ε∂∂ ∂ ∂⎡ ⎤
= = =⎢ ⎥

⎣ ⎦
∑∫

,t∂

                                                     

 (3.18) 

 
18 An underlying assumption is that the probability of having to refill twice is ignored. 
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Where are the relative weights of the different trips and 
,t

w ∂

tε is the parameter of which 

the high (low) values  captures the bias towards trips that require more (less) effort. In 

the (default) linear case ( 1tε = ), the linear regression characteristics are maintained 

(details of this functional form are explained in Appendix 3 – Constant Elasticity of 

Substitution function). 
The relative weights represent the relative importance of each; this is proxied by a combination of 

trip frequency and distance:  

 ( ), ,
,

,
,

,
t t

t
t t

n t

t

mw f d w
m

∂ ∂
∂

∂
∂

→ =
∫

∼  (3.19) 

where are the total annual miles driven for one trip for a household of a particular 

type.  

,tm∂

 

Derivation of this aggregate variable, and various others, is mechanistic and can be 

found in (Appendix 2 - Tables) 
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 Supply dynamics 

Profits 

A service firm’s profits, given presence in a particular location are revenues minus 

fixed costs 

r

fco :19 

 fr coπ = −  (4.1) 

Given the foregoing discussion, derivation of profits is purely mechanical (that is, no 

parametric assumptions are required). Firm’s revenues are the product of share sσ  

among stations of the total location revenues lR , 

  (4.2) l
sr σ= R

With shares being evenly distributed among firms 1/s Sσ = (conditional upon ) that 

are assumed to have equal capacity. Further, local revenues integrate the shares 

0S >

',l
sσ
∂ of 

purchases from all households per type ',lPu ∂ ∂  

 ', ',

',

*l l
s

l

lR Puσ ∂ ∂

∂

= ∫  (4.3) 

where purchases equal the product of price and vehicle miles divided by the efficiency 
20: mpg

 
,

, *
l

l MPu p
mpg

∂
∂ =  (4.4) 

Finally, the share of household type ∂  in location that reaches station s is the 

integration over all her/his shares per trip times the relative frequency of trip: 

'l

 

, , ,

,',

,

,

* *t t t
u s

t ul
s

t

t u

f

f

σ σ
σ

∂ ∂ ∂

∂

∂

=
∫

∫

,u

                                                     

 (4.5) 

 
19 Costs could be location dependent 
20 Hydrogen fuel parameters are expressed into gasoline gallon equivalent  
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Firm entrance and exit 

Local entrance rates  are determined by two factors (Figure 9); first, potential  entrants 

decide to enter or not (resulting in an aggregate entrance rate ), second, they make a 

strategic choice on where to locate. That is, entrance strategies result in a relative 

distribution 

en

EN

enσ  over the whole area: 

  (4.6) *enen ENσ=

 

Firms s

Firm entrance s Firm exit s

Average market
profitability

Effect of average market
profitability on
expansion rate

Expansion rate at
normal profitability

+

+

Total
Revenues s

Profits s

Costs s

+

-

+

Effect of
profitability on exit

rate

+

-

Hazard rate at
normal profitability

+

+

+

Share of
expansion rate to s

Total firms +

Total market
expansion

+

+

+

+

Total demand in l

Share of
demand in l to s

+
+

 
Figure 9 - Firm entrance and exit 

 

Market expansion is driven by market profitability and a entrance rate nλ at normal 

profitability: 

 ( )* ; '
en

en n

EN S

f f 0

λ

πλλ

=

= >
 (4.7) 

Reference profits are determined by opportunity cost and are assumed to be fixed, 

based on the same utility as for entrance: 

 ( ) exp 1 ; 0
n

een nf ππ β
π

β
⎡ ⎤

= −⎢ ⎥
⎣

>
⎦

 (4.8) 

Exits are mediated by firm profitability, following the standard hazard formulation.  

 
( )

;
* ; '

ex

ex n

ex s
f f 0

λ

λ λ π

=

= <
 (4.9) 

The functional form and reference profit is identical to that of (4.8), while 0exβ <  . 

Note that when profits equal normal profits, net market growth is zero. 
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Entrance share 

The entrance share depends positively on relative attractiveness to enter, which is a 

function of expected profitability: 

 ( ) ( )/E
en f f Eσ π= π∫  (4.10) 

The functional form and reference profit is identical to that of (4.8), while , 0en sβ >  . 

