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ABSTRACT 
The well estabHshed theory and methodology of the assurance sciences, 
especial~y the probabilistic reliability and availability theory, is applied 
to the ·modeling of the dynamics of innovation adoption processes. In 
particular, this approach allows one to model the dynamics of the diffusion of 
innovations through complex organizational decision networks. The approach 
taken here is an analytic one. However, it provides a logical framework for 
dynamic computer aided approaches~ As the management and control of the 
dynamics of the innovatiorr c~pption is becoming increasingly important, 
obvious extensions of th:l,s ~~l?P~~~ are in the direction of optimal control 
systems concepts and . ~ppJ;;i:c;l;lti"i<i!lS· . A number of empirical examples from 
the American automopil~- '?nd:~.S-t4;!~1, 1.-~ci'ustries are discussed. 

INTRODUCTION 

In the modern world 'the •· Jnai¥ig~nt of the dynamics of the adoptions of 
innovations is becomiilg iricr;¢asingly important. There seems to be an 
intensifying replacement·· ot: old· products, processes and service systems, 
respectively, by new products, processes and service 5ystems. Numerous 
technological substitution. effects, e.g. replacing steel by aluminum, ceramics 
and plastic composites. or replacing copper by fiber optics, are creating basic 
changes in the structure of corrrnodity markets. The various political, social, 
economic and business implications of such dynamics of iimovation adoptions 
are profoundly important to any society and generate serious private and 
public sector management .concerns. In particular, there is a need to develop 
·effective or pragmatic approaches to the relevant accounting of the dynamics 
of innovation adoption.<; and their substitution effects. 

The literatUre on the models and case studies of the diffusion of innovations 
is vast; .The survey of this literature is not within the scope of this 

. presentation. The objective of this. investigation is pragmatic: How can one · 
apply the well established theory and methodology of the assurance sciences, 
e ~g. probabilistic reliability and availability theory, to the relevant 
modeling of the dynamics of adoption and diffusion of innovations even in 
rather complex organizational decision networks. If this approach is an 
·effective. one, it could become an aid for planning and decision making 
processes~ It shoUld be noted that the emphasis is on the dynamic trans.ient 
behiivio:t as distinct from the steady state analysis. · 

The mathematical foundations of the probabil,istic reliability and availability 
theory required for this presentation are adequately sumnarized, for example, 
by .Shoornan (Shooman, 1968). The application of the availability theory to the 
institutional and product life cycles has also been investigated previously 
(Jutila, 1972). The application of the availability theory to the saturation 

. trajectories over time for adoption, rejection and life cycles of innovations 
·is only an obvious and natural extension,(S. Jutila and M. Jutila, 1986). The 

· · Purpose of this· pres~tation is to indicate how this is done in a systematic 
way and how it can be applied to a mnnber of special cases. 
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ONE-WAY PROCESSES OF ADOPTION OR REJECTION OF INNOVATIONS 

The adoption or rejection of an innovation can be examined in a two-state 
framework: In State ttl the innovation is adopted and in State /12 it is 
rejected. Let S(t) be the probability that the innovation is in State /11. The 
probability that the innovation is in State /12 is then S'(t) = 1 - S(t) as a 
fnnction of time t. Using the conventional tenninology for diffusion of 
innovations, S( t) is the saturation fnnction and S' ( t) is the desaturation 
fnnction. Let r(t) be the rate of adoption and let h(t) be the rate of 
rejection as functions of time t. These rates are assumed to be empirically 
measurable and exogenously specified (in a very similar manner as failure 
rates and repair rates are rneasurab~e in reliability and availability theory). 

One-Hay Rejection Process 

Figure 1 illustrates the setting for a one-way rejection process. In this case 
the adoption rate r(t) is zero. The system is initially in State Ill at t = 0. 

h(t) 

State II 1 State II 2 

Figure 1. The rate flow graph for one-way rejection process. 

The differential equation for the saturation fnnction S(t) is as follows: 

dS(t)/dt = - h(t)S(t); S(O) = 1. (1) 

The solution to this differential equation is as follows: 

S(tjr(t)=O) = exp(-H(t)) = A(t). (2) 

H(t) is the ctnnUlative rejection fnnction and is equal to the definite 
integral of h(t) from zero to t. It is assumed that h(t) is a non-negative 
fnnction of time t. 

One-Way Adoption Process 

Figure 2 illustrates the setting for a one-way adoption process. In this case 
the rate of rejection h(t) is assumed to be zero and the system initially in 
State #2. The force of adoption r(t) is positive. The respective differential 
equation for the saturation fnnction S(t) is as follows: 

dS(t)/dt = + r(t)S'(t) = r(t)(l-S(t)); S(O) = 0. (3) 

The solution to this differential equation with R(t) being the ctnnUlative 
adoption (i.e definite integral of r(t) from zero to t) is as follows: 
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State t1 1 State 112 

Figure 2. The rate flow graph for one-way adoption process. 

