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Abstract 
Two methods for model behavioural analysis are implemented on a simple 2nd order non-
linear model. The results of applying Ford’s behavioral approach are compared with those 
obtained using both system-wide and variable-specific loop eigenvalue elasticity analysis. 
Differences in the division of the time span into analysis intervals are identified as are 
discrepancies in the outcomes. The effort required for implementation and the necessity for 
automation also differ substantially. We consider Ford’s method readily understandable, 
whereas the mathematically more powerful eigenvalue elasticity analysis poses difficulties 
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in this regard. Future directions for research on model behavioural analysis are identified 
based on the results of this critical comparison and the learning associated with our 
development of a prototypical automated model behavioural analysis framework.  
 
Keywords : Loop dominance, nonlinear dynamics, eigenvalue elasticity analysis, formal 
model analysis, model structure 
 
 

1 Introduction 
 
 
The endeavour to explain model behaviour in terms of system structure lies at the heart of 
the System Dynamics methodology. Yet as recently as 2000, Sterman (2000) identified the 
development of tools to aid understanding model behaviour as an outstanding problem for 
the future of System Dynamics emphasizing that “Technical support for understanding the 
connections between model structure and behavior is weak to the point of being almost 
nonexistent” (Sterman 2000, page 897).  
 
Although this still is an outstanding issue, significant research effort has been and still is 
being invested in addressing this issue. Since Nathan Forrester (Forrester 1982) first 
proposed model analysis based on eigenvalue elasticities attention has been devoted to the 
development of formal methods for model behavioural analysis. These include the pathway 
participation metric (Mojtahedzadeh 1997), based on a definition of loop polarity, and its 
implementation within the DIGEST software package (Mojtahedzadeh, Andersen et al. 
2004) as well as Kampmann’s (1996) formalization of model structure using graph theory. 
The latter enabled the identification of an independent loop set (ILS) for a model, laying the 
foundation for further progress in loop eigenvalue elasticity analysis. Oliva’s subsequent 
introduction of the shortest independent loop set (SILS) solved some of the problems 
associated with a non-unique independent loop set, leading to an improved structural 
analysis foundation for loop eigenvalue elasticity analysis (Oliva 2004; Kampmann and 
Oliva 2005). Recently, Saleh and Güneralp were able to relate eigenvalue elasticity analysis 
to the behaviour of specific state variables and to automate this (Saleh 2002; AbdelGawad 
2005; Güneralp 2005). In addition, Ford (1999) proposed a non structurally-based method 
of analyzing model behaviour using unique atomic behaviour patterns of variables of 
interest.  
 
In this paper, we will report upon our progress in consistently applying and comparing the 
model behavioural analysis methods proposed by Ford (1999), Kampmann (Kampmann 
1996; Kampmann and Oliva 2005) and Güneralp (2005). The implementation of these 
methods on one and the same model is described and the outcomes compared. The 
reliability of the methods, their implementation requirements and their explanatory power 
are evaluated.  Finally, promising directions for future research in this field are identified.  
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2 Method 
 
The long term goal of our research is consistent implementation, effective intercomparison 
and improvement of formal model behavioural analysis methods.  To this end, an 
automated model behavioural analysis  framework (AMBA) is undergoing development.  
For a more detailed description see Appendix A and Appendix C. Eventually, it will be 
feasible to plug in different methods and apply each of them to a selection of (the same) 
models.   

2.1 Selection of model analysis methods for comparison 
We distinguish two broad classes of methods, namely (i) those proposed by Mojtahedzadeh 
and Ford and (ii) eigenvalue elasticity analysis. Owing primarily to its inability to deal 
effectively with oscillations (Kampmann and Oliva 2005), the pathway participation metric 
(Mojtahedzadeh 1997; Mojtahedzadeh, Andersen et al. 2004) was excluded from further 
implementation at an early stage of this research. Consequently, we choose to compare 
Ford with a selection of two eigenvalue elasticity analysis based methods. Further, the 
Kampmann variant of eigenvalue elasticity analysis is selected for implementation since it 
takes the system-wide perspective. The Güneralp variant is considered representative of the 
methods that relate elasticities to specific state variables. Comparable methods include that 
outlined in Abdelgawad (2005). 
 
In this paper, we use the full AMBA framework to automate the implementation of 
eigenvalue elasticity analysis (Kampmann 1996; Güneralp 2005; Kampmann and Oliva 
2005), but apply Ford’s behavioural analysis (Ford 1999) using only some sections of the 
framework. 

