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ABSTRACT 

Automated sensitivity analysis approaches in system dynamics focus primarily on model 

parameters. Although table functions are often subjectively approximated, they do not 

form the focus of most sensitivity analyses. Recently, a promising approach that allows 

automation of sensitivity analysis on functions was proposed by Hearne (2010), but the 

applicability of this method to system dynamics table functions has not been studied, 

yet. In this study, the new method is applied to a simple system dynamics model. In the 

light of the observations a number of shortcomings are identified and a set of extensions 

to address these are proposed and then tested. The results of experiments with the 

original and the extended method demonstrate that the method can be used easily and 

efficiently for table functions. The extensions are shown to be valuable in creating a 

more comprehensive method, but they also raise the research issue of the tradeoff 

between their added value and the cost of dealing with increased complication. Apart 

from our experimental results, the article also puts forth a set of directions along which 

the approach can be improved further. Despite the issues requiring further research, 

the method holds promise for routine implementation. 

 

KEY WORDS: function sensitivity analysis, automated sensitivity analysis, epidemic 

model, triangular functions, uncertainty, table functions, system dynamics 

1. INTRODUCTION 

The problems modeled using system dynamics are characterized by uncertainty, arising 

from a lack of information on the system itself or due to conflicting opinions of the 

actors involved. This real life uncertainty is reflected in model building as uncertainty in 

the selection of parameter values or in expressions for variable interactions. Despite the 

difficulties associated with formulating them, models have to be robust/insensitive to 

such uncertainties to be considered valuable and useful in solving real life problems. 

Sensitivity analysis is broadly defined as “the study of model responses to model 

changes” (Tank-Nielsen 1980), and provides us with a way to deal with uncertainty. 

Elaborately, the importance of sensitivity analysis stems mainly from four factors. 

Firstly, it enhances understanding about both the structure-behavior relationship in the 
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model and real world. Secondly, and as the main reason for its common usage, it shows 

the effects of uncertainties in the model, e.g. estimated parameters, on the conclusions 

derived from this model. Thirdly, it determines the parameters which affect the behavior 

strongly and so facilitates the devotion of limited resources to estimate them. Lastly, the 

parameters which have a strong effect on the behavior may be the key points upon 

which new policies can be built (Sterman 2000, 830, Tank-Nielsen 1980). 

However, system dynamics has been criticized in the past owing to the absence of a 

precise theory or method to conduct sensitivity analysis (Meadows 1980). Following the 

explication and initial refutation of this critique by Meadows, various approaches have 

been developed. Several authors addressed the importance of sensitivity analysis, and 

provided basic non-automated approaches to conduct it. In their early work, Ford, 

Amlin and Backus (1983) emphasized the difficulties of sensitivity analysis such as 

large number of parameters to change and large number of state variables whose 

responses are to be observed; and listed the approaches developed by that time. Later 

on, studies are focused on coping with these problems. One of the two main approaches 

was to use optimization to determine parameter values which cause maximum deviation 

from the original model behavior (J. Hearne 1987, Miller 1998). The second approach 

which attracted more attention was the use of statistics to determine combinations of 

parameter values in multivariate sensitivity analysis, and to interpret the responses of 

state variables (Kleijnen 1995, Clemson, et al. 1995). Another example of use of 

statistics was presented by Ford and Flynn (2005) where they screened the model and 

utilized the correlation coefficients to find the parameters most influential on the 

behavior. Meanwhile, the progress in software technology allowed system dynamics 

and simulation packages to include automated sensitivity analysis tools. This reduced 

the burden of a comprehensive sensitivity analysis to some extent, but the 

abovementioned statistical approaches are still needed. In addition to those, since the 

sensitivity is defined as behavioral sensitivity rather than numerical sensitivity in system 

dynamics, methods to recognize changes in the behavior patterns have been developed 

and incorporated with sensitivity analysis. Recent examples of such studies can be seen 

in (Yucel and Barlas 2011) and (Hekimoglu and Barlas 2010). 