S(t'ih(t)=O) = 1- exp(-R(t)) = 1- B(t); S(O) = 0. 

In a summary, one should note the following definitions: 

A(t) = S(tir(t)=O and S(0)=1) = exp(-H(t)) and 

B(t) = 1 - S(t!h(t)=O and S(O)=O) = .exp(-R(t)) 

AN EXAMPLE OF A ONE-HAY PROCESS: PURE TECHNOLOGICAL SUBSTITUTION 

(4) 

(5) 

Technological substitution is a coJTITlon phenomenon. Sometimes a new innovation 
replaces several older innovations. In many cases a single old product is 
replaced by a new product. An excellent example of this is the replac~uent of 
the old ply tires by the radial tire in North American automobile markets (S. 
Jutila and M. Jutila, 1986). This kind of a pure substitution process is 
frequently observed. Let y be the new innovation and let x be the old 
innovation. The adoption saturation trajectory S(t) of the new innovation is 
then Y 

S(t)y = 1 - exp(-R(t)) ; S(O) = 0 initially at t = 0. y 

where R(t) is the cumulative 'adoption function of the new innovation. But it 
is also the cumulative rejection function of the old innovation. The 
saturation trajectory of the old innovation will then collapse as follows: 

S(t)x = exp(-R(t)); S(O)x = 1 initially at t = 0. 

Figure 3 is an illustration of a typical symmetry obtained in such cases. 

t 

Figure 3. An illustration of the symmetry of the pure substitution. 
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In the pure substitution processes the ct~ulative adoption function of the,new 
innovation is equal to the cumulative rejection function of the old 
innovation. 

THE FORCE OF ADOPTION AND THE FORCE OF REJECTION 

The forces of adoption and rejection are defined respectively as follows: 

Force of adoption has the magnitude r(t) ( a non-negative function of 
time t ) and a direction from State #2 of rejection to State # 1 of 
adoption. 

Force of rejection has the magpitude h(t) ( a non~negative function of 
time t ) and a direction from State #1 of adoption to State # 2 of 
rejection. 

For the purposes of a proper empirical identification of these forces, the 
identification of the appropriate direction of the force is the first step. 
Then one identifies the behavior of the magnitude over time. Figure 4 
illustrates a possible behavior of the magnitude of a force. 

r(t) 
or 

h(t) 

Figure 4. Possible behavior of the magnitude of a force. 

t 

The magnitude of the force may take several different characteristics' era by 
era over time. It may go to infinity in a finite time t, an so on. 

In general, for the practical modeling purposes, one should note the 
following: 

If the saturation function S(t) is monotonic increasing and if it goes 
to one as the time t goes to infinity, then this process can be modeled 
as a one-way adoption process. 

If the saturation function S(t) is monotonic decreasing and if it goes 
to zero as the time t approaches infinity, then this process can be 
modeled as a one-way rejection process. 

It should be noted that the trajectories of S(t) may not be and, in fact,often 
are not S-shaped. Nor are they necessarily monotonic. 

If the saturation function S(t) is not monotonic or if it does go 
neither to one nor to zero,or both, then this process can be modeled by 
a tw·o-way adoption-rejection process. 

The two-way process will be discussed subsequently. Before this, some added 
concepts for one-way processes are introduced. 
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ADPEP CONCEPIS FOR 0$-WAY . PROCESSES 

Per Figure 1 for a· rejection process or Figure 2 for an adoption process one 
can define the probability density functions, respectively, as g( t) and f( t) 
in the following manner: · 

g(t) = d(1-S(t))/dt = h(t)exp(-H(t)) = h(t)A(t)· 

f(t) = dS(t)/dt = r(t)exp(-R(t)) = r(t)B(t) • 

(6) 

The mean time to rejection (MTTR) and the mean time to adoption (MTTA) are, 
respectively, as follows: 

00 00 
MITR = / t g(t)dt = f A(t)dt , and 

0 0 
00 00 

MTTA = f t f(t)dt = f B(t)dt 
0 0 

The respective variances are! 

00 2 
VarA(t) = f (t - MITR) g(t)dt and 

0 

00 2 
VarB(t) = / (t - M.TIA) f(t)dt. 

0 - . 

These definitions will be referred to in later discussions. 