2.2 Selection of the Yeast model 
To facilitate comparison of the different model behavioural analysis methods, these had to 
be applied to the same models. In this paper, we choose to discuss only their application to 
the Yeast model (Figure 1). This is a relatively simple second order overshoot and decline 
model, which has also been used by other authors as a test case for loop dominance analysis 
(Saleh 2002; Güneralp 2005). 
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Figure 1: Diagram of the Yeast model showing the loops in the model. 

 
The Yeast model (Figure 1) represents the growth of Yeast cells in a vat. The cells multiply 
and eventually die off as a result of the alcohol they produce. There are very few Cells 
present and there is virtually no Alcohol at the outset. This allows an almost exponential 
increase in the number of Cells. As the cell numbers increase, the Alcohol concentration 
also increases. The influence of Alcohol on the deaths of the cells eventually constrains the 
growth of cells causing the amount of Cells to reach a maximum. From then on the effect of 
Alcohol on the death of cells is so large that these decline in number until the number of 
Cells approaches zero. 
 
The behaviour of the variables Cells and Alcohol is depicted in Figure 4. 
 

3 Results 

3.1 Ford’s behavioural approach 
Ford (1999) assesses the role of a particular loop by deactivating it. To do this, he selects a 
variable of interest and divides its behaviour up into different phases characterized by an 
atomic behavior pattern. This is determined according to the slope of the magnitude of the 
net rate of change of the variable of interest. He then assesses the role of each loop in 
determining the behaviour of the variable of interest by eliminating loops or combinations 
of loops and observing the change in behaviour. 
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We now apply the method of Ford to the Yeast model. Our variable of interest is the 
number of Cells. The graphs of its behaviour and that of Alcohol, divided into phases 
according to their atomic behavior patterns, are depicted in Figure 2. 

  
(a) Behavior of Cells in the Yeast model. (b) Behavior of Alcohol in the Yeast model. 

Figure 2: Behavior of the Yeast Model. Division into phases based on Ford’s atomic behaviour 
pattern. 

 

Implementation requirements 
In seeking to apply Ford’s method consistently, we had first to define a standard method for 
eliminating a loop. This issue is mentioned in Ford’s description of the method. We chose 
to deactivate links by modifying the equation of the dependent variable (the “to” variable) 
by setting the value of the independent variable (the “from” variable) in that equation to 
that at the beginning of the interval to be analysed. The option of setting the link under 
consideration to infinity or zero was eliminated because this sometimes means that one 
cannot remove a loop uniquely. For instance, if we wish to take out the effect of L2 in the 
Yeast model, setting the value of Cells to zero in Cell deaths would also eliminate L4. 
Another option of setting the gain of an edge to steady state was also dismissed since it is 
questionable whether steady state gain is applicable when the relation between the structure 
of the model in its current state is under investigation. 
 
By imposing this consistency, we could easily adjust the time at which a loop was turned 
off and efficiently do the analysis for one loop over several intervals, thereby speeding up 
the behavioural analysis process. Note that although the execution is done per loop the 
results are analysed per phase. A difficulty with Ford’s approach is that the results of this 
behavioural analysis method might differ depending on the method selected for eliminating 
loops. 
 
Furthermore, we restricted the search for sets of shadow loops dominating behavior to the 
intervals where no dominant loop was found. This reduced the time required for method 
application. Ford defines a set of shadow loops as two or more dominant loops that 
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generate the same atomic behaviour pattern, so that taking out one of the loops does not 
cause the atomic behavior pattern to change because the other loop continues to generate 
this. Consequently, a set of shadow loops has been found if the behavior pattern only 
changes when two loops are eliminated1. See Table 1. 
 

Table 1: Unambiguous conditions for a set of shadow loops 

Loop A Loop B Result 

Inactive Active No change in behavior patter 

Active Inactive No change in behavior pattern 

Inactive Inactive Behavior pattern changes 

 
According to the atomic behaviour pattern, the behaviour of the variable Cells can be 
divided into four phases (Figure 2). For each of the phases we eliminated each loop in turn 
to see if this caused the atomic behavior pattern of the variable of interest to alter. The 
loops are taken out at the beginning of each interval. The equations used in eliminating 
each loop are listed in Table 2. 
 

Table 2: Changes applied to the Yeast model in order to perform Ford's behavioral approach to 
loop dominance. The s subscript refers to the value of the variable at the start of the interval 
analyzed 

Loop Edge Original Equation Modified equation 

L1 Cells � Cell Births effAlcB
medivisionTi

Cells  effAlcB
medivisionTi

Cellss  

L2 Cells  � Cell Death effAlcD
lifeTime

Cells  effAlcD
lifeTime

Cells s  

L3 
Eff. Alc. 

