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Optimization has not been an important part of system dynamics thus far, and for
several good reasons: Simulation models have been sufficient to point out greater
potentials for improvement than what policy makers have been willing to embrace.
Hence presumably minor improvements of policies might have seemed of little value.
Even simple simulation results have been difficult to communicate, indicating that the
results of complicated optimization efforts would be even harder to convey. Optimi-
zation methods have not been able to capture the richness of real decision problems
characterized by simultaneous appearance of dynamics, nonlinearities and uncertain-
ties. Hence there has been uncertainty about the transferability of solutions from simple
to complex environments.

While many of these reasons will remain valid for policy analysis, there is an increas-
ing need for optimization at the more scientific end of the spectre of system dynamics
analysis: When testing behavioural assumptions with experiments, Sterman (1987),
optimal policies are required to characterize the results and to establish proper bench-
marks. Optimization is needed to get precise estimates of how rational policies change
as complexity is added. This is an approach to behavioural analysis which might have
started with Simon (1955). Furthermore, a simulation study which produces optimal
solutions is likely to gain increased validity and acceptance among decision makers and

in journals.

Analytical solutions to dynamic, nonlinear, stochastic models are hard to come by.
Numerical solutions by the use of stochastic dynamic programming require skill and
time, and is hampered by the so-called 'curse of dimensionality'. Here a method called
'stochastic optimization in policy space' is presented and tested. Basically the 1dea is to
refine the trial and error search for appropriate policies often used in simulation studies.
We start out with a policy function with unknown parameters. Then we search for the
parameter values of the policy function that maximize the criterion. In the case of

uncertainty, repeated (Monte Carlo) simulations are made to calculate the expected
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(average) criterion value. A nonlinear optimization technique is used to search for
parameter values. The idea is discussed in Polyak (1987), Ermoliev and Wets (1988)
and Walters (1986). Details and caveats are presented in Moxnes (1996).

We apply the method to seek optimal quota policies for the management of a stochastic
predator-prey system. The example is cod and capelin in the Barents Sea, two species
which can be harvested separately. There is a growing awareness of the importance of
the interconnectedness of marine species as well as the importance of the uncertainty in
our knowledge about ocean ecosystems. Thus, an effort to improve our understanding
of the management of multispecies fish stocks under uncertainty seems pertinent.
Previously Mendelssohn (1980) has characterized the solution to a much simplified
multispecies model.

We want to maximize the expected net present value ENPV of the two fisheries i=1,2.
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Profits (price p; times harvest H; minus costs c; times effort F ;:H; (x) ) are

discounted with the rate 6 and are summed over the time period 7. To get the expected

value, the average net present value over M Monte Carlo simulations are calculated.
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The resource dynamics are given by a frequently used modification of the Lotka-
Volterra equations:
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where X: is the biomass of species i at time ¢, S; is the survival after harvest, S ::X;-H;.
The challenge is to find the harvesting policies as functions of the biomass vector X,
and a policy parameter vector 8 (a vector which contains only the parameters of the

policy function).

H, = max(0, fi(X;, 6)] | 3)

The functions f; are both two dimensional interpolations between 9 grid points. Hence
the functional form is very flexible and do not impose strong restrictions on the solu-

tion. The max-function ensures that the quotas are non-negative. Nonlinear optimiza-
tion is used to search for the parameter vector 8% which maximizes the criterion ENPV.
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Finally .note that the method is not guaranteed to yield a global solution for all pro-
blems. Hence we repeat the search for 8* from different starting points for 6. This

resulting solutions also enable us to estimate the accuracy of our findings.

Figure 1 shows the optimal solution. Both diagrams show quotas on the y-axis, and
biomass of own species on the x-axis. The different types of lines (dashed, thin, and
thick) denote the biomass of the other species, see the figure text for values. The bands
between lines of the same type denote expected quota policies plus minus two standard

deviations.
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Figure 1: Expected quota policies for capelin, plus-minus two standard deviations, as a function of the
amount of capelin. Dashed lines denote 0.5 mill. tonnes of cod, thin line 2 mill. tonnes and
thick line 4 mill. tonnes.

Expected quota policies for cod, plus-minus two standard deviations, as a function of the
amount of cod. Dashed lines denote 2 mill. tonnes of capelin, thin line 8 mill. tonnes and
thick line 14 mill. tonnes.

Comparing to a solution found by stochastic dynamic programming, Brekke (1994),
our solution turns out to give a slightly higher ENPV. This indicates that the restrictions
imposed by the chosen policy function are less important than the discretizations of the

state and policy spaces required for dynamic programming.

Sensitivity tests show that the solution does not change much when the "infinite" time
horizon is reduced from 50 to 20 years or when the number of Monte Carlo runs is
reduced from 100 to 10. Due to compensating mechanisms the criterion is not very
sensitive to the exact policy values. Starting out with the optimal solution for the det-
erministic version of the model leads to. a criterion value 6 percent below the optimal
one. This indicates a considerable potential for trial and error when searching for

satisficing policies in a deterministic model.
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The effect of stochastic variation is not easily determined by trial and error. By varying
the standard deviations for the stochastic terms s‘t we find that the two-species policies

are more sensitive to stochasticity than what has been reported for single-species mo-
dels, see Clark (1985). Still the effects are modest. If the standard deviations were to be
underestimated by 50 percent, the expected loss would be about 4 percent.

By adding nonlinearities to the original model, making it more realistic, we find strong
effects on the optimal policies. Using the solution for the original model in the complex
one, leads to a loss of 90 percent! The importance of uncertainty tends to increase with
complexity. We also find that the solution to the complex model is more in line with
historical policies than the solution to the simple model.

In ongoing research, we use 'stochastic optimization in policy space' to estimate the
value of accuracy in resource measurements and in model parameters. Such estimates
are difficult to make without a technique of the sort we use since optimal polices

change with the amount of measurement or model error.
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