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ABSTRACT. The purpose of this paper is to compare the efficiency and 

robustness of policies obtained using alternative system dynamics 

support methods. The comparison shows the need for creating new 

methods which combine the efficiency of the optimization methods with 

the robustness of the modal methods. One of these hybrid methods is 

the recently developed reference approach which exhibits the best 

efficiency and robustness. 

1. THE ALTERNATIVE POLICIES 

A system dynamics support method consists of two parts: model 

building and the design of the best policy to reach a desired 

dynamics. The current methods can be grouped in three families: 

heuristic methods (Forrester, 1961; Coyle, 1977)' modal methods 

(Mohapatra and Sharma, 1985) and sequential optimization methods 

(Keloharju, 1983; Macedo, 1989a). All of these methods build the model 

using the philosophy and tools proposed by Forrester (1961); however, 

they differ in the techniques used to design the policy. 

The purpose of this paper is to compare the efficiency and 

robustness of four policies obtained with the alternative system 

dynamics support ~ethods (table 1). These policies were conceived to 

stabilize the oscillatory dynamics of the variables FOR(t), PSR(t), 

INV(t) in the appendix model!. This model is the result of applying 

some rescaling to Coyle's model (1977, chap. 8). 

1 The first five equations of the appendix model generate the growth 
of the sales rate SR(t) from 100 to 140 units/week in approximately 5 
weeks. 
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Table 1. The alternative policies, for O~t~30 weeks (see 
appendix for symbols). 

1) MOHAPATRA'S POLICY (Mohapatra and Sharma, 1985): 
FOR(t) = ~(t)•ASR(t) + ~(t)• [DINV(t)-INV(t)] 

+ [RBL(t)-OBL(t)]/TACL + [DPLA(t)-PLA(t)]/TAL 
PSR(t)= ASR(t)+[DINV(t)-INV(t)]/TAIP 

+ [DPLA(t)-PLA(t)]/TALP 

where: 
DPLA(t)=WPLD•ASR(t); ~(t)=1; DINV(t)=WINVD•ASR(t); 
~(t)=0.25, O~t~30; 

WPLD=6; TALP=12; TAL=12; TACL=6; TAIP=4; WINVD=6 
----------------------------------------------------------
2) REFERENCE APPROACH POLICY (Macedo, 1989b): 
FOR(t) ~(t)•ASR(t) + ~(t). [DINV(t)-INV(t)] 
PSR(t) a(t)•APL(t) 

where: 
a(t) at* + 0.1[0BL(t)-OBLt*] - 0.2[INV(t)-INVt*] 

- 0.15[PLA(t)-PLAt*] + 0.2[ASR(t)-ASRt*] 
- 0.2[APL(t)-APLt*] + 0.3[SR(t)-SRt*] 

~(t) ~t* - 0.2[0BL(t)-OBLt*] - 0.15[INV(t)-INVt*] 
- 0.15[PLA(t)-PLAt*] - 0.4[ASR(t)-ASRt*] 
- 0.3[AOR(t)-AORt*] - 0.4[APL(t)-APLt*] 
+ 0.2[SR(t)-SRt*] 

~(t) = ~t* - 0.05[ASR(t) - ASRt*] 
DINV(t)=WINVD•ASR(t), O~t~30; WINVD=6 
OBLt* ,INVt* ,PLAt*: Figure 1; ASRt* ,AORt* ,APLt*: Figure 2; 
SRt • : Figure 3; at • , ~t * , ~t • : Figure 4 
~---------------------------------------------------------
3) COYLE'S POLICY (Coyle, 1977, chapter 8): 
FOR(t) ~(t)•ASR(t) + ~(t). [DINV(t)-INV(t)] 