The Constant Force Case 

Consider a one-way adoption process with a constant force r(t) = b. Then 

f(t) = b exp(-bt) 

MITA = ;L/b , and 

VarB(t) = 1/b2 

Linearly Increasing Force 

Let r(t) = b2t. Then 

(exponential distribution) , 

S(t) = 1 - exp(-o.s b2t), 
2 2 f(t) = b t exp(-0,5 b t), (Rayleigh distribution) , 

M'ITA = \;fii2 ( 1 /b) , and 

VarB(t) = ( 1 - nf/4)(2/b2) 

(7) 

(8) 
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A Case of Saturation in a Finite Time 

In many cases innovation adoption saturates to a hundred percent level in a 
finite time T. A si~ple model is one where 

r(t) = K/(T-t) where K is a dimensionless constant and 0 < t < T. Then 

f(t) (K/T<)(T-t)K-l, 

R(t) ln [T/ (T-t) ]K , 

S(t) 1 - [(T-t)/T]K , and 

MTTA = T/(K + 1). 

The parameter K controls the shape of the adoption trajectory. If K = 1, the 
adoption trajectory is linear. For K > 1 the trajectory is concave from below, 
the more so the larger K is. For 0 < K < 1 the trajectory becomes increasingly 
convex from below as K approaches zero. 

The above two parameter model can be expanded to a three parameter model as 
follows: 

r(t) = (K/T)[l -(t/T)]-n ; n > 1, K > 0, T > 0, 0 ~ t ~ T, 

f(t) (K/T)[l-(t/T)]-nexp[-(K~-l/(n-l))((T-t)l-n- Tl-n)], 

R( t) 

S(t) 

_n-1 1-n 1-n · 
(K/(n-l))T [(T-t) - T ] , arid 

_n-1 1-n 
1 - exp[-(KL /(n-l))((T-t) -

TW(}-WAY PROCESSES OF AOOPTION, REJECTION AND LIFE CYCLES. OF INNOV~iPNS:.: 

In many cases the trajectories of adoption, rejection ~r l#.e ~ycies · ~f, 
innovations are not monotonic nor do they reach necessarily a ··level ·of omf 
hundred or zero percent. The trajectories may exhibit ups and · downs 
indicating, respectively, a predominance of a force of adoption or a force of 
rejection. For example, the trajectories of adoption, rejection or life cycles 
of innovations in American automobile industry often exhibit strong ups a:nd 
downs corresponding to business cycles and dislocations such as the 1973-75 
and 1979-82 oil crises. They are also affected by changes in consumer tastes 
and the penetration of Japanese and European cars into North American markets 
(S. Jutila and M. Jutila, 1986). Even after considerable smoothing these 
trajectories st;.;ill exhibit cyclical ups and downs and deviations from the 
"classical" S-shaped forms. Similar comments apply also to the 
adoption, rejection and life cycles in American steel industry. The interplay 
between technical substitutions of open hearth, basic oxygen and electric 
melting are complex involving regional variations in sources of and types of 
raw materials, types and proximity of markets,. nature of competition, and a 
number of economic;, considerations relating to capital investments. (Kie, 1986). 
Thus the forces of adoption and rejection tend to be complex rather than 
accovntable by a simple explanatory process or model. 



280 THE 1987 INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCITY. CHINA 

In. vi~w of th~ above conments, it is rather clear that many adoption, 
reJeCtJ.on or hfe cycle processes result fr-om an interplay of a force of 
adoption with a force of rejection. This is a two-way process. The rate flow 

h(t) 

State Ill State /12 

r(t) 

Figure 5. The rate flow graph for two-way process. 

graph for the two-way process is given in Figure 5. The respective 
differential equation for the saturation or life cycle of the innovation is as 
follows: 

dS(t)/dt = - h(t) S(t) + r(t) ( 1 - S(t)) or 

dS(t)/dt + [ h(t) + r(t) ] S(t) = r(t) 

with the initial condition S(O) = S
0

, 0 ~ S
0 

~ 1. 

(9) 

This is a first order linear differential equation with non-constant 
coefficient$. It can be readily solved by the introduction of the appropriate 
integrating factor. Notillg definitions of A{t) and B(t) in Equations 5, the 
solution to the above differential equation is 

t 
S(t) = A(t)B(t.)[ f (r(x)/A(x)B(x)) dx + S

0 
l . 

0 
(10). 

lf r(t) = 0 apd S • 1, then the solution in Equation 10 reduces to that given 
by i'quation 2. If b(l:) • 0 and S = 0, then the solution in Equation 10 is 
that specified by Equation 4. rfG tile forces of adoption and rejection are 
constant, i.e. if h(t) = a and r(t) = b, and if S

0 
= 0, then 

S(t) = [b/(a~b)}[ 1- exp(-(a+b)t)]. (11) 

!f a ) 0 and b .> 0 the saturation function S(t) will level off at b/(a+b) 
which is less then 100 %. 

