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Many System Dynamics researchers have found that decision-makers have difficulties in controlling 
System Dynamics models which represent complex social reality. This means that heuristics 
employed by decision-makers are not appropriate for controlling dynamic social problems. As 
alternative ways for understanding and controlling System Dynamics models, various mathematical 
mehtods have been suggested. 

Some simulation-based experiments demonstrated the possiblity of decision-makers' learing ability. 
For instance, the experiment performed by Sterman showed that game players' performance was 
improved slowly as their experiences are accumulated. The slow learning process is often regarded 
as indicating the limitation of human intelligence. On the contrary, it may be interpreted as 
indicating a potential power of human intelligence or heuristics. 

In previous studies, decision-makers' heuristics are formulated in simple decision rules. Such decision 
rules have failed to incorporate the learngin ability of decision-makers. To experiment the learing 
ability of decision-makers, this study replaces decision- maker with a neural network model. The 
neural networks are recognized as a representative of human intelligence by many students in 
artificial intelligence. In this study, neural network heuristics are applied to two System Dynamics 
models; Meadows's commodity cycle ( 1969) and Sterman's model of the Kondratiev cycle, or long 
wave (1985). Neural networks model have deomonstrated a surprising performance in learning and 
pattern recognition. 

In addition to neural network applications, this study demonstrated technical feasibilities in ffiM 
environments using Smalltalk. 
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Neural Network Heuristics for Controlling System Dynamics Models 

Recently, System Dynamics researchers have found that human decision makers ha1 
difficulties in controlling System Dynamics models which represent complex social reality. Th 
means that heuristics employed by decision-makers are not appropriate for controlling 
understanding dynamic social problems. As alternative ways for understanding and controllir 
System Dynamics models, various mathematical"methods have been suggested (Coyle 1985; Macec 
1989; Ozveren & Sterman 1989; Franco 1990). 

Simulation-based experiments, however, demonstrated the possibility· of decision-makeJ 
learning ability. For instance, the experiment performed by Sterman showed that game playe1 
performance was improved slowly as their experiences are acumulated. The slow learning process 
often regarded as indicating the limitation of human intelligence. On the contrary, it may 1 
interpreted as indicating a potential power of human intelligence or heuristics. The learning proce 
of decision-maker, even very slow, is worth studying. 

In previous studies, decision makers' heuristics are formulated in simple decision rul 
(Sterman 1989; Morecroft 1988 ). Such decision rules have failed to incorporate the learning ability 
decision-makers. As Sterman pointed, "the primary difference between the model and tl 
experimental results is the fact that many of the players began to learn how to control the system 
the game progressed (Sterman 1989)." 

To experiment the learning ability of decision-makers, this study replaces decision-makers wi 
a neural network model. Neural networks are recognized as a representative of human intelligence I 
many students in artificial intelligence. That is why some researchers call nerual networks as natu1 
intelligence (Caudill & Butler 1990). Neural network models have shown a suprising performance 
learning and pattern recognition problems (Rumelhart & McClelland 1986; Burke & lgnizio 19S 
Salchenberger et al.1992). 

In this study. neural network heuristics are applied to two System Dynamics models; Meadov 
commodity cycle ( 1970) and Sterman's model of the Kondratieff cycle, or long wave (Rasmussen 
al.1985). The main purpose of this study is to apply neural network heuristics for controlling Syste 
Dynamics modeb. and to discuss model behavior. Furthermore, this study was done within IB 
environments using Smalltalk. That is. this study demonstrated technical feasibilities which is r 
available in STELLA. 

1. Policy making process and neural networks model 

In this study. it is assumed that a task of a policy maker can be divided into two objects. First 
policy maker should maintam the value of target variables within a desirable level. Second, he shm 
eliminate the fluctuating beha\ wr of the target variables. 

Previou~ studies in S.l> 'IKlet~ have paid more attention on the second object. We want 
focus on the first object in th1' paper. because it provides a rather straight problem for poicy mak1 
to solve and it ~eems to be more conw .. tcnt with the real task to which most policy makers ; 
accustomed. 