One common aspect of these studies is that they deal primarily with sensitivity of the 

model to changes in parameter values or to the changes in some model structure features 

such as the model boundary or the level of aggregation (Sterman 2000, 884). In system 

dynamics, nonlinear relationships between two variables are usually specified by a 

lookup or table function, which shows how the dependent variable nonlinearly varies as 

the independent variable changes (Sterman 2000, 552). In the context of model 

building, table functions are sometimes considered as parameters (Tank-Nielsen 1980), 

but the attention paid to them even in parameter sensitivity analysis is very limited. 

However, model robustness can depend on the choices of table functions as well 

because the shapes of them are only approximations of real nonlinear relationships, and 

due to that sensitivity analysis is indeed the final step of formulating a table function 

(Sterman 2000, 558-562). Currently, sensitivity analysis activities, particularly 

automated analyses, focus on parameter sensitivity. Even if a modeler wonders about 

the outcome of his choices and carries out a manual sensitivity analysis for functions, 

this effort will be limited because varying the functions manually, especially in 

combinations of multiple functions, is cumbersome. Clearly, an automated method for 

function sensitivity analysis is required, before the analysis of the effects of uncertainty 

in functions can join parameter sensitivity analysis as a routinely applied tool.  
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Recently, Hearne (2010) proposed a novel method to conduct sensitivity analysis of 

model functions. This method is based on systematic and parametric perturbation of the 

graphical functions. Despite being a promising proposal, this approach has not yet been 

tested thoroughly nor has its wider applicability been established. 

The objective of this study is two-fold. First, this study aims to explore the applicability 

of Hearne’s recent work on the sensitivity analysis of system dynamics functions. This 

is undertaken by implementing the method on a simple model with a single table 

function, and identifying the concerns and issues requiring attention. Second, extensions 

to the method are proposed in order to overcome the identified shortcomings. The 

delineated extensions are then implemented and tested on the same model, and their 

usefulness is assessed.  

With this intention, before diving into the sensitivity analysis method, the model that is 

used in this study is first introduced in the next section. Thereafter, the third section 

deals with Hearne’s method and its application on the chosen model. In Section 4, the 

proposed extensions are described and implemented. The paper ends with a discussion 

of the results and a conclusion regarding the promise of the method. 

2. THE SAMPLE MODEL 

The model selected for testing the new method for the sensitivity analysis of functions is 

the basic form of the epidemics model (SIR model) with an alternative infection rate 

formulation. In the original model (Sterman 2000, 303) where S stands for susceptible 

population and I is the infected population. The infection rate (IR) is defined as  

    
  

  
   

 

                
                          

The behavior yielded by this formulation when the contact rate is 6 people per person 

per day, the infectivity is 0.25, the initial number of Infected is 1 and the Total 

Population is 10000 is depicted in Figure 1.  

 
Figure 1: The behavior of original SIR model over time 
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and f depicts the non-linear relationship between the ratio of I to the total population and 

the infection rate. This relationship is linear in the original formulation. To ensure 

similarity to the original formulation, the initial shape of this table function is specified 

as depicted in Figure 2, while the model behavior obtained with this function is depicted 

in Figure 3. 

 

 

Figure 2: The table function f used in the alternative SIR model 

 
Figure 3: The behavior of alternative SIR model over time

 

Two assumptions embedded in this table function will be adopted in this study, too.  

First, the function starts at (0,0), which means that when there are no infected people in 

the community, then there is no infection. In other words, this disease is transmitted 

only by contacts between people, and this community is closed to interactions with the 

outside world. Secondly, the maximum effect of the infected fraction on the infection 

rate is 1. This means that, the infection rate cannot be higher than the susceptible 

population. It is important to note that this claim does not imply that the end point will 

be (1,1). When all or almost all people are infected, the effect of infected on infection 

rate may be smaller, and may even decline to zero. 
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3. APPLICATION OF HEARNE’S METHOD TO THE ALTERNATIVE SIR 

MODEL 

In this section, the method of John Hearne will be explained, and then the results 

obtained by using it on the abovementioned SIR model will be presented.  