Equation 10 provides the basis for a computer aided simulator that generates 
trajectoties S(t) for various pairs of forces of adoption and rejection. 
Figure 6 gives the flow diagram of the simulator. This allows one to 
experiment what ldnds of forces would generate trajectories, for .example, to 
,match a "real world" situation or trajectory. One learns, with some trials and 
exrO£s, rather quickly how to control the shapes of S(t) by some appropriate 
choices of r(t) and h(t). In many cases the "classical" S-shaped adoption or 
life cycle trajectories can be generated by assuming some fairly simple forms 
for the forces of adoption or rejection. For example, one could try the 
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SELECT A FORCE 
OF REJECTION 

h(t) 

INTEGRATE TO GET 

H(t) 

INVESTIGATION OF THE 
DYNAHICS OF Al'\J ADOPTION, 
REJECTION OR LIFE CYCLE 
PROCESS OR A SIMULATION 
OF A "REAL LIFE" CASE 
STUDY 

SELECT A FORCE 
OF ADOPTION 

r(t) 

INTEGRATE TO GET 

R(t) 

DIVIDE: 

r(t}/A(t)B(t) 

t lN'IEGRATE: 
j((~(x}/A(x)B(x)jdx 

() 

MULTIPLY: 
S(t) = 

t 
A(t)B(t){ f (r(x)/A(x)B{x))dx -+ S

0
) 

0 

SELECT 
INITIAL 
v.AU.JE / s

0 

NO 

PLOT S(t),h(t),r(t) 
OOCUHENT RESULTS, 
INTERPRETE RESULTS 
ETC. 

Figure 6. 'lhe flow diagram of the trajectory sinulator. 
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1.0 

------...:a:!-.:=~0 .. 1 events per year 
S(t) 

0.5 

b = 0.5 everits per year 

0.0 
0 4 8 12 years 

CASE A: h(t) = a2 t and r(t) = b 

l.OT---------?-----~~----------~ 
a = 0.1 year-1 

S(t) 

0.5 

-1 
b = 0.5 year 

0.0 ~~------------_.------~~--~ 
0 4 8 12 years 

CASE B: h(t) = a4 t 3 
and r(t) = b3 

t
2 

Figure 7. Examples of simulator outputs for life cycles. 
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following relative!~ simple types of forces for rejection and adoption: 

and (12) 

These forces are associated with the Weibull probability density functions ·of 
the respective one-way processes: 

n n-1 n n m m 1 
f(t) =a t exp[-(a /n)t )] and g(t) = b t- exp[-(bm/m)tm)]. (13) 

a and b are characteristic frequencies of the rejection an£1 adoption 
processes, respectively,given in units of events per year or year . n and m 
are dimensionless power constants. Figure 7 provides examples of simulator 
outputs for these types of forces. In Case A a constant force of adoption is · 
overtaken by a linearly increasing force of rejection. As its characteristic 
frequency a increases, the life cycle is respectively increasingly suppressed. 
In Case B both forces increase over time, but again the force of rejection is 
overtaking the force of adoption. Figure 8 illustrates the dynamic modeling of 
the ndoption trajectories of the delayed wiper controls for the General Hotors · 
luxury car Corvette, medium-line car Camara, and the low-cost line Chevette. 

100 

90 

eo 

70 

60 

I 
~0 

40 
M 

30 

20 

10 

0 
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a CORVETTE 
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r(t) • 0.2S2 ace. evenca/yr. 
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83 

o ·~·HE'/ETTE 

Figure 8. EXamples of modeling adoption trajectories for General :1o tors cars. 
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For Corvette the adoption is a one-way process modeled with r(t) = 0.928 t0 · 6 

and reaching near saturation in about three years. For Camaro the adoption 
levels off at little over forty perce~t of the product line. This case can be 
modeled with Equation 11 where r(t) = 0.252 acceptance or adoption events per 
year and h(t) = 0.348 rejection events per year. For Chevette the adoption 
experiences a life cycle reaching a maximum of only few percer1t of the product 
line segment. Typically in the traditional American automobile markets the 
luxury models lead in the adoption of new innovations as options. Then medium 
line cars follow. The last and least adoption takes place thereafter in the 
low cost automobile product lines. It should be noted here that the decision 
to adopt wiper controls is product line specific and does not involve complex 
corporate level hierarchical decision making procedures. This is reflected by 
tl1e lack of the "classical" S-shaped form of the adoption trajectories. In a 
contrast, the decisiorlS to adopt automatic transmission, power steering, air 
conditioning, disc brakes and even radial tires across product lines would 
involve more complex hierarchical corporate level decision making procedures. 
This would increase the S-shaped form of the adoption trajectories. It would 
also increase the mean time MITA to adoption as well as the variance Var B. t) 
of the time t to adoption. Figure 9 illustrates these tendencies. · 
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Figure 9. Examples of adoption trajectories for U.S. passenger cars. 
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INNOVATION DIFFUSION PROCESSES IN INSTITIITIONAL AND ORGANIZATIONAL NETI\IOIU<S 

