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Abstract 
 

In this paper, we develop a comprehensive eigenvalue analysis for linear models, in order to 
identify the leverage points in models. The analysis is comprehensive as we develop a closed-
form analytic function relating the behavior of any state variable to all parameters in the model. 
Moreover, by decomposing the behavior into several modes of behavior – each characterized by 
an eigenvalue and an eigenvector – it is possible to develop a closed-form analytic function 
relating a certain mode of behavior to all parameters in the model. In the first section of this 
paper, we explain the mathematical foundation of eigenvalue analysis. In the second section we 
identify the structural origin of the modes of behavior. This enables us to pinpoint the leverage 
points of the model. Finally, in the last section, for illustration purpose, we apply the method to a 
linearized version of the market growth model. The analysis of this linearized model enables us 
to explain the model behavior as a superimposition of a number of behavior modes, and set the 
stage for analyzing the original, non-linear version of the market growth model. 
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I. Mathematical Background 
 

The first step in the analysis is to express the behavior as a summation of several modes of 
behavior, i.e. to decompose the behavior into several modes of behavior.  In this paper, we will 
decompose the time trajectory of a state variable into several modes of behavior. The time 
trajectory of the state variable is a mathematical function that specifies the value of the state 
variable at any time instant.  
 
The point of departure is the structure of the model. The structure of any linear model can be 
represented by the following compact matrix equation: 
 
x G x b= +&                   (1) 
 
Where: 
x  is the vector of state variables. 
x&  is the vector of first time derivates of state variables, which is also called the slope vector, s . 
b  is a constant vector. 
G is the gain matrix, which is defined as follows: 
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Each element, gij (
j

i
x

x
∂

∂& ), in the above matrix constitutes a compact gain; i.e. the change in the 

net rate (slope) of state variable i, in response to an infinitesimal change in the level (value) of 
state variable j, in the model.  
 
Note that, in this paper, we denote scalars using variables in small letters; vectors in over-scored, 
small letters; and matrices in capital letters. 
 
Differentiating equation (1) with respect to time yields: 

 
x G x=&& &  

That is:  
 
c = G s                   (2) 
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Where  
c  is the curvature vector, which is the vector of second time derivates of state variables; i.e. x&& . 
s  is the slope vector, which is the vector of first time derivates of state variables; i.e. x& . 
 
That is the gain matrix, G, relates the slope vector to the curvature vector. In other words, the 
gain matrix, G, transforms the s  vector into the c  vector in an n-dimensional standard space. 
The solution to the system of differential equations, specified by equation (2), provides us with 
the time trajectory of the slope vector of the model. In general, each curvature, c, is a linear 
combination of all the slopes (i.e. function of the entire slope vector, s ). The implication is that 
the curvature, c, associated with a single coordinate (axis) in the standard space is determined by 
the slopes associated with all the coordinates (component mixing). Therefore, to be able to solve 
for the time trajectory of the slope, we change the coordinate system using the eigenvalue 
method.  
 
From the gain matrix, G, we can derive the eigenvalues and the right eigenvectors, as, per 
definition; 

 
G kr = λk kr  

 
If G is an n x n matrix (i.e. we have n state variables), we will have n eigenvalues, λk, each 
associated with a right eigenvector, kr . The default case is to have n distinct eigenvalues, and 
consequently the right eigenvectors will be linearly independent (Luenberger, 1979), and span an 
n-dimensional space, Rn; i.e. the right eigenvectors will form a new coordinate system, which is 
known as the “eigen-space”. Note that, in general, the coordinates in this system are not orthogo-
nal, yet they are of unity length. The eigenvectors only specify a variety of directions in space 
along which the dynamics of the model unfold (as explained below).   
 
As the right eigenvectors span the n-dimensional space, then the slope vector, s , (at any point of 
time) can  be expressed as a linear combination of the right eigenvectors; i.e.: 
 
s  = α1 1r  + α2 2r  +  .... + αn nr                                                                     (3)      
 
In this new coordinate system (eigen-space) the alphas (αk) will be the new components of the 
slope vector. 
 
Differentiating equation (3) with respect to time yields: 
     

nn2211 r...rrc α++α+α= &&&  
 
In this new coordinate system, iα& will be the new components of the curvature vector. 
 
Substituting s  -- as expressed in equation (3) -- into equation (2) yields: 
 

c  = G  [  α1 1r  + α2 2r  +  .... + αn nr ] 
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By rearranging, we obtain: 
 

c  =  α1 G  1r  + α2 G 2r  +  .... + αn G nr  
 
By utilizing the fact that G kr = λk kr  , we obtain: 
 

c  =  α1 λ 1 1r  + α2 λ 2 2r  +  .... + αn λ n nr  
 
And as:  

nn2211 r...rrc α++α+α= &&&  
 

Then, along a particular coordinate (specified by a right eigenvector), the dynamics that takes 
place, can be described by the following differential equation: 
 

k k kα = λ α&  
 
The solution of the above differential equation is: 
 

αk = αk
0

 eλk  (t-τ) 
 

Where τ is the initial time (i.e. the starting time of the analysis period); and αk
0 are the initial 

values of αk  (at  time τ). 
 