3.1. Hearne’s method for function sensitivity analysis 

The basis of Hearne’s method for function sensitivity analysis is the multiplication of a 

model function with another function of specific form but variable parameterization in 

order to distort the model function. In his study, Hearne used triangular functions as 

distortion functions. Technically speaking, these triangular functions have the analytical 

and graphical forms shown below. For a model function r(y) defined on the interval [a, 

b], perturbation function h(y, p, m) where m and p are parameters is given by: 

            
        

     
 

     
           
          

  

 

Here, it is important to note that m stands for the maximum deviation from 1, whereas p 

is the point where this deviation occurs. Since this study does not aim at exploring the 

effect of different end points of model functions on the behavior, in this paper the 

distortion function is formulated in such a way that no end point distortion occurs. 

Below, Figure 4 shows an example table function which has an exponentially growing 

shape. If this table function could have an s-shape, almost linear or a less steep form, as 

R1, R2 and R3 in Figures 6, 8 and 10 respectively, then such shapes can be obtained by 

multiplying the original table function with the distortion functions shown in Figures 5, 

7 and 9. With each possible combination of parameter values of the distortion function, 

a different table function shape can be obtained and a large span of possibilities can be 

explored.  

 
Figure 4: An example of a table function, r 
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Figure 5: Distortion Function h1 with m=1,8 and p=0,6 

 
Figure 6: R1, the distorted form of the table function r, 

distorted by h1 

 
Figure 7: Distortion Function h2 with m=1 and p=0,5 

 
Figure 8: R2, the distorted form of the table function r, 

distorted by h2 

 
Figure 9: Distortion Function h3 with m=-0,64 and p=0,8 

 
Figure 10: R3, the distorted form of the table function r, 

distorted by h3 

 

To find the minimum distortion to the model function which causes the undesired model 

behavior, Hearne formulates the problem as follows: 

   
   

   

                                                      

 

In the solution (m
*
, p

*
) to this optimization problem, m

* 
represents the magnitude of the 

distortion, and p
*
 is the point at which the function manifests most sensitivity to the 

changes.   
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This formulation provides the reason for terming this approach an automated method. 

Instead of making manual changes to the function, the shape of the function which gives 

rise to undesired behavior can easily be found with the aid of an optimization tool.     

3.2. Experiments with the original approach 

For the modified SIR model, three types of model behavior are specified as the criteria 

by which sensitivity will be determined. If these behaviors are generated by minor 

changes in the table function, then the model will be said to be highly sensitive to the 

shape of the table function. The three criteria and the rationale for choosing each of 

them are described subsequently.  

i. Maximum number of Infected people greater than 3000 in two months 

In the original SIR model, the infected population reaches its maximum value of around 

3000 in the second week; whereas the peak value of  around 1200 in the alternative 

model which includes the  table function. The table function shape which will yield a 

similar maximum for infected people is sought by defining the criterion as the 

maximum number of infected people should exceed 3000 within two months.     

  

ii. Maximum number of Infected people greater than 6000 in two months 

Given the duration of infectivity specified in the model, recovery is quite rapid and the 

maximum number of people infected at any time over a two month period is not very 

high. The ambitious criterion of exceeding 6000 infected people in two months is 

chosen to figure out if any change in the table function can cause such extreme 

behavior.   

iii. Number of susceptible people still greater than 9900 after 1 year 

This model is intended to model the dynamics of an epidemic. Therefore, if there is no 

infection occurring, the model cannot be considered to achieve its purpose. This 

criterion is chosen in an attempt to understand if the shape of the table function could 

cause the model to be invalid.   

Three optimization problems, one for each of these criteria, are formulated as proposed 

by Hearne. An additional constraint is added to ensure that the values of the new table 

function lie between 0 and 1, preventing infection rates that are negative or higher than 

the susceptible population. Theoretically, m can take any value; however, since the table 

function values cannot exceed 1, or go below 0, it is unnecessary to search for m in a 

large interval. Therefore, m values are assumed to be between -5 and 5.  

The mathematical models specific to each optimization problem are included in 

Appendix I. 