Expected profits are the net of expected revenues and cost: 

 ,*E E E l
s fR coπ σ= −  (4.11) 

With the expected share being the unit station capacity (of one entrant) divided by the 

total effective competition for that location: 

 E n
s

eff n

k
k k

σ =
+

 (4.12) 

with effective competition being the integral over station competition effect that decays 

over typical distance s
nd  : 

 

( )

( )

'

'

'
'

'*

exp 1 0* ;

S s
eff eff n

s

s

c
s

c s
n

k k k S f d

df
d

d ββ

= =

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
<

∫
 (4.13) 

Similarly, an entrant in expects that a fraction of regional demand l , 'l l
effR is available:  

 ,

'

E l l l
eff

l

, 'R R= ∫  (4.14) 

Effective demand consists of a share of the flow of revenues available locally that 

decreases with distance and an adjustment of demand 'l
gR  that involves expected new 

revenues that result from adoption and vehicle miles. distance: 

 ( ) ( ), ' ' ' '* 1l l l l l
eff rR f d R g= +  (4.15) 

The adjustment entails closing a fraction of the maximum potential demand, that 

decreases with distance in similar fashion:  

 ( ) (
' '

' ' ma ,
max

x
, '* ; *

l l
l l
g r n l

lR RR g f d
R

R f H M ∂⎡ ⎤−
= ⎢ ⎥

⎣ ⎦
= )  (4.16) 
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where the incapacitated maximum growth fraction captures both the effect of miles 

and adoption increase and: 

,r ng

 ( )
'

' exp 0* 1 ;
l

l
r r

n

d
d

f d β β
⎡ ⎤⎛ ⎞

= −⎢ ⎥⎜ ⎟
⎢ ⎥⎝⎣ ⎦

<
⎠

 (4.17) 
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Analysis 

This analysis studies characteristic behavioral implications of the SBD model. As 

computational capacity is a constraint, a reduced model version is used that minimizes 

calculations, while preserving its fundamental characteristics.  Several simplifications 

were carried out. First I emulated continuous space by a finite element modeling (FEM) 

approach, e.g. (Reddy 2004). Further, spatial degrees of freedom are limited to one 

dimensional “strip”. To avoid boundary effects first and last patch were connected to 

yield a circle.21 Second, time steps are blown up to the maximum feasible.  In fact, the 

limited degrees of freedom simplify the identification of characteristic behavior modes 

and are justified as a higher degree turn out to reinforce those.  

 

Model parameterization 

For the purpose of parameterization I distinguish between two types: “observable 

parameters” (those that can be estimated heuristically with comfort), and the remainder, 

“unobservable parameters”, of which there are only 8. All are provided in Appendix 4 – 

Parameters), but the most critical parameters are discussed here. For those relevant, 

the state of California serves as a reality check, but some are adjusted to permit a 

proper collapse into the one-dimensional representation.  

 

The circular strip has a perimeter of 256 miles, with patches being 4 by 4 miles. 

Households have identical socio-economic conditions (vectors ,i i
a dE E
JJG JJG

are held at 1). 

Further, for the purpose of this analysis I consider only one type of drivers, which has 

normal vehicle miles, average trip length and distribution of an average household. Data 

for this can be derived from trip-tables (e.g (Domencich, McFadden et al. 1975)) that 

suggest that can be derived from a two-parameter lognormal distribution: 

 

2
ln 2 /

2 exp
2

tt
nt

n med
n t

d ddf f
d σ

⎡ ⎤⎛ ⎞⎡ ⎤⎣ ⎦⎢ ⎥⎜= − ⎟
⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 (4.18) 

                                                      
21 A disadvantage of this is that the effective length is reduced by two, as the maximum distance 

is half the perimeter. 
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with tσ being the sensitivity of visiting frequency to distance (here the standard deviation) and 

medf the frequency of the median. Further, the normal frequency is defined such that the 

integration over the populations corresponds with average annual miles : m

 ( )
( )

, ,

, , ,
1/ 2l t t

a nl r
H h d f

θ

∂ ∂

∂
m=∫  (4.19) 

Average population density and average trip length of 32 miles (25% of the maximum 

distance that can be traveled) remain constant throughout. Figure 10 shows the circular 

configuration, similar to the one used in other economic problems in product space 

(Hotelling 1929; Salop 1979) and geographic space (see (Krugman 1996)). 
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Location

normal trip frequencies

t1

t2

Figure 10 - “highway five”, circular configuration shows a subset of trips for one 
household and 4 fuel stations. Right bottom shows a typical distribution of normal trips.  

