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Optimization has not been an important part of system dynamics thus far, and for 

several good reasons: Simulation models have been sufficient to point out greater 

potentials for improvement than what policy makers have been willing to embrace. 

Hence presumably minor improvements of policies might have seemed of little value. 

Even simple simulation results have been difficult to communicate, indicating that the 

results of complicated optimization efforts would be even harder to convey. Optimi

zation methods have not been able to capture the richness of real decision problems 

characterized by simultaneous appearance of dynamics, nonlinearities and uncertain

ties. Hence there has been uncertainty about the transferability of solutions from simple 

to complex environments. 

While many of these reasons will remain valid for policy analysis, there is an increas

ing need for optimization at the more scientific end of the spectre of system dynamics 

analysis: When testing behavioural assumptions with experiments, Sterman (1987), 

optimal policies are required to characterize the results and to establish proper bench

marks. Optimization is needed to get precise estimates of how rational policies change 

as complexity is added. This is an approach to behavioural analysis which might have 

started with Simon (1955). Furthermore, a simulation study which produces optimal 

solutions is likely to gain increased validity and acceptance among decision makers and 

in journals. 

Analytical solutions to dynamic, nonlinear, stochastic models are hard to come by. 

Numerical solutions by the use of stochastic dynamic programming require skill and 

time, and is hampered by the so-called 'curse of dimensionality'. Here a method called 

'stochastic optimization in policy space' is presented and tested. Basically the idea is to 

refine the trial and error search for appropriate policies often used in simulation studies. 

We start out with a policy function with unknown parameters. Then we search for the 

parameter values of the policy function that maximize the criterion. In the case of 

uncertainty, repeated (Monte Carlo) simulations are made to calculate the expected 
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(average) criterion value. A nonlinear optimization technique is used to search for 

parameter values. The idea is discussed in Polyak (1987), Errnoliev and Wets (1988) 

and Walters (1986). Details and caveats are presented in Moxnes (1996). 

We apply the method to seek optimal quota policies for the management of a stochastic 

predator-prey system. The example is cod and capelin in the Barents Sea, two species 

which can be harvested separately. There is a growing awareness of the importance of 

the interconnectedness of marine species as well as the importance of the uncertainty in 

our knowledge about ocean ecosystems. Thus, an effort to improve our understanding 

of the management of multispecies fish stocks under uncertainty seems pertinent. 

Previously Mendelssohn (1980) has characterized the solution to a much simplified 

multispecies model. 

We want to maximize the expected net present value ENPV of the two fisheries i=1,2 . 
. -f3i 

Profits (price Pi times harvest H: minus costs c i times effort F:=S: (x;) ) are 

discounted with the rate 8 and are summed over the time period T. To get the expected 

value, the average net present value over M Monte Carlo simulations are calculated. 

(1) 

The resource dynamics are given by a frequently used modification of the Lotka

Volterra equations: 

(2) 

where x; is the biomass of species i at timet,~ is the survival after harvest, S ~=x;-H~. 

The challenge is to find the harvesting policies as functions of the biomass vector Xt 

and a policy parameter vector e (a vector which contains only the parameters of the 

policy function). 

(3) 

The functions fi are both two dimensional interpolations between 9 grid points. Hence 

the functional form is very flexible and do not impose strong restrictions on the solu

tion. The max-function ensures that the quotas are non-negative. Nonlinear optimiza

tion is used to search for the parameter vector 8* which maximizes the criterion ENPV. 
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Finally note that the method is not guaranteed to yield a global solution for all pro

blems. Hence we repeat the search for 8* from different starting points for e. This 

resulting solutions also enable us to estimate the accuracy of our findings. 

Figure 1 shows the optimal solution. Both diagrams show quotas on the y-axis, and 

biomass of own species on the x-axis. The different types of lines (dashed, thin, and 

thick) denote the biomass of the other species, see the figure text for values. The bands 

between lines of the same type denote expected quota policies plus minus two standard 

deviations. 
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Figure 1: Expected quota policies for capelin, plus-minus two standard deviations, as a function of the 
amount of capelin. Dashed lines denote 0.5 mill. tonnes of cod, thin line 2 mill. tonnes and 
thick line 4 mill. tonnes. 
Expected quota policies for cod, plus-minus two standard deviations, as a function of the 
amount of cod. Dashed lines denote 2 mill. tonnes of capelin, thin line 8 mill. tonnes and 
thick line 14 mill. tonnes. 

Comparing to a solution found by stochastic dynamic programming, Brekke ( 1994), 

our solution turns out to give a slightly higher ENPV. This indicates that the restrictions 

imposed by the chosen policy function are less important than the discretizations of the 

state and policy spaces required for dynamic programming. 

Sensitivity tests show that the solution does not change much when the "infinite" time 

horizon is reduced from 50 to 20 years or when the number of Monte Carlo runs is 

reduced from 100 to 10. Due to compensating mechanisms the criterion is not very 

sensitive to the exact policy values. Starting out with the optimal solution for the det

erministic version of the model leads to. a criterion value 6 percent below the optimal 

one. This indicates a considerable potential for trial and error when searching for 

satisficing policies in a deterministic model. 
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The effect of stochastic variation is not easily determined by trial and error. By varying 

the standard deviations for the stochastic terms ~ we find that the two-species policies 

are more sensitive to stochasticity than what has been reported for single-species mo

dels, see Clark (1985). Still the effects are modest. If the standard deviations were to be 

underestimated by 50 percent, the expected loss would be about 4 percent. 

By adding nonlinearities to the original model, making it more realistic, we find strong 

effects on the optimal policies. Using the solution for the original model in the complex 

one, leads to a loss of 90 percent! The importance of uncertainty tends to increase with 

complexity. We also find that the solution to the complex model is more in line with 

historical policies than the solution to the simple model. 

In ongoing research, we use 'stochastic optimization in policy space' to estimate the 

value of accuracy in resource measurements and in model parameters. Such estimates 

are difficult to make without a technique of the sort we use since optimal polices 

change with the amount of measurement or model error. 
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