3.3. Results 

To find the function shapes which create undesired model behaviors, the optimization 

problems described above have been solved using the optimization tool of Powersim 

Studio 7. Optimal solutions are presented in Table 1. 
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Table 1: Results of applying Hearne's method to 

the alternative SIR model 

 CRITERION 

1 

CRITERION 

2 

CRITERION 

3 

m 0,690 4,695 -0,407 

p 0,000 0,238 0,000 
 

 
Figure 11: Table function distorted to meet 

criterion 1 

 
Figure 12: Table function distorted to meet 

criterion 2 

 
Figure 13: Table function distorted to meet 

criterion 3 
 

Figures 11, 12 and 13 show how the original table function is distorted to meet each 

criterion with the function defined by the respective parameters in Table 1. In Figure 11, 

it can be seen that if the table function is changed to have a convex shape rather than a 

linearly increasing one, it then causes the maximum infected population to be greater 

than 3000. The relationship depicted in Figure 12 means that to have maximum infected 

population greater than 6000, infection rate should be more than, even twice as much as, 

the susceptible population when the infected people are between 15-100% of the total 

population. In Figure 13, we see that infection does not occur and the susceptible 

population remains high if the table function values are slightly decreased. The results 

generally indicate that the model behavior is more sensitive to the table function in 

terms of the third criterion, because the absolute maximum deviation from unity (m) is 

smaller in that case. A feasible solution for the second optimization problem couldn’t be 

found; instead, the result obtained after removing the constraint on the new table 

function is given. Since such a distortion does not have a real life meaning, it can be 

said that the behavior is insensitive to the table function in terms of criterion 2.  

3.4. Discussion on the observations and identifying potential improvements  

The undesired behavior in the first and third cases was obtained by a distortion of the 

table function made using a triangular function. However, this does not mean that these 

are the only function shape changes which can generate the undesired behavior. For 

example, an s-shaped pattern which requires the original function to increase initially 

then to decrease, or vice versa, could potentially have created the same undesired 

behavior. As Hearne pointed out, triangular functions are not capable of making 

different changes on the model functions in two different intervals. With their end 
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points at 1, they cannot decrease the function on one side, while increasing it on the 

other. However, in order to treat uncertainty in functional form thoroughly, such 

variations in perturbations are necessary. Therefore, an improvement to Hearne’s 

method lies in determining alternative forms of distortion functions that are able to 

create such two-sided distortions. 

Furthermore, it is observed that this method unnecessarily makes distortions on the 

regions of table function which are not used during the simulation. For the first 

criterion, the segment after 0.3 is not used, because the highest infected population is 

3000. Similarly, only the part before 0.1 is used for the third criterion. This indicates 

that the distortions after those points proved unnecessary, but had to be made owing to 

the shape of the distortion function. A further improvement lies in avoiding these 

unnecessary distortions. 

There is another reason for using such functions for the distortion of table functions: 

This table function ends at (1, 1) and single-extreme triangular functions with stable end 

points at 1 can be used to perturb them. On the other hand, for table functions passing 

through (1, 1) and going further, distorted functions should also pass through (1, 1) and 

to ensure this, distortion function has to pass through (1, 1) as well. It is not possible to 

achieve this by a partial function with two segments whose end points are 1. Therefore, 

it is inevitable to use functions which can provide different distortions in different 

intervals. 

As it was said before, this table function assumes that the effect of infected population 

ratio on infection rate increases till 1. However, it may not be logical to expect all the 

susceptible people to become infected even if infected ratio is very high. Therefore, this 

table function may saturate below 1. This opinion in fact points out the general fact that 

end points of table functions may also be subject to uncertainty. Also, variable end 

points increase the variety of function shapes that can be obtained after perturbation. 

Hence, this function sensitivity analysis method should include the possible variations 

at the end points as well.    

4. EXTENSIONS TO HEARNE’S METHOD 

In this section, the formulation and implementation of the proposed extensions on the 

model will be explained. Then, the results of the implementation will be described.       

4.1. Extensions 

4.1.1. Double-extreme triangular functions 

In selecting distortion functions there is a trade-off between their ability to provide the 

desired variety of perturbations and the number of parameters they have. The variety of 

perturbations is important for the reasons previously described. As for the number of 

parameters, the higher the number, the longer it takes to solve the optimization problem 

and the more difficult it is to interpret the impact of the parameters on the shape of the 

function.   