 

Shown are one household and a subset of its normal destinations, with frequency as 

function of distance shown in the bottom right.22 Each household has an identical 

distribution. For illustrative purpose, ignoring potential effects of crowding, trip effort for 

t1 seems to be reasonably low, while t2 is poorly covered.  

 

                                                      
22 While not suggested by the graph, one location can contain both stations as well as 

households. 
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Attractiveness of not adopting a HFCV /not using the HFCV for a trajectory are fixed, 

and equals attractiveness that would follow from a hydrogen infrastructure of 1 station 

every 4 mile23. Thus, the maximum adoption is 50%, occurring at this “reference 

infrastructure”, where HFCV vehicle miles are equal to the normal vehicle miles of 

15.000 miles per household per year (with one vehicle per adopted household). Further, 

utility parameters are set such that relative attractiveness to adopt/drive is 50% at double 

the average/ trip effort. Subsequently, aggregate HFCV adoption must then be 25%. 

 

Station entry decisions are driven by the average profitability of the market. Strategic 

entrants’ location decisions are driven by the relative attractiveness, based on expected 

revenues for each entrant (equations (4.8) and (4.10) and further). The purpose of this 

analysis is to learn how unexpected aggregate patterns emerge out of local entrant 

behavior. Therefore we take the most optimistic assumptions for entrant behavior, thus 

parameters { },, ,r c r ngβ β  are calibrated such that probability of location corresponds with 

the optimal, for the same local decision rule. 

 

                                                      
23 This equals the current gasoline situation in California 
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Open loop equilibrium analysis 

Figure 11 and Figure 12 illustrate a basic model validation test: open loop 

responsiveness of driver adoption to station concentration, with uniform population 

distribution. The total number of stations is controlled externally by varying a station 

distance parameter. Figure 11 a) shows adoption for three different station distances 

(d_s=128, 32, 8 miles). 
 

Total demand

-

0.5

1.0

0.
02

0.
17

0.
33

0.
48

0.
64

0.
80

0.
95

Station Density
D

em
an

d 
(r

el
at

iv
e 

to
 m

ax
im

um
)

HFCV adoption fraction

0

0.1

0.2

0.3

0.4

0.5

0 32 64 96 12
8

16
0

19
2

22
4

ad
op

tio
n 

fra
ct

io
n

d_s=8 d_s = 32

location

d_s = 128

 
Figure 11 instantaneous adoption profiles; a) indicated adoption fraction for stations 

separated by 8, 32, and 128 miles, b) adoption curve for increasing station density 

 

For stations separated by 128 miles (stations at 0 and 128 miles), adoption is very 

limited and decays very rapidly with households’ distance to a nearest station 

increasing.24  With station separation of 32 miles yields a dramatic (much more than 

proportional) increase of total adoption that is due to a non-linear drop of average trip 

effort. However, efforts for those households that live more than ~10 to 15 miles away 

from any station still turn out to be too high to yield significant adoption. When stations 

are separated 8 miles apart, the adoption fraction virtually equals its maximum (that is, 

50% of the households). So far behavior does not differentiate from standard spatial 

game theoretic outcomes (e.g. Tirole (1988)). 

 

Figure 11 b) shows demand (integration over all user demand times their vehicle miles) 

for increasing station density (or better, decreasing spacing between stations). Results 

                                                      
24 As can be seen in this (extreme) case adopton is highest a few miles from the station, this is 

because, given the normal trip distribution, a larger fraction of trajectories are served better, as  
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are shown in for five different station spaces (d_s = 4, 8, 16, 32, 64, and 128 miles). The 

continuous curve yields an s-shape.  

 

Figure 12 a) shows station profits for increasing station densities, under condition of 

equidistant spacing. At very low densities demand is too low, so that stations’ cost 

always exceeds their revenues, hence station profits are negative.   
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Figure 12 - a) expected entrance for stations (d=32 miles, 128 miles; last line not to scale); 
b) profits for increasing station density and instantaneous adoption.   
 

Profits increase dramatically with station density, as market (adoption and vehicle miles) 

grows with decrease of trip efforts, and are positive for intermediate densities. For higher 

densities the market is already saturated and the effect of a higher entrant concentration 

just increases the market. Figure 12 b) shows the probability to enter per location, for 

strategic entrants, for stations d_s is 32 and 128 miles.25 As expected, at low 

concentration, prospective entrants tend to locate away from, but nearby an existing 

station – as this yields the maximum growth of market and profits, more than 

compensating the burden of sharing the demand (see b,c). For higher concentration 

(d_s = 32 miles), prospective entrants prefer to locate exactly in between two existing.  