+ [DPLA(t)-PLA(t)]/TAL 
PSR(t) a(t)•APL(t) 
DFF(t) AOR(t) + [WIFA(t)-DWIFA(t)]/TAWIFA 

where: 
WIFA(t)=PCR(t)-DFF(t); DWIFA(t)=COVER•APL(t); 
DFF(t)=AOR(t)+[WIFA(t)-DWIFA(t)]/TAWIFA; 
DPLA(t)=WPLD•ASR(t); DINV(t)=WINVD•ASR(t); 
PCR(t)=DELAY3[PSR(t),PDEL];a(t)=1;~(t)=1;~(t)=1/12,0~t~30; 
TAL=12; TAWIFA=2; COVER=2; WPLD=6; WINVD=6; PDEL=4 
~---------------------------------------------------------
4) KELOHARJU'S POLICY (Macedo, 1989b): 
FOR(t) ~(t).ASR(t) + ~(t). [DINV(t)-INV(t)] 
PSR(t) = a(t)•APL(t) 

where: 
DINV(t)=WINVD•ASR(t);a(t)=1.752;~(t)=1.135;~(t)=O,O~t~30; 
WINVD=6 
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Figure 1. Desired dynamics 
of the level variables 
OBLt~ (B) ,INVt~ (I) ,PLAt~ (L). 
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Figure 3. Dynamics of the 
exogeneous SRt• (S). 
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Figure 2. Desired dynamics 
of the level variables 
ASRt ~ (S) ,AORt ~ (F) ,APLt • (P). 
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In the heuristic methods the policy is conceived based on the 

understanding of the model dynamics. This is achieved using intensive 

simulation and interpreting the results with a loops diagram. In the 

modal methods, the policy is designed by moving the eigenvalues of the 

linearized model and is expressed as a function of the level 

variables. Sequential optimization methods converge to the best policy 

by solving a sequence of optimization models. 

In Keloharju's optimization method. the policy is defined as a 

set of relationships that link the control variables2 of the system 

dynamics model to the rest of its variables. These relationships are 

defined heuristically and exogeneously using artificial parameters. 

Next, the policy is inserted into the system dynamics model and the 

resultant model is optimized. As a result of the optimization, the 

values of the parameters and the policy become defined. In this way 

several policies are tried (and several optimization models solved) 

until the one that generates the best value for an objective function 

is found. 

In the reference approach, the structure of the policy is 

generated endogeneously from the parameters that control the behavior 

of the system dynamics model (these parameters become the control 

variables). The reference approach expresses the policy as a sum of 

structural and tactical changes. The structural changes are the 

parametric changes to .be introduced in the system dynamics model. The 

tactical changes are the nonlinear relationships to be created between 

the control variables and the level variables of the system dynamics 

model. 

The reference approach uses a hierarchy of two sequential 

optimizations. In the first, a sequence of reference models are 

optimized with the goal of obtaining the structural changes capable of 

pushing an approximate system dynamics model to a desired zone3 • In 

the second, a sequence of control models are optimized with the goal 

of reducing the gap between the behavior of the original system 

dynamics model and the behavior of the approximate system dynamics 

model which is located in the desired zone. This second sequential 

optimization produces the tactical changes. 

2 The control variables of a system dynamics model are those that 
control its problematic behavior. 
3 The desired zone is the zone which presents the following two 
properties. First, the variables of the system dynamics model show the 
desired dynamics. Second, the pattern of these dynamics does not 
change when small parametric variations occur. 
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In this paper a stabilization problem was chosen because 

Mohapatra's method is limited to the design of stabilization policies 

(this is not the case for the other methods analyzed). In addition, we 

optimize the same policy structure with the reference approach and 

Keloharju's method. This is necessary because these two methods are 

conceptually different. 

2. RESULTS AND DISCUSSION 

The efficiency of each policy is evaluated as follows. The p~licy 

is first introduced into the system dynamics model (appendix). ~his 

generates trajectories for the problematic variables FOR(t), PSR(t), 

INV(t). Those trajectories are then characterized by three relative 

coefficients: overshoot (maximum difference between the transient 

behavior and the dynamic equilibrium of the variable), settling time 

(time required by the variable to reach and remain within 90% and 110% 

of its dynamic equilibrium) and accumulated deviation (sum of the 

percentage deviations of the variables with respect to their dynamic 

equilibriums). 