Births 
� Cell Births effAlcB

medivisionTi

Cells  
seffAlcB

medivisionTi

Cells  

L4 
Eff. Alc. 

Death 
� 

Cell 

Deaths 
effAlcD

lifeTime

Cells  
seffAlcD

lifeTime

Cells  

 

Results from the analysis of the Yeast Model 
The growth loop is clearly dominant in the first phase with the birth loop L1 causing the 
atomic behaviour pattern of exponential growth (Figure 3 (a)). Taking out the third loop 
reveals that it functions as a brake on the growth of the Cells (Figure 3(c)). During phase I, 
the effect of Alcohol via the two death loops (L2 and L4) is so small that the reference run 
and the run with the loops eliminated are visually indistinguishable (Figure 3(b) & (d)). 
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(a) L1 (b) L2 

  
(c) L3 (d) L4 

Figure 3: Effects of eliminating the different loops during phase I of the Yeast model. The dashed 
blue line is the original behavior of the model. The gray areas denote the intervals where the 
behavioral pattern of Cells is negative in the original model, the white areas denote a positive 
behavioral pattern. 

 
During phase II, the loop L3 containing the constraining effect of alcohol on birth is 
responsible for the balancing growth behaviour (Figure 4 (c)). Its effect on the growth of 
the number of cells is so large that the growth rate declines. The elimination of L1, which 
was dominant in the previous phase results only in slower growth and no longer causes a 
switch in the sign of the atomic behavior pattern. 
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(a) L1 (b) L2 

  
(c) L3 (d) L4 

Figure 4: Effects of eliminating the different loops during phase II of the Yeast model. 

 
In the third phase, no dominant loop was identified in the first round of analysis involving 
the removal of individual loops (Figure 5), so we looked for a set of shadow loops. The 
effects of removing combinations of loops are displayed in Figure 6. Only when loops L3 
and L4 were both removed did the atomic behavior pattern change from exponential 
decline to logarithmic with a very large time constant. According to Ford, this means that 
loops L3 and L4 form a pair of shadow loops causing the exponential decline of phase III. 
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(a) L1 (b) L2 

  
(c) L3 (d) L4 

Figure 5: First round of analysis for phase III 
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(a) L1& L2 (b) L1 & L3 

  
(c) L1 & L4 (d) L2 & L3 

  
(e) L2 & L4 (f) L3 & L4 

Figure 6: Checking for shadow loops during phase III of the Yeast model  
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During phase IV, L2 is found to dominate the behaviour (Figure 9(b)). The eventual decline 
towards zero is caused by the death of Cells. 
 

  
(a) L1 (b) L2 

  
(c) L3 (c) L4 

Figure 7: Effects of eliminating the different loops during phase IV of the Yeast model. 

In summary, on the basis of Ford’s method, L1 dominates in the exponential growth phase, 
L3 dominates the balancing growth phase, L3 and L4 form a shadow pair responsible for 
phase III and L2 dominates the decline of Phase IV.  

3.2 Eigenvalue Elasticity Analysis 
 
The methods of Kampmann (Kampmann 1996; Kampmann and Oliva 2005) and Güneralp 
(2005) were applied to the Yeast model using the AMBA framework. These methods 
calculate loop eigenvalue elasticities. The elasticities represent a relative change in an 
eigenvalue induced by changes in a particular loop of the model. The eigenvalues are 
descriptors of the behaviour of the model. Consequently, the influence of the loops of the 
model on eigenvalues relate model structure and behavior. For instance, a loop with a 
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positive elasticity to a positive, real eigenvalue drives the exponential growth represented 
by that eigenvalue. 
 
 
The adjacency matrix of the Yeast model was generated by the model routine of the AMBA 
framework and passed to the behavioural analysis routine for structural analysis as 
described by Oliva (2004)2. This structural analysis is required for the calculation of 
eigenvalue elasticities as described by (Kampmann 1996; Güneralp 2005). In our 
application, edge gains were perturbed to numerically determine individual edge 
elasticities. By performing the behavioural analyses at snapshots sufficiently close together 
we are able to generate eigenvalue elasticities for the entire simulation period and present 
these in the form of graphs such as those in Figure 93. 
 