The insight is that location dependent entrance strategies are driven by the trade-off 

between two endogenous effects: market generation and competition. The first 

dominates in small markets (yielding co-location), the latter in more dense markets 

(yielding dispersion). Further, in this case, total entrance probability is much higher. 26 

                                                      
25 For strategic behavior, see discussion in the introduction of the analysis. 
26 In fact, the entrance probability for the 128 mile case is not to scale, but blown-up by a factor 

10 for the benefit of the discerning the location dependent entrance probabilities. 
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Closed loop dynamics 

It is suggestive that precise individual adoption depends on spatial factors as driver’s trip 

distribution, and station entrance sensitivities to location. This idea is supported by 

Figure 13 that shows a typical distribution of stations (bars) and demand (continuous) for 

a uniform population and in initial state of adoption. Strategic stations tend to co-locate 

(though not too close). Thus, as past activity matters differently for different trip 

distributions/local strategies, we can expect to find different spatial diffusion patterns. 
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Figure 13 typical distribution of stations (bars) and adoption fraction (continuous) for an 

emerging market with entrants with location dependent entrance decisions. 

 

However, much more important, is to ask whether aggregate adoption patterns and 

ultimate equilibria are sensitive to this as well, even when the averages for these factors 

are identical.  

 

To test this more formally, four scenarios are compared in which demand and stations 

co-evolve: first, a uniform-type population distribution is considered, with and without 

entrants’ location strategies (called I and II).27 Two other scenarios, both with entrant 

location strategies have a heterogeneous population distributions that represent different 

                                                      
27 That is, sensitivity to expected profits ,en sβ  equation (4.10)  is equal to 0 respectively 1. 
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urban/rural configurations. The distance between urban kernels is 128 miles and 64 

miles respectively, or the distance relative to the typical driving distance,  (III 

and IV). As Figure 11b) suggests that for very low station densities zero-profit thresholds 

are not exceeded. To overcome this, for each scenario an entrance subsidy is simulated 

by inducing an entrance rate of one station per quarter for the first two years (while 

allowing for strategic location).28 Figure 14 shows the results in terms of average and 

standard deviation of demand, for 15 runs each.29  

/ 4, 2u td =

 

Demand 

 
Figure 14 – demand resulting from station-adoption/vehicle miles co-evolution; top: I and II 
uniform population with random/strategic location decisions for entrants. Bottom: III and 
IV with strategic location decisions but heterogeneous population distributions (separated 
by 128 and 64 miles). 

 

First, typical length for the dynamics plays out over 20 years – which makes sense as no 

additional loops (as word-of-mouth, learning,…) are active and the vehicle replacement 
                                                      
28 Alternatively one could simulate an subsidy, but that would yield several choices as well – key 

insights do not change.   
29 Noise seeds differ per run, but are the same for all four scenario’s 
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rate is at maximum 3 years.  Further, observe that for a uniform population distribution (I 

and II), the location strategy does much better than random entrance. This supports the 

sensibility of the entrant’s rationality assumptions. However, strategic individual entrants 

do much worse in the case of heterogeneous potential demand (III, IV). While the when 

 saturates about 50% below its potential, / 4u td = / 2u td =  even leads to collapse of the 

market.30 Further, the variance band illustrates that for all strategic scenarios the pattern 

of behavior is very consistent. 

 

An explanation for the large differences in aggregate behavior modes can be found from 

Figure 15. It shows the distribution of stations (bars), adoption fraction (continuous), and 

relative population distribution (dotted lines), for all four scenarios, for one realized 

typical run at final time of Figure 14.31 
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Figure 15 – adoption and station distribution after 24 years for typical runs of the four 

scenarios 

 

                                                      
30 Not shown here, but existent, are “successful” endstate of full adoption for the heterogeneous 

scenarios 
31 Note that total population is equal in all scenarios 
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In the uniform case, station entrance starts at an arbitrary point and expands from there 

on gradually outward (as supported by Figure 13, which is a snapshot after 5 years for 

the same run as Figure 15 - II).  All runs II eventually reach the full adoption equilibrium 

Figure 12a. In a heterogeneous case, the market grows differently: the co-evolutionary 

process starts, and builds, in a high potential area. After the  

 
Table 1 - aggregate statistics for scenarios 

 