In general. a policy maker cannot control the target variable directly. For example, econon 
policy maker~ cannot chan~t· tht· amount of private investment. A policy maker must change 1 

value of a target variable md1re..:tl~; by mcreasing or decreasing a tax rate. From the viewpoint o 
policy maker. variables in S.D. model may be classified as signal variables, control variables a 
target variables. 

Policy makers are expected to maintain a value of a target variable at a desired level. 
control variable is a place where a policy maker interrupt to achieve his policy goal. He decides 1 

value of a control variable h~ watchmg si!;nal variables which provide him informations ab1 
changing states of the policy context. The bounded rationality of a policy maker permits onl~ 
limited number of variables to be processed for determining policies (Simon 1978). In this study 
have used only a limited number of variables as signal variables. 
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·of course, a policy maker may be unable to decide the value of a control variable, because a 
control variable may be dependent on lots of another variables which are beyond his control. In 
theses situations, a policy maker cannot determine the value of a control variable, he can only change 
it toward his intention. 

The process used for determining or affecting the value of a control variable by watching 
signal variables can be defined as a decision function (Forrester 1961). A traditional trial-and-error 
heuristics for reducing a gap between the current state and the desired state could be classified as two 
kinds. 

First, a gap between the current state and the dsired state can be reduced by changing the 
output value of a decision function with feedbacks about the error (Richardson 1991). This kind of 
trial-and-error method is usually imbeded within the decision function itself. Changing only the 
output of a decision function according to errors, a decision function itself is not modified and so 
learning in its strict sense cannot be occurred. 

Second, the trial-and-error principles may be operated on the decision function itself. That is, 
the parameter or structure of a decision function is changed according to the previous error. This 
process means the learning ability of decision-makers. In fact, these kinds of trial-and-error are what 
neural network models are expected to perform. In particular, the trial-and-error method is used 
extensively by the backpropagation models which are one of the most frequently used neural network 
models. For this reason, we use a backpropagation network as our experimental policy makers. 

2. Backpropagation Networks and Its Heuristics 

A common backpropagation network is composed of input neurons, hidden neurons and output 
neurons. These three layers of neurons are hierachically related with each other by weighted 
connections which represent strengths of relations. Each neuron has its activation level. Each 
neuron's activation level is propagated toward other neurons in proportion to the weight attachted to 
each connections (Freeman & Skapura 1992). 

Figure 1 shows a common backpropagation model composed of three input neurons, two 
hidden neurons and one output neuron. Activation levels of input neurons are determined by input 
patterns provided from the environment. In S.D. model, activation levels of input neurons are 
determined by signal variables. In other words, values of signal variables are inputs to the 
backpropagation network. Activation levels of input neurons are propagated to hidden neurons, and 
the activation levels of hidden neurons are propagated to an output neuron. In this study, the 
activation level of an output neuron means the amount by which a policy maker intends to change the 
value of a control variable. 

OulputNII\Ifon 

HiddenHwrans 

lnputNmaru 

< Figure I> Back propagation Model 

~ackpropagation network learns from the error of an output neuron. The output error is a 
difference between the activation level of an output neuron and the desired level of an output neuron. 
Learning in neural networks means the change of connection weights according to the error 
(Rumelhart, Hinton & Williams 1986; Stone 1986). At first, connection weights between hidden 
neurons and an output neuron are changed according to the output error. And the output error is back 
propagated to determine the error of hidden neurons. The error of hidden neurons are computed by 
considering the activation level of hidden neurons and connection weights between hidden neurons 
and the output neuron. After determining all errors of hidden neurons, connection weights between 
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hidden neurons and input neurons are changed. Repeating these process, a backpropagation networl 
learns complex and nonlinear input-output patterns. 