Considering this trade-off, the simplest extension that can be made to triangular 

functions in order to obtain two-sided distortions is to use “double-extreme triangular 

functions”, that is piece-wise functions with two extreme points instead of one. Such 

functions can be defined using four parameters with meanings similar to the parameters 
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of triangular functions, and they yield two-sided distortions when m1 and m2 have 

opposite signs. If they have the same sign, then they just increase the variety. The 

definition and an example of these functions, for a model function r(x) defined in 

interval [0, 1] are given below (see Figures 14 and 15): 

                  

 
  
 

  
   

  

  
                                                        

     
       

       
                        

     
  

      
                         

  

 

 
Figure 14: An example of a double-extreme 

triangular distortion function with m1=1.2, 

p1=0.2, m2=-0.3 and p2=0.7 (h Double is h1 in 

Figure 5) 

 
Figure 15: The function in Figure 4 distorted by 

the single and double-extreme functions in Figure 

14 

 

4.1.2. Variable end points 

When the end points are allowed to vary, the distortion functions defined above will 

have to be modified as follows, where l and u are the values of the table function at 0 

and 1, respectively: 

 For single extreme triangular functions: 

              

 
 

   
 

 
                                                        

    
     

   
                          

   

For double extreme triangular functions: 
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It is worthwhile to mention that in case of variable end points, parameter m represents 

the maximum deviation from the lower or the closer end point, not the deviation from 

unity anymore.  

4.2. Experiments with the extended method  

The experimental setup for implementing the extensions is the same as explained in 

section 3.2. An optimization problem for each criterion and an extension is defined. For 

double-extreme distortion functions, both the cases in which the end points are stable 

and in which they are variable are considered.    

Because the population is assumed isolated from external infection sources (see section 

2), even the distorted table function is assumed to start at (0,0) and no change is made to 

this point. Yet, the lower end point of the distortion function is still assumed to be a 

variable and take values different from 1, because the beginning point also affects the 

shape of the function. 

The mathematical models specific to each optimization problem are detailed in 

Appendix I. 

To ensure two-sided distortion using double triangular functions, which was the reason 

for introducing them in the first place, m1 and m2 can be forced to have opposite signs. 

4.3. Results 

The optimization problems are solved as before. The optimal solution of each problem 

can be seen in Table 2 below: 

Table 2: Results of applying Hearne's method with extensions to the alternative SIR model 

      CRITERION 1 CRITERION 2 CRITERION 3 

SINGLE-

EXTREME 

DISTORTION 

FUNCTION 

END POINTS 

STABLE AT 1 

(Original 

method) 

m 0,690 4,695 -0,407 

p 0,000 0,238 0,000 

VARIABLE 

END POINTS 

m 0,725 4,810 0,000 

p 0,001 0,364 0,505 

l 1,000 1,000 0,295 

u 0,874 0,609 0,428 

DOUBLE-

EXTREME 

DISTORTION 

FUNCTION 

END POINTS 

STABLE AT 1 

m1 0,704 4,745 -0,446 

p1 0,000 0,402 0,000 

m2 -0,050 0,000 0,002 

p2 1,000 1,000 0,366 

VARIABLE 

END POINTS 

m1 4,047 2,383 0,000 

p1 0,484 0,000 0,230 

m2 2,257 2,782 0,000 

p2 0,957 0,729 0,556 

l 0,736 1,000 0,031 

u 0,131 1,000 0,869 
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There is no feasible solution which makes the maximum infected population greater 

than 6000 in any of the cases. The solutions above (in bold typeface) belong to the 

modified optimization problem without the constraint on the values of the distorted 

table function. 

The graphs of the distortion functions with these parameters and how they perturb the 

table function can be seen in Appendix II.  

In the context of the modified SIR model, the results above, supported by the 

visualizations in Appendix II, are very similar to the results of the original method. 