-=++,-,=Direction of adoption

1.07 1.23 0.38 0.53 *) Mean variance ratio of effort 

(0.89)0.54 1.43 -0.43 *) Average profitability 

0.58 0.80 1.01 0.47 Relative vehicle miles

0.17 0.27 0.43 0.21 Adoption fraction 

0.20 0.34 0.59 0.29 Station density 

Strategic,
D_u/D_t =2

Strategic,
D_u/D_t =4

Strategic,
D_u/D_t 0

random,
D_u/D_t 0

Averages per scenario in 
year 30 

-=++,-,=Direction of adoption

1.07 1.23 0.38 0.53 *) Mean variance ratio of effort 

(0.89)0.54 1.43 -0.43 *) Average profitability 

0.58 0.80 1.01 0.47 Relative vehicle miles

0.17 0.27 0.43 0.21 Adoption fraction 

0.20 0.34 0.59 0.29 Station density 

Strategic,
D_u/D_t =2

Strategic,
D_u/D_t =4

Strategic,
D_u/D_t 0

random,
D_u/D_t 0

Averages per scenario in 
year 30 

*) averages not very meaningful because of large variability between runs

 

Table 1 displays for each scenario aggregate statistics, such as station density, relative 

vehicle miles, and average station profits. Also shown are the mean variance ratio of 

effort, a useful measure of the actual distribution, of in this case the stations’ service, 

effectively, distributed: a value equal to one corresponds with randomness, closer to 

zero indicates more uniform, while a larger number suggests clustering.  

Of particular importance are vehicle miles, that are much lower in the strategic 

heterogeneous scenarios – that is, even within the urban cluster a sustainable full-scale 

market is not reached. 

 

Of course more study is required before conclusions can be drawn.32 However, a 

generic insight is important: locality of interactions between entrants and (potential) 

drivers implies that population heterogeneities do not average out in the aggregate. They 

can yield totally different adoption patterns with multiple equilibria. Also, while these 

                                                      
32 For instance, the effect of other important parameters must be considered as well, such as that 

of the shape of the trip distribution and the sensitivities to adopt relative to effort; this was tested, 

and indeed, they influence adoption differently for the different scenario’s as well, 
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simulations represent stylized situations, the resulting behavior of the co-evolutionary 

structure cannot easily be derived from spatial game theoretic results. 

 

As a corollary to these insights, typical curves as shown that plot indicated adoption 

fraction against station density (as shown in Figure 2b), are s-shaped for 

homogeneous/strategic entrants, and concave for heterogeneous/strategic entrants. 

This is already provides a usful general insight. Then, ignoring any other effects, this 

conclusion would suggest that in states like Kansas, or Iowa that have extremely regular 

road networks connecting small, proximate urban areas effectively, adoption can be 

expected to follow an S-shaped adoption pattern – ultimately reaching full adoption. 

Contrary, in California or Texas, where dense urban areas are separated by distances 

that are much longer than the typical driving range, adoption would be fast, but remain 

limited, as well as the drivers’ choices of trips by HFCV. 
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Conclusions 

Complexity of transition management 

One of the critical mechanisms of adoption of HFCV’s, co-evolution of vehicle fleet and 

infrastructure, was examined in depth. Transition challenges as those for HFCV’s are 

often formulated in “chicken-and-egg” language, while “momentum creation”, or 

“seeding” are prescribed policy recommendations. In line with this, Linde AG, a German 

company plans to build a highway ring of 30 equidistant fuel stations along the highways. 

Similar policies are proposed in California. Such even distributions appear in optimal 

high-penetration equilibria, when populations are uniform.  However, it is unclear to what 

extend such a strategy enables a successful early transition. For instance, one out of 

many alternative policies could be to seed locally the high potential demand areas.  

 

Stakes are high but so are the problems in anticipating the interactions of these 

dynamics (Flynn 2002). To examine this issue, a spatial-behavioral-dynamic model 

(SBDM) was formulated. Spatial, as the emphasis lay on local interactions. In particular 

the focus was on the effect of local station/driver interactions and the induced and 

structural heterogeneities on the co-evolutionary dynamic patterns; behavioral, because 

trip utilization, and adoption were explicitly modeled as function of local effort, while fuel 

station entrance behavior was represented as a function of local demand; dynamic, as 

historic interactions drive the conditions for further establishment of stations and 

adoption. 