The behavioural analysis is separated into time intervals based on the behaviour of the 
eigenvalues of the Yeast model, not on the basis of the behavior of a specific variable as is 
the case with the Ford method (Figure 8). Note that this division into phases does not 
coincide with the identification of phases based on the atomic behaviour pattern of the state 
variable Cells, except at the point where the imaginary pair of eigenvalues changes sign at 

65≈t  (Figure 8). The first phase is characterized by divergent behavior without oscillation 
(positive, real eigenvalues). This changes to divergent oscillatory behavior in Phase II 
(complex pair of eigenvalues with a positive real part). However, when the real part of the 
complex conjugate pair drops below zero, the behaviour alters to dampened oscillation 
(Phase III). At this time, the variable Cells displays non balancing behavior (the atomic 
behaviour pattern is exponential). At 78≈t , the imaginary pair of eigenvalues bifurcates 
into two negative real eigenvalues and Phase IV is characterized by convergent behaviour. 
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Figure 8: Eigenvalues of the Yeast Model. 1λ and 2λ  describe the real parts, cλ the imaginary part. 

These eigenvalues are obtained using the gain matrix of the linearised model at the defined 
snapshot times. The purple dashed lines represent the changes in phases according to Ford’s 
atomic behavior pattern. The changes in phases only coincide at the transition from phase II to 
phase III. 

Loop based Eigenvalue Elasticity Analysis 
 
Using the shortest independent loop set4 (SILS) of the Yeast model, the loop eigenvalue 
elasticities are calculated (see Appendix B for the loop set). This analysis was performed 
with a snapshot interval of .3 time units (see Appendix A), while the integration was 
performed using a timestep of .1 time units. We used as the measure of elasticity the loop 
influence as defined by (Kampmann and Oliva 2005):  
 

)(
)()(, cg

cg
l i

cgi ∂
∂

=
λ

 

 
where )(, cgil  is the influence of a loop c  on a particular eigenvalue and )(cg  is the gain of 

the loop. The main reason for using this formulation is its ability to deal with eigenvalues 
that are close to zero. The real part of )(, cgil  measures the influence of loop c  on the 

exponential envelope, while the imaginary part of )(, cgil  provides a measure of the effect of 

loop con the frequency of oscillation. The magnitude of )(, cgil   provides an indication of 



 14 

the overall influence of a loop, the overall elasticity. The elasticities for all of the 
eigenvalues over the full time interval of the simulation can be found in Figure 9.  
 
All of these graphs exhibit peaks near 38=t  and 78=t . It turns out that the closer the 
analysis comes to either of these points, the higher the values of the elasticities. These are 
the times at which two real eigenvalues join into a complex pair, or where an imaginary 
pair bifurcates into two real eigenvalues. The peaks represent the efforts of numerical 
methods to simulate accurately in the neighbourhood of singularities. As noted in 
(Kampmann and Oliva 2005), the eigenvalue elasticity analysis method cannot deal with 
repeated eigenvalues and linearly dependent eigenvectors5.  
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(a) Real elasticities of eigenvalue 1 (b) Real elasticities of eigenvalue 2 

  
(c) Imaginary elasticities of eigenvalue 1 (d) Imaginary elasticities of eigenvalue 1 

  
(e) Overall elasticities of eigenvalue 1 (f) Overall elasticities of eigenvalue 2 

Figure 9: Elasticities in the Yeast Model for the loops L1, L2, L3 and L4 

In the Yeast model, the eigenvalues are unique and the eigenvectors linearly independent, 
except at points such as 38=t , where, as we approach the point where the eigenvalues 
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merge into the pair, they are almost equal. At the merge point, the eigenvalues are non-
unique, the right eigenvectors form a singular matrix. At these points, the eigenvalue 
elasticities are undetermined. The fact that loop eigenvalue elasticity analysis cannot deal 
with a singular matrix of right eigenvectors was mentioned by (Kampmann and Oliva 
2005). Not only does this influence the scalability of the method6, but it also restricts the 
domain of the analysis to open intervals on which there is no switch from real, non-equal 
eigenvalues to a pair of complex conjugates or vice versa. To keep the results of the 
analysis readable we scaled the elasticities to values between -1 and 1 by dividing them by 
the sum of the absolute values of all elasticities as does Güneralp (2005). We also subdivide 
the domain of the analysis into open time intervals on the basis of these singularities in the 
eigenvalue elasticities. Also, note that the gain matrix has poorly conditioned eigenvalues 
round these points (Deuflhard and Hohmann 1995). Consequently, not only are the 
elasticities high, but so are the potential errors in calculating the eigenvalues in the 
neighbourhood of these points owing to round-off errors, for instance. Since the entire 
analysis relies on the calculation of the eigenvalues of the gain matrix, its validity becomes 
questionable in the neighbourhood of these singularities. 
 