Unfortunately however, a backpropagation network cannot be directly used within a S.D 
model. The activation level of an output neuron represents the amount of a policy that a neura 
network as a policy maker exerts on a control variable. For taking place a learning process, a desire1 
activation level of an output neuron which means the desired value of a control variable should b 
provided each time. But generally we do not know the desired value of a control variable in S.D 
model. Without the desired value of a control vanable, we cannot determine the error of an outpu 
neuron. 

Although we do not know the desired values of control variables, we know the desired level o 
a target variable. The desired value of a target variable is imposed on the policy maker as a polic 
goal. In this study, we have replaced the error of an output neuron with the error of a target variablf 
This replacement is justified from our common senses that our decision is usually guided by the errc 
of consequences, not by the error of decision itself. This analogy adds another heuristic property t 
our nerual network so that our neural network policy maker may not even find local optimality. 

3. Interface between neural networks and S.D. model: Object oriented approach 

Combining a neural network with a S.D. model requires a rather complex interactions betwee 
them. On each simulation times, a neural network must receive values of signal variables, and 
control variable in S.D. model should receive the activaiton level of an output neuron of the neun 
network. 

We have made an objected oriented simulation environment for system dynamics to solve thi 
problem. We have named it as 'Equations as Graphic Objects (EGO)'. EGO is constructed withi 
Small talk language which runs on MS-Windows in IBM-PC. In EGO, all equations in S.D. mode 
are represented as objects. In fact EGO itself is an object. An object in Smalltlak means a 
independent entity which can receive or send messages from/to other objects (Goldberg & Robso 
1989). In Smalltalk and EGO, all objects can interact with each other as peoples talk each other. 

0~ 
NNH ~ 
~~lUariahle 

S igna1Uariable1 0 TargetUariable 

S igna1Uariable2 

<Figure 2> Interface. between neural network and S.D. model 

Because all algorithms and models are reprsented as objects in Smalltalk, a neural network Cl 

,be regarded as an independent object and thus it can be inserted into S.D. model with ease. In o 
study, a neural netowrk is inserted into an auxiliary variable equations as demonstrated typically 
figure 2. 

As displayed in Figure 2, Figure 3 and in Figure 5, EGO provides users various icons f 
representing different kinds of variables. Furthermore, in EGO, the icons for table functions a 
automatically designed to represent their time trends. In particular, users can change the color 
arrows to mark important causal loops. (EGO is a public software. But the source code of EGO w 

System Dynamics: Methodological and Technical Issues, page 46 



1994 INTERNATIONAL SYSTEM DYNAMICS CONFERENCE 

be open to the public next year, because optimization and documentation about the source code of 
EGO is not completed.) 

· In figure 2, a neural network observes three variables for deciding the value or amount of its 
policy. Here a target variable also serves as a signal variable. In EGO, the equation for a nt:ural 
network can be defined as follows. 

NNH = NeuralNetwork in: sl in: s2 in: s3 goal: TargetVariable 

'NNH' is an auxiliary variable which receive a value of an output neuron from neural network, 
NNH is a communication channelbetween a neural network and a control variable in S.D. model. 
'NeuralNetwork' is an object which is an instance of neural network class. 'TargetV ariable' is simply a 
name of a target variable. Sl, S2, S3 is signal variables. If a target variable is also used as a signal 
variable, the name of a target variable will appear twice in above equation. 

A neural network receives informations about current value of a target variable and determine 
an error of a previous policy; the error resulted from the previously intended change of a control 
variable. And connection weights are updated to reduce errors. Informations about signal variables 
are used to determine a new policy for a control variable. A new policy is represented by NNH, and 
NNH can be included in any equations which define control variables. 

4. Neural network heuristics for Kondratieff Wave Model 

Figure 3 shows a System Dynamics flow diagram for a simplified version of the Kondratieff 
model developed by Sterman (Rasmussen et al. 1985) into which our neural network heuristics 
(NNH) is inserted. Figure 3 is a flow diagram displayed in EGO. The Kondratieff model shows 
chaotic behaviors as well as limit cycles. In this paper we present our experiments with the version of 
chaotic Kondratieff model. NNH has shown identical performances with the case of limit cyle model 
of Kondratieff wave. To produce a chaotic behavior a small sinusoidal variation is introduced in 
'Desired production of goods (Dpg)' as in Rasmussen et al.(1985). 