Innovation diffusion processes take place in complex institutional and 
organizational decision networks. A typical illustration of a decision and 
implementation network is the so-called PERT flow graph associated with a 
project e.g. a development program for a new product or an implementation 
program for a new process or a service system. Such a network involves 
typically several parallel and sequential tasks and stages. Each task or stage 
requires certain amount of time for implementation. The usual practice is to 
identify the so-called critical path and the tasks or stages along it. As the 
number of tasks along the critical path increases, so do typically the 
expected time for the completion of the project and its variance. The 
probability density function of the time for the completion of the project 
becomes also, respectively, increasingly bell-shaped and the associated 
cumulative probability function becomes increasingly S-shaped. 

In real world situations innovation diffusion processes may involve several 
institutional actors and organizations. For example in American automobile· 
industry an implementation of a new innovation may involve a complex national 
and international supplier network. It may involve governmental institutions 
in regards to approvals relating to highway safety, pollution standards, and 
energy efficiency. It might involve interruptions generated by labor­
management disputes and strikes. On the demand side there can be also complex 
decision stages, e.g. stages associated with wholesaling, retailing, financial 
services for automobile buyers, insurance, licensing, and, of course, the 
stages involved in buyer behavior. All these are influenced by rational 
expectations for either optimistic or pessimistic future trends. For example, 
the buyer behavior is sensitive to employment and disposable income 
expectations, and, respectively, the sellers must react by not being caught 
with an undesirable inventory situation. The U.S. automobile industry is very 
sensitive to business cycles. The slumps of 53-54, 57-58, 60-61, 69-70, 73-75, 
and 79-81 show up strongly in car sales and influence the adoption 
trajectories of all major innovations, as seen in Figure 9 even after the data 
used in figure was.smoothed by a three year moving average method. 

It is rather obvious that the dynamics of an innovation diffusion process, and 
specifically the shape of the trajectory S(t), is strongly influenced by two 
major factors: 1) the number of decision stages along the "critical path" of 
the relevant decision network, and 2) the magnitudes of the reaction times 
associated, respectively, with each and all of these decision stages. Figure 9 
illustrates a tendency of the compression of the time to adoption and its 
variance from 1950 to 1'984 in U.S. automobile industry. This may reflect, at 
least in part, improvement in organization (e.g. reduction in the number of 
stages in the decision making process), improvement in information flows and 
colilllUI1ication (e. g. reduction in the response time at each stage of decision 
making), and improved reliability of the decision making processes. Thus there 
is a possible trend toward more accurate and responsive decision systems. Part 
of this tendency is forced by foreign competition (S.Jutila and H. Jutila, 
1986). 

The points made above, i.e. the influence of the number of decision stages and 
their respective response times upon the shape of an adoption trajectory, can 
be illustrated in terms of a simple and well-known one-way Narkov process. 
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Figure 10 illustrates the rate flow graph of an n+ 1 state one-way Markov 
process. For a one-way two-state adoption process described by Figure 2 and 
Equation 4 the state 0 corresponds to the initial.state of rejection, State 112 
with the respective state probability S (t) having an initial condition 
S (O) = 1, i.e. the system is initially in° the state of rejection. It is now 
agstnned that there are k = 1,2,-3, .••• n-1 tasks (states) to be realized 
sequentially before the final task n, i.e. the full adoption of an innovation, 
is accomplished. The state n is then State Ill of adoption in Figure 2, and the 
respective state probability S (t) is then the adoption trajectory or 
saturation function of the innoUation adoption process. The decision k is 
defined as a move from the state k-1 to the state k, k = 1,2,3, ... n. Thus 
there are n sequential decisions to be made corresponding, respectively, to 
the n tasks to be realized. It is further asstnned that the characteristic 
transfer rate b, or the characteristic reaction time T = 1/b, for all the n 
decisions has the same value. 

State /12 of State .. #1 of 
Rejection~.~./ '-· ~-/ ..........__ ~- ~option 
S

0
(t) 6 V Y . . . . Y ~ . . . . V Y ~ Sn(t) 

0 1 2 k-1 k n~2 n-1 n 

Figure 10. The rate flow graph for a simple case of n decisions. 