The analysis is divided into four phases, with the transition from phase I to phase II defined 
as the time at which the eigenvalues merge into a complex pair near 38=t . The transition 
from phase II to III is defined as the time at which the real part of the complex conjugate 
pair becomes negative. The final transition occurs when the complex conjugate pair of 
eigenvalues bifurcates. 
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(a) Real elasticities of eigenvalue 1 (b) Real elasticities of eigenvalue 2 

  
(c) Imaginary elasticities of eigenvalue 1 (d) Imaginary elasticities of eigenvalue 1 

  
(e) Overall elasticities of eigenvalue 1 (f) Overall elasticities of eigenvalue 2 

Figure 10: Rescaled loop eigenvalue elasticities for the Yeast Model 

The loops L1 and L3 (Figure 10) play a significant role in determining the behavior of the 
Yeast model in Phase I, with L3 exerting an influence opposite to L1 on both eigenvalues. 
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The first eigenvalue is, for most of the interval, much smaller than the second, and exerts 
little effect on overall behavior. L1 is primarily responsible for the exponential growth of 
Phase I, with L3 restraining the growth. While the overall elasticities give an indication of 
the magnitude of the influence of the loops, they tell us nothing about the direction of that 
influence. 
 
In the second phase, the real part of the eigenvalue elasticity is still dominated by the first 
loop L1. However, the third loop exerts a strong influence on the imaginary part. Both the 
influence of the first loop on the imaginary part of the complex pair and the absolute value 
of the real part of the complex pair decline over time and the overall elasticity of the third 
loop is larger than that of the first loop from 50=t  onwards. 
 
In phase III, the elasticity analysis assigns the most importance to L2 and L4, the two death 
loops responsible for the exponential decline of Cells.  
 
During the fourth phase, the absolute value of the first eigenvalue quickly becomes much 
larger than the second one. Consequently, we consider the first eigenvalue to determine the 
model behaviour during this phase. L2 has by far the largest elasticity for this eigenvalue 
with L4 having an opposite elasticity, but quickly decreasing to zero. We conclude that L2 
is the loop responsible for the last phase of exponential decline. 

Relating the elasticities to specific states 
It is possible to link eigenvalue elasticities to the behavior of states in a model. The 
algorithms we used for this are based on Güneralp (2005).  
 
The elasticity measure used by Güneralp (2005) is 
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where 1e  is the real elasticity, 2e  the imaginary elasticity, g  the gain of the loop, and 

)Re( iλ  and )Im( iλ  the real and imaginary part of the eigenvalue respectively. The measure 

used by Kampmann and Saleh (Kampmann 1996; Saleh 2002) is  
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which divides g  by the magnitude of iλ  for both elasticities. 

 
The Güneralp measure has two advantages. First, the sign of the elasticity is defined 
relative to the eigenvalue. Consequently, if a loop or a parameter pulls the eigenvalue 
towards zero, decreasing the magnitude of its effect, the elasticity is negative. This 
definition of elasticity relative to the sign of the eigenvalue makes it suited for determining 
the influence of a particular loop to the behavior of a state (Güneralp 2005). Secondly, the 
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change in the exponential envelope or the frequency of oscillation is measured relative to 
the appropriate component of the eigenvalue. So, even if the eigenvalue has a very small 
real part (that is the exponential envelope has a large time constant), a loop that has a large 
relative impact on that time constant, is given a large elasticity. The same applies to the 
imaginary part of the elasticity and the associated frequency of oscillation.  
 
However, there is a disadvantage to this measure of eigenvalue elasticity. If an eigenvalue 
has a real part that is close to zero while the imaginary part is significantly larger, the real 
part has relatively little influence over the associated dynamics in the short term. Applying 
this measure can result in any loop having a significant impact on the real part of the 
eigenvalue being attributed a large elasticity, while its influence on the dynamics of the 
model may be small. 
 
Given these issues, we decided to apply both the Güneralp (Güneralp 2005) and 
Kampmann (Kampmann 1996) elasticity measures and compare the outcomes. The 
Kampmann (Kampmann 1996) measure for eigenvalue elasticity does not relate an 
elasticity to the sign of the eigenvalue. To make it suitable for relating the slope 
contributions of the eigenvalues, we multiplied it with the sign of the eigenvalue, such that 
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where iλ  is the magnitude of the eigenvalue. The contribution of each eigenvalue to the 

behavior of the selected state variable is calculated in similar fashion to Güneralp (2005), 
but the solution of the slope equations for the linear system is kept in complex form. This 
form can be extended for more complex systems (e.g. higher order systems) without 
modification (Appendix C). 
 