<Figure 3> Kondratieff Model with Neural Network Heuristics 
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In figure 3, NNH observes current states of an unfilled orders for capital (Uoc ), a capit: 
acquisition rate (Car) and a production capital (Pc) to make a policy affecting an order rate for capit: 
(Or). The value of a policy determined by NNH is introduced to the original equation of Or. The go: 
of NNH is to maintain the value of Pc at a specified level. 

We have simulated the model by specifying the desired level of Pc at 30, 50 and ") 
respectively. Given a specific goal, NNH has been trained for five or six times. Each traning 
continued until 300 simulation time. After training of NNH is completed, a Kondratieff model wi1 
the control of NNH was simulated for each specified goals. Results of simulations are displayed i 
figure 4. 

NNH has performed successfully in maintaining the target variable at a specified goal leve 
r. H the more, NNH has successfully stabilized the inherent fluctuations of Kondratieff model. ¥1 
were surprised at these results, because NNH has only incomplete informations about the model, ar 
in particular NNH has been completely ignorant of the structure of the Kondratieff model. 
A direct implication of these results is that a human-like intelligent mechanism with limite 
informations can control a complex system as well as various complicated algorithms with compte 
informations. 

GoalofPc= 70 

Goo! of Pc= 50 

Goal of Pc = 30 

Years 

30 0 60 0 9:1.0 120.0 150.0 100.0 210.0 240.0 270.0 300.0 

<Figure 4> Performances of NNH in Controlling Kondratieff Model 

From the performance of NNH in Kondratieff model, we have got a strong impression that 
neural network can be a promising tool for controllng a S.D. models. We think that neural netwo 
model is essentially a new controlling mechanism in system dynamics studies for several reasons. 

First, it is a self-learning control device. Unlike traditional algorithms for controlling syste 
dynamics model, a neural network operates with natural principles of intelligence; 'learning by doin 
or 'learning by repeat'. It can be regarded as an expert who has a long experience in controlling 
specific policy model. Moreover, if social networks of institutions can be modelled through tl 
metaphor of neural networks models, NNH may be used to find the optimal forms of institution 
(organizational) networks for resolving social problems. 

Second, a neural network does work well without knowing details of system dynamics mod1 
Many algorithms developed for controlling system dynamics model should know all equatio1 
specified within a model. Neural networks don't require any knoweldge about equations. It requir 
only a period of times to learn about dynamic behavior of some important variables. 

Third, a neural network can be tested and used by those who have little knowledge about 
mathematical control theory. A neural network is a general and easy~ to-use control heuristics. Poli4 
optimization in S.D. models may be performed by a broader class of people than before. 
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5. Neural Networks heuristics for Commodity Cycles 

A famous commodity cycle model developed by Meadow ( 1970) is a second model in which 
we have experimented the behavior and performance of NNH. We have conjectured that commodity 
cycle model provides a more difficult task on NNH than Kondratieff model, because it has many time 
lags among variables. Time lags in realizing the effect of a policy may confuse NNH so that it may 
fail to learn from experience. 

<Figure 5> Commodity cycle model and NNH 

Fig 5 shows System Dynamics flow diagram for commodity cycles. As in Kondratieff wave 
model, a small sinusoidal variation is introduced into external variable of 'Input' to produce a cyclic 
behavior all the times as shown in Figure 6. 

lCOJO 
Months 

}L L.:: ~ 90 ( 120 0 150.0 190.0 21 Q.Q 240.0 270.0 300.0 

<Figure 6> C~-.·11~· hcha' wr of Inventory (lnv) without control of NNH 

NNH receives informatlllll' ahout current values of an inventory of commodity (lnv), a 
production capacity (Pcap) and a pm:c expected by producers (Ep). The goal of NNH is to maintain 
an amount of inventory ( lm l at a 'pecifaed level as before. NNH controls the value of commodity 
initiation rate (inr) for achacnn)! a 'pecifaed goal. 