The differential eguations for the state probabilities ~(t) are as follows: 

dS
0
(t)/dt = -bS

0
(t) S

0
(0) = 1, 

d~(t)/dt = bSk_1(t)- b~(t) ~(0) = 0 fork= 1,2,3, ••• n-1, 

dS (t)/dt = bS ·.1(t) ; Sn(O) = 0 • 
n .n-

The solutions for the state probabilities are readily obtained by standard 
Laplace transform teclmiques. The results for Figure 2, Equation 4 and 
Equations 6, 7 and 8 are as follows: 

n-1 

S(t) = Si-t(t) = 1-k (1/k!)(t/T)k exp(-t/T) , (14) 

· n-1 

B(t) =tO (1/k!)(t/T)kexp(-t/T), 

f(t) = [(t/T)n-l/(n-1)!](1/T) exp(-t/T) (Gamma function) , 

MTTA = nT , 
2 

VarB(t) = nT , and n-1 . 

r( t) = f( t) /B( t) = (1/T)( t/T)"-
1! [ (n-1)! {.Q (1/k!) ( t/Th 
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1.0 ---- -- ------------ -- --- ----
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Figure 11. The effect of reduced response time and increased number of deci-
sion levels on the shape of the adoption trajectory. 

The Markov model used here has the property that the probability -of transition 
from the state k-1 to the state k, k = 1,2,3, ••• n, is independent of the 
transition probabilities of the previous moves. Not only is MTTA the sum of 
the response times of all the decisions. The variance is also the sum of the 
variances of all the decisions in the chain. As the number n of decisions is 
increased, the probability density function f(t) (Gamma function) will go to a 
normal distribution. Thus the adoption trajectory S( t) will become 
increasingly S-shaped as the number n of decisions is increased. 

The characteristic reaction time T of a decision plays a very important role. 
This can be illustrated by a simple example. Assume MTTA is kept fixed at one 
year while the number n of decision levels is increased to six. Let T = 1 
year be the characteristic response time for n = 1 and let T= 1/6 years for n 
= 6. The variance for n = 1 is one year squared. For n = 6 it is 1/6 years 
squared. Figure 11 illustrates this comparison. The risk associated with the 
time to adoption as measured by variance is less for n = 6 with T = 1/6 years 
than for n = 1 with T = 1 year. For n = 6 the adoption trajectory is already 
quite S-shaped. The number of decision levels and the response time of each 
decision level are important control parameters in the design of adoption 
trajectories from the point of view of planning and management of adoption or 
rejection of irmovations. ·· ..... · 
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For a one-way two-state rejection process (Figure 1 and Equations 2,6,7 and 8) 
the state 0 in Figure 11 is State #1 of adoption with an initial condition 
given by S (0) = 1. In Equations 14 S(t), B(t), f(t), MTTA, VarB(t) and r(t) 
are replacgd for the rejection process, respectively, by 1-S(t), A(t), g(t), 
~ITTR, VarA(t) and h(t). 

The above model can be generalized. Consider a Markov process with an initial 
(starting) state 0 with a state probability S (t), S (O) = 1,with only 
outgoing rate flows connecting to various stat~s in ~ Markov network of 
a finite number of transient states (tasks) interconnected by various rate 
flows (decisions). There is a final state n representing the final adoption of 
the innovation. Its state probability is S ( t). The initial conditions for all 
the states, except the initial state 0, ~re zero. The final state n is the 
only absorbing state in the system, receiving rate flows from various other 
states in the system. One can always find a solution for the state 
probabilities of such a system, including S (t). Once S (t) is determined, 
then also the respective probability density function and Phe respective force 
can be determined for either a rejection (Figure 1) or adoption (Figure 2) 
process. If a rejection process or an adoption process ends up, respectively, 
in a state of complete rejection or adoption, it is necessary that the 
cumulative rejection function H(t) and the cumulative adoption function R(t) 
go to infinity in finite time t or as t approaches infinity. This condition is 
satisfied by the above type of a Markov process. 

One can further assign one Markov process of the above type for the task­
decision network of an adoption process specifying thereby an adoption force 
r(t). Another Markov process could be assigned for a rejection task-decision 
network specifying thereby a force of rejection h(t). The two Markov processes 
with the opposing forces r(t) and h(t) can be then combined to a two-way two­
state process illustrated in Figure 5 and specified by Equation 10. This way 
the dynamic modeling approach via network modeling of adoption and rejection 
is extended to the Markov network modeling of life cycles. Thus it is possible 
to structure out for planning and control purposes how the adoption and 
rejection task-decision networks should be designed in order to generate some 
desired trajectory characteristics of an innovation life cycle. 