It is clear that the only factor determining the dynamics along a particular coordinate (i.e. a right 
eigenvector) is the eigenvalue associated with that coordinate itself. Substituting the solution of 
the dynamic behavior of each alpha (αk), into equation (3) yields the time trajectory of the slope, 
i.e.: 
 
s  =  α1

0
 eλ1  (t-τ) 

1r  + α2
0 eλ2  (t-τ) 2r  +  .... + αn

0 eλn  (t-τ) 
nr             (4)           

 
Integrating the above slope trajectory equation, with respect to time, yields: 
 
 x  =  (α1

0/λ1)  { eλ1 (t-τ)  -1} 1r +  .... + (αn
0/λn) { eλn  (t-τ) -1} 

nr
  + ox                      (5) 

 
Where ox  is a constant vector that contains the initial values of the state variables. 
 
The above equation is our target mathematical function that decomposes the state trajectory into 
several modes of behavior, each expressed by an eigenvalue with its associated right eigenvector. 
In the next section, we will interpret this equation.   
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II. Structural Foundation of behavior 
 
In the first section of this paper, we developed a mathematical equation for the state trajectory 
behavior (equation 5). In this section, we will identify the origin of each component of the state 
trajectory.  As portrayed in the figure below, the basic components are: 
• The eigenvalues (λκ) 
• The right eigenvectors ( kr ) 
• The initial values of alphas (αk

0) 

 
Fig. 1: The origin of the components of the state trajectory 

 
Note that we used delayed links, in the above figure, to indicate that the values of eigenvalues, 
right eigenvectors, and alphas control the future trajectory of state variables (as indicated by 
equation 5). 
 
Note that, in our previous, work we have been focusing our efforts solely on identifying the 
origin of eigenvalues, and ignoring the origin of the eigenvectors (and consequently also 
ignoring the origin of the alphas). For example in Saleh & Davidsen (2001b) we identified the 
marginal impact of each parameter, link, and loop, in the business cycles model, to the dominant 
eigenvalue that was generating the oscillatory behavior observed, in the model. Nevertheless, 
this partial analysis (i.e. by solely focusing on the dominant eigenvalue) gave us valuable 
insights about the marginal impacts of each parameter, link, and loop, in the model, on the 
frequency of oscillation, and on the damping ratio of the envelope within which the oscillatory 
behavior is seen to unfold. However, in general, eigenvectors can play a significant role in 
shaping behavior. For example, Saleh & Davidsen (2001a) demonstrated that a simple linear 
model that has a single positive feedback loop can generate exponential decay behavior, rather 
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than exponential growth; if the initial slope vector was orthogonal to the right eigenvector 
associated with the positive eigenvalue (that is responsible of generating the exponential growth 
mode of behavior). For this reason, in this paper, we included the eigenvectors in our analysis. 
 
In the rest of this section, we will explain the origin of each of the basic components of the state 
trajectory.  
 
Regarding eigenvalues, they originate solely from the structure of the model; or more 
specifically, from the gain matrix, G. Recall that the gain matrix is used as a condensed 
representation of the model structure, and was used, in section 1, as the point of departure to 
drive the state trajectory. Also note that (as portrayed in figure 1), in linear models, the gain 
matrix, G, depends on the model’s parameters (constants in the model). Hence, for each 
eigenvalue, it is possible to formulate a mathematical function relating the eigenvalue (dependent 
variable) to the model’s parameters (independent variables). Moreover, for simplification, 
instead of formulating a single complicated function relating an eigenvalue to all parameters in 
the model, it is possible to develop many mathematical functions; where each function relates the 
eigenvalue to a single parameter (this is done by substituting the values of the rest of the 
parameters, in the gain matrix, G). In our research, we utilized the symbolic toolbox in Matlab to 
automate the above process. 
 
Similarly, as eigenvectors also originate solely from the gain matrix, it is possible to formulate a 
mathematical function relating any eigenvector (dependent variable) to any parameter 
(independent variable).  
 
The initial value of each of the alphas (i.e. αk

0 ) represents the projection of the initial slope 
vector along a particular right eigenvector (i.e. a particular coordinate in the eigenspace); i.e. the 
initial values of the alphas are dependent on the initial values of net rates (the values at the start 
of the simulation), and the right eigenvectors. The initial values of net rates, in turn, are functions 
of the initial state of the model (i.e. ox ), and the model parameters. The right eigenvectors, in 
turn, are functions of the model parameters (as indicated above). Hence, it is possible to 
formulate a mathematical function, relating the initial value of each alpha (dependent variable) to 
any parameter (independent variable). Note that the initial values of sates variable are substituted 
into this mathematical function. 
 