The contributions of the different eigenvalues to the change in slope differ somewhat from 
the graph presented in Güneralp (2005) (Figure 11). Whereas Güneralp (2005) keeps the 
contributions of the conjugate pair together to form a single positive contribution of one, 
we assign a contribution of 21  to each member of the pair. This is due to differences in 
calculating these contributions (see Appendix C.2), since our method calculates the partial 
contribution per individual eigenvalue. The other discrepancy lies in the change of sign of 
the contributions of the eigenvalues between the inflection points of Cells at 50=t  and 

75=t 7. 
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Figure 11: Contributions of the eigenvalues to the rate f change of Cells 

 
The overall elasticity (Güneralp 2005) is used to calculate the relative influence of each 
loop on the behavior of the rate of change of state variable Cells. The results of 
implementing both the Kampmann definition of elasticity and the Güneralp one are shown 
in Figure 12. 
 

 
(a) Loop dominance dynamics for Cells in the Yeast model calculated as in Güneralp 
(2005) 
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(a) Loop dominance dynamics for Cells in the Yeast model using the overall Kampmann 
elasticities 

Figure 12: Loop dominance dynamics in the Yeast model 

In contrast to the original results, the second measure attributes dominance to L2 in the end 
of phase II and L4 in phase III, in agreement with the system wide analysis using loop 
influence presented in the previous paragraph. With regards to the dominance of L4, the 
effect of alcohol on Cell Death displays a sharp increase over the third phase. This is one of 
the reasons for the exponential decline as seen in phase III, providing yet another argument 
for identifying the loop containing this variable as dominant. This analysis (Figure 12) 
shows that there can be significant differences in outcomes depending on which elasticity 
measure the analyst chooses to use.  

4 Comparative Analysis 

4.1 Disparities in results 
The eigenvalue elasticity analysis provides us with a mathematical criterion for dividing the 
continuous time span of the analysis into specific phases. These phases are determined on 
the basis of overall model behavior rather than the behavior of a single variable. In contrast, 
Ford’s method focuses on the behavior of a single variable and on this basis determines its 
time intervals for analysis. This means that the analysis of second or further variables of 
interest could result in different time intervals (that is, different phases) and make for lack 
of clarity in interpreting the results. See Figure 8 for the differences in phase determination 
between the two methods. 
 
Ford’s method ascribes dominance to L1 in the exponential growth phase of Cells, L3 in 
the balancing growth phase, L3 and L4 - as a shadow pair – in phase III and L2 in phase IV. 
However, the loop based eigenvalue elasticity analysis related to the variable Cells 
indicates that the loops L1 and L3 (Figure 10) play a significant role in determining 
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behavior in Phase I, with L3 exerting an influence opposite to L1. L1 is primarily 
responsible for the exponential growth of Phase I, with L3 restraining the growth. At the 
start of phase II, L1 still dominates behavior, but L3 becomes increasingly dominant 
towards the end of the phase. In strong contrast to Ford, the elasticity analysis for phase III 
assigns the most importance to L2 and L4, the two death loops responsible for the 
exponential decline of Cells. During phase IV, L2 is considered most influential in 
determing the balancing decline of cells. The results of the eigenvalue elasticity analysis 
relating the elasticities to the behavior of the state Cells agree with the results from the 
system wide analysis. 
 
Clearly, there are discrepancies in the outcomes of the two methods, particularly in phase 
III. Whereas the eigenvalue elasticity method identifies the two death loops L2 and L4 as 
responsible for the decline of Cells after 66≈t , the Ford method points to loops L3 and L4. 
In obtaining these results, the lack of single loop dominance in phase III meant that the 
Ford method required elimination of pairs of loops. We find the difference between the 
original model and the model with one loop taken out small enough to be acceptable. In 
contrast, a model with two loops eliminated is so different from the original model that it is 
doubtful whether the conclusions based on the modified model can be translated directly to 
the original model. In the case of the Yeast model, this was equivalent to reducing the 
second order non-linear model to a linear first order model and drawing conclusions 
regarding the original based on the behavior of the linear first order system in phase III. 