While the Markov models of the above type can be always "mapped" into the one­
way or two-way processes illustrated in Figures 1, 2 and 5, the converse is 
not necessarily true. That is, there may exist forces r(t) anq/or h(t) (see 
Figure 4) to which there are no corresponding Markov network models. External 
effects often cause dislocations in otherwise planned and controlled adoption 
and rejection processes. In U.S. markets investment goods and consumer durable 
goods are typically sensitive to business cycles. Such external impacts can 
cause changes in the parameter values of a task-decision network or can even 
cause minor or major restructuring of such networks. These kinds of reaction 
and adaptation effects cannot be captured by assuming an everlasting fixed 
Markov network structure. While the Markov network approach helps to structure 
out how particular task-decision networks influence the trajectories of 
adoption, rejection and life cycles of innovations, it may not be sufficient 
for taking into account, both, the internal firm or industry level as well as 
broader overall economy level structural changes. In the general context of 
the rejection, adoption and life cycle processes per Figures 1, 2 and 5 it is 
possible to introduce a variety of dislocating forces. 
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COMMENTS ON DISLOCATIONS OF INNOVATION TRAJECTORIES 

It is not unusual that innovation trajectories deviate from the planned or 
expected ones. For gradual and mild deviations corrective adaptations may 
provide sufficient management control. However, often internal events, e.g., 
strikes or sudden management changes, and/or external events, e.g., recessions, 
political upheavals or natural disasters, can generate rather rapid and 
uncontrollable dislocations of the innovation trajectories. It is important to 
identify what kinds of forces or combinations of forces are associated with a 
dislocation phenomenon. Here an interruption is defined as an event that quite 
suddenly and unexpectedly changes the force operative in a one-way two-state 
process. An interference is defined as an event that brings the opposing force 
suddenly and unexpectedly to a play in an initially assumed one-way process. 
A dislocation process may involve a combination of an interruption and an 
interference. Figure 12 provides a simple illustration for these three cases. 

Consider a simple planned or expected adoption trajectory S( t) = l- exp( -t) 
with a force of adoption r(t) = l event per year. In Figure 12 Case A 
illustrates an interruption where r(t) = 0 from t = 1 year to t = 1.5 years. 
This causes a horizontal dislocation of the adoption trajectory. Case B 
illustrates an interference where an otherwise absent force of rejection 
appears from t = 1 year to t = 1.5 years with a magnitude h(t) = 1 event per 
year. In this particular case, the dislocation of the trajectory is down and 
right. In Case C there is the combination of the above interruption and 
interference causing an even deeper dislocation to the down and right. 

The identification of the forces present in a dislocation phenomenon is not 
without problems. The simulator (Figure 6) can be used to experiment what 
kinds of forces may be associated with an observed trajectory and its 
dislocations. The question arises, is the situation unique, or can the same 
shape of a trajectory be generated by different combinations of forces. This 
is a potential identification problem. For the existence of this problem a 
special case of non-uniqueness is sufficient: Consider Cases A and B. Case A 
is clear. An interruption in this case generates a horizontal dislocation of 
the adoption trajectory. Can an interference in Case B also generate a 
horizontal dislocation similar to Case A? The answer is yes. Such a special 
case exists. Let r(t) = b and h(t) = a with an initial condition S

0 
in 

Equation 10. This is the situation of Case B: 

S(t') = [b/(a~·b)] + [S
0
-(b/(a+b))Jexp(-(a+b)t') where t' = 0 at t = t 0 • 

t is the moment of time at which an interference with a force h(t) = a events 
p~r year is introduced. In the special case where S = b/(a+b) the trajectory 
remains horizontal with the magnitude S . For this cgse one cannot deduct from 
the shape of the trajectory uniquely wh~ther there has been an interruption or 
an interfer·ence. 

In reliability and maintainability engineering failure and repair rates are 
obtained experimentally as the prime source of information. In actuarial and 
insurance ~usiness similarly the forces of mortality for p_eople in various 
living environmentally are obtained experimentally. In both cases this 
information is esse:1tial for achieving an optimal performance. The same must 
be done for an optimal management of innovations. 
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Figure 12. Sinlple examples of dislocation effects on adoption trajectories. 
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CHANNELING OF INNOVATIONS: APPLICATIONS OF COMBINATORIAL PROBABILITI THEORY 

Typically an adoption or a rejection goes through a network of channels before 
a final adoption is realized. For example, a new product may have to be 
channeled first from the manufacturer to the wholesaler, then from the 
wholesaler to the retailer, and finally from the retailer to the customer. 
This would be a serial or sequential channeling network. Another example is 
one where a new product is channeled to the target market segment through a 
channeling network with several parallel channels, e.g. via channel of direct 
mail marketing in parallel with a number of independent agents channeling the 
product, and perhaps, the manufacturer's own sales force doing the job also in 
parallel. For the subsequent discussion it is assumed that the trajectories 
~(t) associated with the channel k, k = 1,2,3, .•• n, are mutually 
independent probabilities for the n distinct channels. 