To summarize, for each component in the state trajectory (i.e. equation 5), it is possible to 
formulate a mathematical function relating the component to any parameter. This enables us to 
develop a compound mathematical function relating the future value, at any point of time, of a 
state variable (dependent variable) to any parameter (independent variable). The partial 
differentiation, at any point of time, of this compound function with respect to the parameter, 
yields the sensitivity of the future value (of the state variable) to that parameter. To automate the 
above process we developed a full-fledged program using the symbolic toolbox in “Matlab” 
software.  
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III. Analyzing the Market Growth Model  
 
III.I. Model Overview 
 
The market growth model represents the nature of a single firm competing in a potentially 
boundless market. The firm consists of three sectors, sales force, order fulfillment, and capacity 
acquisition. Figure 2 shows the relationship between the firm three sectors and the market sector. 
The initial version of the market growth model, analyzed in this paper, is taken from the CD of 
the Business Dynamics book (Sterman 2000); the name of the file is “mktgrow1.sim” (Powersim 
model). The model is described in details in chapter 15 in the book. We recommend the reader to 
review the model, and the associated explanation, in the Business Dynamics book. However, we 
made some modifications to this model (mktgrow1.sim) in order to linearize it. These 
modifications are described below.  
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Fig. 2: The sectors of the market growth model 
 

 
III.II. Model Simplification 
 
Here is the list of modifications which was introduced in order to linearize the model. 
 
1. We assumed that "sales effectiveness" is a constant variable in the model, rather than an 

endogenous variable whose value is determined by the current state of the model. 
2. We assumed that "capacity utilization" is a constant variable in the model, rather than an 

endogenous variable. 
3. We assumed that the "pressure to expand capacity" is based on the "perceived backlog" (by 

the company) rather than the "perceived delivery delay". 



 8

4. We linearized the table function of the "effect of pressure to expand capacity on the desired 
capacity". 

5. We used an additive formulation rather than a multiplicative one for "desired capacity". 
 
For more information about this linearized model the reader may refer to the supplementary 
powersim model, which is attached to this paper. 
 
 
III.III. Analysis Results 
 
In this study, we will focus on the Backlog state variable, whose behavior is plotted in the figure 
below.  
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Fig. 3: The behavior of the backlog. 

 
Using the eigenvalue approach, the backlog behavior, can be decomposed into the following 
modes of behavior:  

1. An exponential growth monotonic mode of behavior, shown in figure 4 (characterized by 
a single eigenvalue). 

2. An expanding oscillation mode of behavior, shown in figure 5 (characterized by a pair of 
complex conjugate eigenvalues). 

3.  A decaying oscillation mode of behavior, shown in figure 6 (characterized by a pair of 
complex conjugate eigenvalues). 

4. Another decaying oscillation mode of behavior, shown in figure 7 (characterized by a 
pair of complex conjugate eigenvalues). 

 
Note that superimposing these four modes of behavior yields the total backlog behavior.  
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Fig. 4: The exponential growth mode associated with behavior of the backlog 
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Fig. 5: The expanding oscillation mode associated with behavior of the backlog 
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Fig. 6: The first decaying oscillation mode associated with behavior of the backlog 
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Fig. 7: The second decaying oscillation mode associated with behavior of the backlog 
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Now, one can compute the sensitivities of the total backlog behavior to the model parameters; or 
one can compute the sensitivities of a certain mode of behavior (e.g. the exponential growth 
mode) to the model parameters. In this study, we focused on the sensitivities of the total backlog 
behavior to the model parameters. However, in principle, one can easily choose a certain mode 
of behavior to study rather than the total behavior. Such a deep analysis can only be performed 
by using the eigenvalue approach. 
 
As we mentioned in the previous section, the Matlab algorithm that we developed compute the 
sensitivity – across time – of the backlog behavior (i.e. the sensitivity of all future values of 
backlog) to a change in any parameter at the start time of the simulation.  In this paper, for 
demonstration purpose, we will plot the sensitivities of the total backlog behavior to the 
following seven parameters in this model: 

1. CapacityAcquisitionDelay 
2. CompanyGoalForBacklog 
3. SalesEffectivness 
4. CostPerSalesRepresentative 
5. Price 
6. RevenueReportingDelay 
7. SalesForceAdjustmentTime 
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Fig. 8: The sensitivity – across time – of the backlog behavior to CapacityAcquisitionDelay 
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Fig. 9: The sensitivity – across time – of the backlog behavior to CompanyGoalForBacklog 
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Fig. 10: The sensitivity – across time – of the backlog behavior to SalesEffectivness 
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Fig. 11: The sensitivity – across time – of the backlog behavior to 

CostPerSalesRepresentative 
 
 

Price

0

5

10

15

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Time

Se
ns

iti
vi

ty

 
Fig. 12: The sensitivity – across time – of the backlog behavior to Price 
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Fig. 13: The sensitivity – across time – of the backlog behavior to RevenueReportingDelay 
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Fig. 14: The sensitivity – across time – of the backlog behavior to 

SalesForceAdjustmentTime 
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