They indicate that the model is moderately sensitive to changes in the shape of table 

function f when the sensitivity criterion is that the maximum value of infected 

population exceeds 30% of the total population. If this threshold is increased, that is, if 

the model is expected to demonstrate even less desirable behavior, then it can be said to 

be totally insensitive, because the distortions required to produce such behavior no 

longer have real life interpretations. However, if the undesired behavior is that the final 

susceptible population is greater than 99% of the total population, then the behavior can 

be said to be highly sensitive to the changes in the shape of f, because slight decreases at 

the initial points of the table function are sufficient to keep the infection rate very low. 

In the context of method extension, it is seen that on this model and for these criteria, 

the single-extreme triangular function with stable end points was sufficient to carry out 

the function sensitivity analyses. The double-extreme functions chosen by the 

optimization algorithm act very similarly to the single-extreme ones, because two of 

their four intervals are negligibly narrow. When the end points are allowed to vary, they 

are chosen different from 1, but these changes are not really effective, because these 

parts of the table function are not used. Still, the extensions proposed here are 

theoretically necessary because they enlarge the solution space and so facilitate a fuller 

consideration of uncertainty. Furthermore, these experiments are useful in determining 

the utility of the method, delineating necessary improvements and demonstrating their 

effects.  

4.4. Discussion on the observations      

For some of the optimal solutions, the end point deviates from unity. However, this final 

segment of the table function is never even used. A u value lower than one is chosen by 

the optimization algorithm either arbitrarily since it has no effect, or due to the ease of 

creating lower values for other parts of the function with a small end point. Therefore, 

before deriving the conclusion that the behavior is sensitive to the changes in the end 

point of the table function if it falls below u, one needs to verify whether this part of the 

function is used or whether there is a significant effect on the part actually used. 

Further, the variable end points add another level of complication to the problem. It is 

indeed straightforward to include them in the problem and they are expected to stay at 1 

if variations don’t cause a significant change in the model behavior. However, as in the 

case of the double-extreme distortion function and the first criterion, although it is 

known that there is a feasible solution when the end points are 1, the search algorithm 

does not find this. To overcome this difficulty, either the search process can be 

extended, which brings the dilemma of quality versus time and effort; or another 

optimization tool can be used, which decreases the efficiency of the analysis procedure 

by separating the environments in which the optimization and simulation are executed.     
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Moreover, although double-extreme triangular functions are able to generate two-sided 

distortions, their perturbation variety is still limited. To increase this variety, further 

functional forms, such as cubic polynomials or sinusoidal functions, can be tried out; 

and the added value of having this variety against the complications and difficulty of 

interpretation caused by the higher number of parameters, can be assessed.         

5. DISCUSSION AND CONCLUSION 

In this study, the applicability of Hearne’s automated sensitivity analysis method for 

system dynamics functions has been tested by applying the method to a simple model 

containing a table function. Extensions to the method have been developed and 

implemented. Specific shortcomings of both the original method and the extended 

version are delineated in sections 3.4 and 4.4. In addition to these, there are some 

general issues that need to be addressed.   

First, the claims made about the table function’s range in use should be generalized, 

because it is not unusual for models to use only a limited part of the table functions 

under given initial conditions and parameter values. However, it is not possible to 

capture the exact end points of the domain interval used in runtime, and to make 

distortions only in this interval. Therefore, it is necessary to check the active domain of 

the table functions, and how much of the distortions are really used in the simulation 

before deriving conclusions from the results obtained with this method.    

Second, in this study, undesired behaviors were generated by single-extreme functions 

in only one direction. To fully understand the added value of double-extreme functions, 

different undesired behavior types should be determined and tested. Also, one may 

argue that sensitivity in this study is defined more in terms of numerical changes here, 

rather than in terms of significant behavioral changes. This claim is undeniably true; but 

with an optimization tool in which the constraints can be applied only once during the 

simulation, not continuously, it is not straightforward to capture behavioral changes. 

Indeed, automated behavioral change analysis methods such as pattern recognition 

would need to be incorporated in the extended Hearne method if the goal of creating an 

automated sensitivity analysis method for model functions is to be attained. 