Table 2 shows the reference approach policy as the most efficient 

followed by Keloharju's policy which presents the second lowest value 

for the accumulated deviation. The higher efficiency of these two 

policies is due to the use of the optimization algorithms. These tools 

simultaneously perform an analysis in both time and variables space. 

This is not the case for Mohapatra's and Coyle's policies which 

utilize partial analysis. Hence, they "wait" to observe the growth of 

the sales rate before increasing the production start rate (the 

overshoot time of PSR is bigger for Coyle and Mohapatra's policies 

than for the other two policies in table 2). 

Keloharju's policy shows low overshoot coefficients (table 2) 

which means high efficiency, however its settling times are not as 

good as the reference approach policy. This is due to the fact that 

the control variables a(t), ~(t), t(t) cannot vary with time in the 

optimization algorithm used by Keloharju's method. 

In order to evaluate the robustness of each policy an aggregate 

reaction coefficient is calculated for each one. This coefficient is 

the accumulated deviation of the original trajectories of the 
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Table 2. Efficiency and robustness coefficients of the alternative 
policies (see appendix for symbols). 

ALTERNATIVE POLICIES 
Efficiency f----------- r--------- r----------- r---------coefficient MOHAPATRA REFERENCE COYLE KELOHARJU 

APPROACH 
r-----------
Overshoot: 

f----------- r---------- f------------ 1----------

INV 0.43 0.125 0.83 0.32 
(t=7) 8 (t=ll) (t=17) (t=16) 

FOR 0.39 0.098 0.373 0.187 
(t=8) (t=4) (t=12) (t=O) 

PSR 0.42 0.15 0.42 0.25 
(t=8) (t=1) (t=18) (t=O) 

Settling 
time: 

INV 18 weeks 17 weeks >30 weeks 27 weeks 

FOR 16 weeks 4 weeks 23 weeks >30 weeks 

PSR 16 weeks 3 weeks 27 weeks >30 weeks 

Accumulated 
deviation 17.476 4.2724 29.681 12.807 
1----------- ----------- r---------- ------------ 1----------
Robustness 
coefficient 

Aggre9ate 
reactJ.on 20.303 19.76 36.567 25.008 

a: t J.n parenthesJ.s J.ndJ.cates the tl.me (weeks) when the 
overshoot is evaluated. 

FORMULAE FOR TABLE 2: 

overshoot of variable x = [maxl(x(t)-XE)/XE I•O~t~30 weeks] 

Settling time 
of variable x 

Accumulated 
deviation 

[t/ 0.9xE ~ x(t) ~ 1.1x£ .o~t~30 weeks] 

30 

I /({INV{t)-INVE)/INVE] 2 +/({FOR{t)-FORE)/FORE) 2 
0 

3 0 Aggre9ate 
reactJ.on 
coefficient I /[{INVG{t) INV(t))/INV(t)]2 

+/((FORG{t) FOR(t))/FOR(t)] 2 

+/({PSRG{t) PSR(t))/PSR{t)] 2dt 

INV(t),FOR(t) ,PSR(t): Values of INV,FOR,PSR at 
time t when GOAL=1.4 

INVG(t) ,FORG(t) ,PSRG(t): Values of INV,FOR,PSR at 
time t when GOAL=1.7 

INVE ,FORE ,PSRE: Dynamic equilibriums of INV,FOR,PSR 

x(t): Value of variable x at time t (x = INV,FOR,PSR) 

XE: Dynamic equilibrium of variable x (x = INV,FOR,PSR) 
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problematic variables FOR(t), PSR(t), INV(t) (obtained simulating the 

appendix model with GOAL=1.4) with respect to their modified 

trajectories (obtained simulating the appendix model with GOAL=1.7). 