Parallel Channeling 

The trajectory S(t) for a network of n parallel channels, noting Equations 5, 
is as follows: 

n 
s(t) = 1 - n (1-~(t)) 

k=1 

n 
1 - n l1c(t) for adoption, and 

k=1 
n 

1 - n (1-Ak(t)) for rejection. 
k=l 

(15) 

As an example, let Sk(t) = 1 - exp(-bt) be the adoption trajectory for all the 
n channels in the parallel channeling network. Then S(t) = 1 - exp(-nbt) with 
f(t) = nb exp(-nbt) and r(t) = nb. Thus the force of adoption is reinforced n­
fold over that of a single channel. 

Serial Channeling 

The trajectory S(t) a network of n channels in series, noting Equations 5, is 
as follows: 

n n 
S(t) = TT Sk{t) = n (1-B (t)) for adoption, and 

k~l k=1 k (16) 

n 
= n Ak(t) for rejection. 

k=l 

As an ex8IJrole, let ~(t) = exp( -at) be the rejection trajectory for all the n 
channels ... Then the torce of rejection, a, for a single channel is reinforced 
to a force of rejection na for the serial channeling network with n channels. 

Composite' Channeling 

Equations 15 and 16 can be used to find trajectories for composite channeling 
networks, i.e. networks with various parallel and serial sub-structures. 
Figure 13 illustrates the probability flow network for a simple composite 
case. In this case the parallel rule is applied to s1 (t) and s2 (t). Then 
serial rule is applied with s3(t), and finally parallel !:ule with 84(t). This 
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Figure 13. An example of a composite channeling network. 

generates the following trajectory S(t) for this composite channeling network: 

S(t) = 1- (1-S4(t))[1-S3(t)(1-(l-S2(t))(1-s1 (t)))] 

If the adoption trajectory would be Sk ( t) = 1 - exp( -bt) for the four 
channels, then 

S(t) = 1-[exp(-2bt)+exp(-3bt)-exp(-4bt)] 

m1d the force of adoption would be 

r(t) = b[2+3exp(-bt)-4exp(-2bt)]/[1+exp(-bt)-exp(-2bt)] 

The combinatorial probability can be expanded to the cases where the channel 
"trajectories are not necessarily mutually independent probabilities (Shooman, 
1968). 

AN OVERVIEW 

The previously mentioned concepts and methods can be combined in a variety of 
ways for dynamic modeling of adoption, rejection and life cycles of 
innovations. For example, the modeling of an adoption process may start with 
the modeling of a set of channels with a respective set of Markov task­
decision networks. Then the channels are combined into an appropriate 
channeling network. Then its trajectory and the respective force of adoption 
are computed. At this point one might introduce a set of interruptions or 
interferences treated as exogenous effects superimposing forces of adoption 
and/or rejection upon the previous force of adoption. Then one could, for 
example, by using the simulator illustrated in Figure 6, compute the overall 
trajectory involving all the above structural considerations and effects. It 
is quite obvious that this type of a modeling effort could benefit greatly 
from computer aided approaches, such as the utilization of discrete and 
continuous system modeling and simulation programs, e. g. IBM CSMP, DYNAMO, 
SIMSCRIPr, GASP, and SIMULA. It should be noted that, although the previous 
discussions have been in the framework of continuous systems, they could be 
also formulated in the framework of discrete systems. 

CONCLUDING REMARKS 

The main goal of this presentation was to investigate how to apply the 
concepts and methods of the well-established assurance and actuarial sciences, 
eapecially probabilistic reliability and,availability theory and practice, to 
the dynamic modeling of adoption, rejection and life cycles of innovations. 
This is a first step leading to several other directions of investigations. 
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For example, there remains the crucial question how to empirically identify 
and measure the forces of adoption and rejection associated with an innovation 
process. In an other direction, the economics of innovation processes must be 
brought into the modeling process. This is necessary in order to introduce the 
concepts of optimality and optimal control so necessary for proper management 
of innovation processes. Yet in another direction, innovation processes take 
place in structurally and institutionally changing social environments. Thus 
one should investigate various adaptive approaches to the modeling and 
management of innovation processes. The impacts of new innovations that also 
may replace old innovations may have complex impacts upon society, e.g., the 
trade-off between automation and employment. Thus the dimension of "Technology 
Assessment" needs to be investigated as it does not only involve the economic 
but also social and political factors. 
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