4.2 Implementation requirements 
 
For Ford’s behavioural analysis, two modifications to the prescribed procedure were 
required for efficient implementation. These included a consistent means of deactivating a 
loop and an unambiguous definition of shadow loops. We did not fully automate Ford, but 
used both the model representation and solver routine of the AMBA in executing the 
analysis. However, we consider full automation to be feasible. 
 
An additional argument for this automation is that, currently, applying the method to a 
larger model makes the required effort significantly larger8. While Ford suggests that the 
method can be adjusted to include only those loops that the analyst suspects to be 
influential, this approach is methodologically weaker, because there is no test that loops 
outside of the set of loops regarded as influential are correctly excluded. 
 
No standard, readily available software exists for implementing eigenvalue elasticity 
analysis. So, it was necessary to automate model behavioural analysis to obtain the results 
presented in this paper. We chose to develop a prototypical generic framework for this 
purpose because we intend to proceed further with the comparison of different behavioural 
analysis methods. Once the AMBA framework was operational, it became possible to 
perform the steps required by eigenvalue elasticity analysis (namely structural analysis, 
linearizations and the computation of the elasticities themselves) in a standard fashion. 
Until such software becomes commonplace, significant effort and investment is required 
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for the implementation of eigenvalue elasticity analysis. However, within the AMBA 
framework, the application of the method to a given model is relatively easy. 

4.3 Explanatory power 
Since the definition of the atomic behavioral pattern accords well with an intuitive 
understanding of model behavior and the mechanism of deactivating loops is readily 
explicable, Ford’s method is understandable. This is the strongest argument for the routine 
application of Ford’s method. 
 
The restriction of the analysis to separate time intervals limits its explanatory power for an 
oscillating model. Its conclusions are confined to time intervals displaying one atomatic 
behavior pattern, causing effects spanning more than one interval to be ignored. In the case 
of a model with dampened oscillation, where one loop is responsible for the speed of 
dampening, Ford’s approach will have difficulty in distinguishing this effect, since it is 
restricted to time intervals in which the dampening cannot show. 
 
In contrast, the method of eigenvalue elasticity analysis determines the relative contribution 
of loops to the behaviour of eigenvalues or specific state variables in an almost continuous 
fashion. This means that it has no trouble identifying system-wide effects and is the 
analytically stronger method. However, understanding and interpreting the results of the 
analysis requires in-depth knowledge of the method and its mathematical basis. It is 
difficult to explain even to analysts who are not familiar with the method. This currently 
restricts its application to experts in the field of model behavioural analysis. 
 
In our view, the strongest contribution of the eigenvalue elasticity analysis method to date 
is its visualization of the fractional influence of loops on eigenvalues and state variables. 
We suggest that the term “fractional influence of a loop” be adopted as a descriptor of the 
role that system structure plays in determining model behaviour instead of the term “loop 
dominance”, which implies that a single loop is responsible for model behaviour. This may 
help to improve the explanatory power of eigenvalue elasticity analysis. 
 

5 Future Research 
This research confirms that eigenvalue elasticity analysis holds promise as a tool for 
powerful model behavioural analysis despite the difficulties associated with understanding 
and explaining the method itself and its results. In developing the method further, there are 
a few hiccoughs that need to be addressed. These include: 

• Analytically determining individual edge elasticities. Using structural analysis it is 
possible to identify the pathways between different states, as in the identification of 
pathways in DIGEST (Mojtahedzadeh, Andersen et al. 2004) and in (AbdelGawad 
2005). Once these are identified, the pathways of which each causal link is a 
member can be listed9 and their gains as well as their elasticities can then be 
calculated analytically. 
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• Edges in some models are not always active. It is possible that a loop included in 
the shortest independent loop set becomes inactive at some time during a simulation 
while another loop, excluded from the SILS, yet forming an alternative path, 
remains active. This poses a problem if the original SILS is used throughout the 
analysis of the eigenvalue elasticities.  By checking for such a condition and re-
executing a structural analysis when it occurs (Güneralp 2006), this problem can be 
resolved. Current developments as mentioned in (Goncalves, Lerpattarapong et al. 
2000) are making progress in this area. 

• Quantifying the contributions of real and imaginary parts of the complex 
eigenvalues. The eigenvalue elasticities are hardest to interpret when there is a 
complex conjugate pair of eigenvalues. Currently the real and imaginary parts of the 
elasticities of the pair of eigenvalues are separated, but the relative contributions of 
the real and imaginary parts of the eigenvalues to the behavior of the state variable 
of interest are not. This limits the insights derived. By quantifying the contributions 
of real and imaginary parts of the complex eigenvalues, this problem can also be 
addressed. 