In pilot experiment\ 1'1::-.:H 'howed a poor performance. So we give a more flexible policy tool 
to NNH. That is. we simply muluply the value of NNH by 2 and subtracted by I. This operation 
makes the range of value' produced hy NNH from -I to +I. Whereas NNH in Kondratieff model has 
only a positive policy tool. NNH m commodity cycle model has a policy tool that can be positive or 
negative. 
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NNH has been trained like as in Kondratieff model. We have experimented with three goals < 
Inv; 4,000, 6,000 and 8,000. The results are displayed in figure 7. 

Months 

30.0 60.0 90.0 120.0 150.0 180.0 210.0 240.0 270.0 :DJ.O 

<Figure 7> Performances of NNH in Controlling Commodity Cycle Model 

Figure 7 says that NNH has failed to control fluctuations but has succeeded in directing 
target variable toward a specified goal. In particular, for the goal of 4,000 Inv, NNH has reduced tl 
magnitude of a fluctuation by significant amounts compared with the fluctuation in figure 6. Th 
result shows some possiblity that the control ability of NNH can be enhanced with appropriate poli< 
goals. 

Although NNH has not shown satisfactory performance in controlling the fluctuations, NN 
has revealed a rather interesting behavior during our experiments. When a difficult goal was impost 
on NNH, NNH has shown a helplessness behavior like human decision makers. 

Now we give NNH only a positive policy tool. When the goal is set to maintain Inv at 4000 ar 
the policy value of NNH is restricted as positive, it is almost impossible for NNH to achieve a gm 
Without the interruption of NNH, Inv of commodity cycle model shows 6000 amount at averag 
Since a policy value produced by NNH is alwayse positive, simply adding it to the control variab 
(lnr) means that the value of Inv shall increase higher than orginal model. As a result, NNH cann 
find the satisficing solutions. Figure 8 shows how NNH behaves in hard situations. 

0.4 4000 

o.3 3000 

02 2000 

llliH 
Months 

0.1 1000 

XI.O 60.0 90.0 120.0 150.0 180.0 210.0 240.0 270.0 300.0 

<Figure 8> Helplessness behavior of NNH 
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Before a training period a value of NNH were 0.54. In figure 8, we can see that values of NNH 
approach toward zero, with the range of 0.003 to 0.001. As a result, the behavior of Inv is identical 
with that of original model in figure 6. NNH has learned to avoid its responsibility. 

An implication of NNH in commodity cycle model is that policy makers faced with 
unfavorible situation may show the helplessness behavior which means non-decision making. 
Helplessness is the psychological state that frequently results when events are uncontrollable 
(Seligman 1975). If a policy goal is set too high, a policy maker may learn to give up any efforts for 
achieving it. 

6. Conclusions and Future Research 

In this study we have experimented the behaivors and performances of neural network 
heuristics within S.D. models. Results of our experients have two major implications. 

First, a neural network can be used for controlling S.D. model. We believe that more studies on 
combining neural networks and S.D. models can reveal a new way of controlling S.D. model. And 
this way of control may be more easy-to-use than any other control algorithms. 

Second, our study shows that the stabilization of fluctuations may be occurred through 
implementing a policy which is oriented toward maintaining a value of target variables within a 
desired level. 

Our experiments have only concerned with the backpropagation model of neural networks and 
with two simple S.D. models. Other models of neural networks may improve the performance of 
NNH. The controlling ability of NNH may be enhanced with the time series informations about 
important variables. Genetic algorithms may be another promising heuristics for controlling S.D. 
models (Goldberg 1989). Experiments with complex S.D.models may show different results with 
ours. Our experiments have produced more questions than answers. We think that studies on the 
natural intelligences or heuristics in system dynamics will provide great insights on handling complex 
social systems. 
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