Table 2 shows the reference approach policy as the most robust, 

closely followed by Mohapatra's policy. These policies exhibit lower 

aggregate reaction coefficients than Coyle's and Keloharju's policies 

because they are expressed as a function of the level variables. In 

fact, they can capture small parametric variations because these 

variations necessarily affect a level variable via the feedback loops. 

While Mohapatra's method uses modal analysis to express the policy as 

a function of the level variables, the reference approach uses an 

equivalent tool, an optimal control model. 

3. CONCLUSION 

This paper demonstrates the necessity of developing new methods 

which combine the simultaneous analysis capabilities of the 

optimization methods with the robustness of the modal methods. One of 

these hybrid methods is the reference approach which, for the case 

analyzed in this paper, presents the best efficiency and robustness. 
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APPENDIX: THE LABORATORY SYSTEM DYNAMICS MODEL 

EQUATIONS OF THE DYNAMIC EXOGENEOUS 
EXOGk EXOGJ + dt•TAUXJk 
EXOGo 1 
TAUXki = FPT• (GOAL-EXOGk) 
FPT = 0.6 
GOAL = 1.4 
EQUATIONS OF THE MODEL 
SRk 1 = EXOGk 
ASRk ASRJ + dt* (SRJk-ASRJ )/TASR 
ASRo 1 
TASR 4 
INVk INVJ + dt* (DFFJk-SRJk) 
INVo ASRo•WINVD 
WINVD 6 
DINVk WINVD•ASRk 
FORk! ~·ASRk + '* (DINVk-INVk) 
~ 1 
' 1/TAI 
TAl 4 
AORk AORJ + dt• (FORJk-AORJ )/TAOR 
AORo ASRo 
TAOR 4 
OBLk OBLJ + dt* (FORJk-PSRJk) 
OBLo 6 + TABL.ASRo 
TABL 4 
RBLk TABLE(TRBL,AORk,0.5,1.5,0.25) 
TRBL 4/5.25/6/6.5/6.75 
IPLk (OBLk-RBLk)/TABL 
APLk APLJ + dt* (IPLJ-APLJ )/PAT 
APLo AORo 
PAT 3 
PSRk 1 a* APLk 
a 1 
DFFki PLAk/PDEL 
PDEL 6 
PLAk PLAJ + dt* (PSRJk-DFFJk) 
PLAo ASRo•WPLD 
WPLD 6 
tk tJ + dt 
to 0 
k = kl t; j = jk = t-1; 0StS30 

SYMBOLS USED (hu: hundred of units; hu/w: hundred of 
units/week; w: weeks): 

AOR Average order rate at factory (hu/w) 
APL Actual production level (hu/wl 
ASR Average sales rate (hu/w) 
DFF Delivery rate from factory (hu/w) 
DINV Desired inventory of finished products (hu) 
EXOG Auxiliary variable which defines the sales rate SR 
FOR Factory order rate (hu/w) 
GOAL Sales rate objective (hu/w) 
INV Inventory of finished products (hu) 
IPL Indicated production level for backlog control (hu/w) 
OBL Order baklog (hu) 
PAT Time to adjust to planned production level (w) 
PDEL Production process delay (w) 
PLA Goods in production pipeline (hu) 
PSR Production start rate (hu/w) 
RBL Required level of backlog (hu/w) 
SR Sales rate (hu/w) 
TAl Time to adjust inventory (w) 
TAOR Time to average order rate (w) 
TABL Time to adjust backlog (w) 
TASR Time to average sales rate (w) 
TAUX : Growth rate of EXOG 
WINVD: Weeks of average sales rate desired in inventory (w) 
a Fraction of APL in PSR (no dimension) 
~ : Fraction of ASR in FOR (no dimension) 
' : Fraction of (DINV-INV) in FOR (1/w) 