 

Analysis of a reduced version of the model underscores the strong effect of 

heterogeneity and local interaction strategies for relevant parameters, thus illustrating 

the need for such approaches. In particular, we saw that fast formation of a local niche 

market does not necessarily yield a successful transition. In fact the opposite can be 

true: the same underlying mechanisms can yield “inefficiencies”, preventing large scale 

breakthrough. The underlying mechanism is captured in Figure 16. The problem is 

similar to well known trade-offs between incentives to exploiting the potential of the 

existing market and exploration to create a new market (here depicted as 1 and 2). 
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In this case, from the point of view of station entrants, in a hypothetical uniform market, 

these two effects are in balance implying a gradual expansion of the market potential 

(moving out of the center), while the short term local demand that is generated alines the 

incentives of the entrant with the expansion of the market.  
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However, for a heterogeneous market the cost to bridge to other potentially interesting 

areas/users for an individual are too high and the incentive for entrants is to exploit the 

existing market. Furthermore, as shifting to neighboring clusters does not occur, vehicle 

miles remain low, even leading to a more limited potential of the local market.  

 

Of course, in reality, these co-evolutionary dynamics unfold within and interact with a 

much larger changing system. In particular, a prospective transition, such as one 

towards HFCV’s is subject to many complexities. However, it is likely that many of these 

tend to reinforce the dynamics as described above. For instance, among others (Clark, 

Rifkin et al. 2005)) envision, in stead of classic fuel stations,  the emergence of 

“hydrogen energy parks” that reap the benefits of complementarities between hydrogen 

storage for residential/business applications and vehicle applications, as well as other 

scale/scope economies.33 While this might “fuel” early adopter conversion, this also 

yields more clustering around urban areas and initially only the largest scale operators 
                                                      
33 This is also suggested by the national hydrogen association 
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will be successful business, reinforcing the dynamics. Furthermore, the clustering can 

lead to HFC’s being attractive for particular vehicle user groups, such as owners of 

professional fleets that have a limited radius (UPS delivery, Taxi) – not providing an 

incentive for others to provide service elsewhere. 

 

Additional factors as word-of-mouth / learning by using can also further reinforce these 

dynamics.  For instance, the most probable early private buyers are urban households 

that purchase these vehicles as 2nd car gadget, not being dependent on the ill served 

infrastructure. In search of capturing large investment in alternative technologies, 

automotive companies are likely to adjust their portfolios to this highest potential market, 

in this way working themselves further in a niche market that does not need a fully 

covered infrastructure. A similar fate was for the early 20th century electric vehicle (EV) 

that  within a few years was only considered for specific private/professional applications. 

In the 1960’s the EV were promoted as “city car”. Sore contemporary, this also happens 

for other alternative fuel vehicles, such as natural gas vehicles and infrastructure in Italy 

and Canada, where service, though in dense areas, allows only adopters that travel 

locally. 

  

In sum, co-evolutionary transition dynamics are complex. This study draws attention to 

the idea that the creation of a sustainable growing market are not necessary achieved by 

policies that perform best in kick-starting the market.  While in particular shown for the 

infrastructure-fleet chicken-egg problem, the problem is expected to be reinforced when 

other effects are also active. 

 

Next steps  

This paper hopes to contribute to the transition debate in four different ways. First, it 

furthers an understanding of the process of co-evolution of AFCV’s with their support 

infrastructure. Second, general insights from the detailed analysis can be used to inform 

related study of the transition dynamics of HFCV’s that also includes other feedbacks. In 

that research explicit spatial components are excluded.  The results suggest that a full 

scale model allows evaluating real policy options – that go far beyond typical carriage. 

This entails, besides emergence of a support infrastructure, acceptance of the new 

technologies and associated practices in daily life by consumers, transformation of 

institutions, attributes that change as a function of cumulative sales and usage, and 
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management of expectations. A detailed analysis also provides further insights for 

thinking about these transition dynamics. For policy design to effectively stimulate 

adoption on a large scale, a quantitative, integrative, dynamic model with a broad 

boundary, long time horizon, and realistic representation of decision making by 

individuals and other key actors is essential. Third, an extension of the current spatial 

model can be used as a policy tool to compare targeted entrance strategies for the 

hydrogen fuel supply as currently called for in the state of California; considerations 

could include focusing on particular adopter groups (private or professional), location 

(e,g, urban versus highway grids), and effects of institutional incentives (such as 

taxes/subsidies). For a version that includes two spatial dimensions population and road 

infrastructure can be uploaded using GIS data, or, alternatively, networks with similar 

characteristics can be grown.  

Finally, this study can inform research in other areas that involves local interactions 

driving macro behavior. the role of space and markets is not new , both demand and 

supply are increasing as is shown in various socio-economic context, as labor 

(Fernandez and Su 2004). 
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