Third, in this paper the method is applied on a simple model with a single table 

function, and undesired behaviors are selected on the basis of the behavior of a single 

stock variable. If the method is used on a larger model to create simultaneous distortions 

on multiple table functions and criteria dependent on combinations of several stock 

variables are defined, then the value of this automated method can be established.       

Both the original and the extended version of Hearne’s new function sensitivity analysis 

method were applied using the optimization tools available in system dynamics 

software, demonstrating the promise of the method to deliver automated sensitivity 

analysis of functions in system dynamics models. A number of points which need 

attention if this method is to be used routinely for table functions sensitivity analysis 

provide the points of departure in future work on this issue. 
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APPENDIX I: OPTIMIZATION PROBLEMS 

1. Single extreme, stable end points, model behavior 1 
(1)  i 

   
   

                   s.t. 
 

(2)   x
 

       

(3)                                                        

(4)       
(5)        
 where new InfectionFunction[i] = InfectionFunction[i] * h[i] 

 InfectionFunction[] = {0, 0.09, 0.2, 0.29, 0.406, 0.51, 0.606, 0.69, 
0.794, 0.916, 1} 

         
        

     
 where       

           
          

  

 

(1) Objective function: The optimization problem for sensitivity analysis is stated 

 s “fi di g the  i i u  distortio  which cre tes the u desired  odel 

beh vior”. Therefore, the distortio  is  e sured by the squ re of   xi u  

deviation of the distortion function from unity, to ensure that absolute 

distortion is taken into account.  

(2) Undesired model behavior constraint: The first undesired model behavior 

criterion is formulated as a constraint which restricts the maximum value of 

the Infected population over the simulation time to be greater than 3000. In 

Powersim, this constraint was defined by using RUNMAX() function. 

(3) Feasibility constraint: It is known that the values below 0 and above 1 have no 

real life meaning for the table function used in this study. However, it is not 

possible to set a constraint to check the distorted values at each time point. 

Therefore, an array of discrete values of the distorted table function, namely 

newInfectionFunction[], is created and restricted to the interval of [0, 1], 

although it is known that the distortions are continuous. Each element of 

newInfectionFunction[] is formed by multiplying each element of the original 

distortion function array (InfectionFunction[]) with the corresponding value of 

the distortion function(h[i]). 

(4) Search range of p:  As it can be recalled, parameter p represents the point 

where the maximum distortion from unity occurs. Therefore, it has to within 

the domain of table function, which is [0, 1] in this case. 

(5) Search range of m: There is no limit on the values of m, but it is anticipated that 

high values cause infeasible distortions. Therefore, the search range is 

specified as [-5, 5] to include downward distortions as well. 

 

2. Single extreme, stable end points, model behavior 2 

Problem 1, except the first constraint which is replaced by 

                                                         
                                                                               

       

 

3. Single extreme, stable end points, model behavior 3 

Problem 1, except the first constraint which is replaced by 
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4. Single extreme, variable end points, model behavior 1 

(1)    
       

   

                   s.t. 
 

(2)    
 

       

(3)                                                        
(4)       
(5)        
(6)       
(7)       
 where new InfectionFunction[i] = InfectionFunction[i] * h[i] 

 InfectionFunction[] = {0, 0.09, 0.2, 0.29, 0.406, 0.51, 0.606, 0.69, 
0.794, 0.916, 1} 

 

      

 
 

   
 

 
                                                        

    
     

   
                          

  

  
 

(6) Search range of l: In addition to the problem 1, search ranges for the end point 

parameters are specified in this case. For l, the end point at 0, this range is [0, 

2] because it is thought that the values higher than 2 would easily cause 

infeasibility. 

(7) Search range of u: The end point of the table function at 1 is already 1, and 

since multiplying it with values higher than 1 would cause infeasible values, 

the search range of u is kept between 0 and 1.   

 

5. Single extreme, variable end points, model behavior 2 

Problem 4, except the first constraint which is replaced by 

                                                         
                                                                               

       

 

6. Single extreme, variable end points, model behavior 3 

Problem 4, except the first constraint which is replaced by 

                                                                               

 

 

7. Double extreme, stable end points, model behavior 1 

(1)    
           

  
    

  

                   s.t. 
(2)    

 
       

(3)                                                        
(4)                                                  

(5)                                              
(6)         
 where new InfectionFunction[i] = InfectionFunction[i] * h[i] 
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 InfectionFunction[] = {0, 0.09, 0.2, 0.29, 0.406, 0.51, 0.606, 0.69, 
0.794, 0.916, 1} 

 

      

 
  
 

  
   

  

  
                                                        

     
       

       
                        

     
  

      
                         

  

 

(1) Objective function: This time, two parameters, both m1 and m2 contribute to the 

maximum distortion, hence they are both included in the objective function.  

(4) Search range of p1 and p2:  The search range [0,1] applies to both p parameters. 

(5) Search range of m1 and m2: As specified in the first problem, the search range [-

5, 5] applies to both m parameters.  

(6) Difference of p’s: The distortion function is defined based on the assumption 

that p1 precedes p2. With this constraint, it is guaranteed that p1 is smaller than p2. 

8. Double extreme, stable end points, model behavior 2 

Problem 7, except the first constraint which is replaced by 

                                                         
                                                                               

       

 

9. Double extreme, stable end points, model behavior 3 

Problem 5, except the first constraint which is replaced by 

                                                                               

 

10. Double extreme, variable end points, model behavior 1 

(1)  i 
               

  
    

  

                   s.t. 
(2)   x

 
       

(3)                                                        
(4)                                                  

(5)                                              
(6)         
(7)       
(8)       
 where new InfectionFunction[i] = InfectionFunction[i] * h[i] 

 InfectionFunction[] = {0, 0.09, 0.2, 0.29, 0.406, 0.51, 0.606, 0.69, 
0.794, 0.916, 1} 
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(7) and (8) Search ranges of end points: The search range of both of the end points 

is specified as the interval [0,1] because the values out of this interval are 

infeasible. 

11. Double extreme, variable end points, model behavior 2 

Problem 10, except the first constraint which is replaced by 

                                                         
                                                                               

       

 

12. Double extreme, variable end points, model behavior 3 

Problem 10, except the first constraint which is replaced by 
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APPENDIX II: EXPERIMENT RESULTS 

1. Single-Extreme Triangular Distortion Function 

a. Stable End Points 

i. Criterion 1 (Model behavior: Max(I)>3000) 

m 0,690 p 0,000 

 
ii. Criterion 2 (Model behavior: Max(I)>6000 ) 

m 4,695 p 0,238 

  
iii. Criterion 3 (Model behavior: Final S>9900) 

m -0,407 p 0,000 
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b. Variable End Points 

i. Criterion 1 (Model behavior: Max(I)>3000) 

m 0,725 p 0,001 

l 1,000 u 0,874 

  
ii.  Criterion 2 (Model behavior: Max(I)>6000 ) 

m 4,810 p 0,364 

l 1,000 u 0,609 

  
iii. Criterion 3 (Model behavior: Final S>9900) 

m 0,000 p 0,505 

l 0,295 u 0,428 
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2. Double-Extreme Triangular Distortion Function 

a. Stable End Points 

i. Criterion 1 (Model behavior: Max(I)>3000) 

m1 0,704 p1 0,000 

m2 -0,050 p2 1,000 

  
ii. Criterion 2 (Model behavior: Max(I)>6000 ) 

m1 4,745 p1 0,402 

m2 0,000 p2 1,000 

  
iii. Criterion 3 (Model behavior: Final S>9900) 

m1 -0,446 p1 0,000 

m2 0,002 p2 0,366 
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b. Variable End Points 

i. Criterion 1 (Model behavior: Max(I)>3000) 

m1 4,047 p1 0,484 

m2 2,257 p2 0,957 

l 0,736 u 0,131 

  

ii. Criterion 2 (Model behavior: Max(I)>6000 ) 

m1 2,383 p1 0,000 

m2 2,782 p2 0,729 

l 1,000 u 1,000 

  

iii. Criterion 3 (Model behavior: Final S>9900) 

m1 0,000 p1 0,230 

m2 0,000 p2 0,556 

l 0,031 u 0,869 
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