 
With increasing model size, the applicability of the system-wide variant of eigenvalue 
elasticity analysis decreases. The larger the size of the model, the more difficult the system-
wide variant becomes to interpret. In the case of high order, nonlinear models, a variant that 
relates model structure to the behavior of specific variables is potentially more powerful 
than a system-wide variant (Kampmann and Oliva 2005). Also, numerical issues may arise 
as model size increases. Further analysis is needed to address and resolve this issue. For 
example, a plot of either the condition number or the determinant (Appendix B.2) can 
reveal how close the matrix of right eigenvectors is to being singular. Such information 
accompanying the eigenvalue and contribution plots would enable the analyst to make a 
better judgment of whether a singularity should be expected or is purely a characteristic 
feature of the model under study. 
 
We plan to contribute to endeavours in this field of research by developing the  AMBA  
framework further. This development will include implementations of the algorithms not 
analyzed in this paper (Goncalves, Lerpattarapong et al. 2000; AbdelGawad 2005; Saleh 
2005) and the automation of Ford’s method.  
 
Eigenvalue elasticity analysis and the automated application of Ford’s behavioural analysis 
are still in the development phase. However with the extension of the AMBA framework, it 
should be feasible to expand testing and comparison to more and larger models. We concur 
with Diker (Diker 2006) that a standard, formal way of representing models would be of 
significant help in performing this type of research.  
 
Furthermore, the explanatory power of eigenvalue elasticity analysis can be improved by 
the design of alternative approaches to the communication and visualization of results10. 
Researh on this aspect is necessary. We also consider that a consistent and more insightful 
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terminology for describing the relationships between model behaviour and structure would 
be useful for explaining the method and its results. 
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1 In this paper it is assumed that a shadow feedback structure resulted in the atomic 
behavior patter (ABP) not changing by removing each loop separately, but changing if we 
eliminate both loops. That is, two dominant loops generate the same behavior, one taking 
over if the other is eliminated. However, according to Ford’s Long Wave example in his 
paper (Ford, 1999) it appears to be the case that a shadow feedback loop is found by first 
taking out a dominant loop and than determining if other loops are dominant in the model 
that is missing the dominant loop. So, in this example, Loop B is said to be a shadow loop 
of A if the ABP generated over a given time interval by eliminating loop B and Loop A is 
different from the ABP generated by the model if only Loop A is eliminated. In other 
words, the result of the dominance test for A changes if B is also eliminated. If this is the 
case, A can still be a shadow loop of B. This line of reasoning is not used in this paper. 
2 The functions were obtained via R. Oliva's resource page. Their output contains 
descriptions of all loops, but not in the form of a Directed Cycle Matrix. The output had to 
be rewritten to a form usable for the rest of the analysis. 
3 The time between the different points of analysis does not need to be kept constant during 
the analysis. For instance, AMBA enabled us to increase the granularity of the analysis of 
the more dynamic phases of behavior of the Long Wave model. 
4 The shortest independent loop set is a subset of the loops in the model is defined as […] 
consisting entirely of geodetic loops where the path between any two variables in the loop 
is also te shortest pah between those variables. […] (Kampmann and Oliva, 2005) 
5 This is clear from the analytical formulation for an influence on iλ of a particular element 

at the position (p,q) pqg  in the gain matrix G , for which 

pqpq
pq
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where il  is the left eigenvector associated with iλ  and ir  the right eigenvector (Saleh, 

2002) Since,  
1RL −=  

where R is the matrix composed of right eigenvectors and L the matrix of left eigenvectors. 
The left eigenvectors are undetermined when R  has linearly dependent columns. 
6 Larger matrices are more likely to have singular or close to singular matrices of right 
eigenvectors. 
7 This is due to a minor error in calculation in the Guneralp paper. The current results are 
consistent with the definition of the contribution of an eigenvalue to the behavior of the 
state variable of interest. 
8 In his own application of the method on the Long Wave model, Ford only tests the role of 
those loops already identified as dominant by Kampmann, using the EEA as a guideline for 
selecting loops. If we have n  loops in our ILS, there are n2  possible combinations of 
eliminated or active loops. The analysis of the Yeast model required 22 different model 
runs on a second order model with four different phases of behavior. This includes 
rewriting equations to support the switching off of loops. Analysing a second variable in 
the same model would require comparable effort, although some work can be reused.  
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9 The end result would be hash table with the edges in the model as keys and the pathways 
they belong to as values. Once this has been obtained, figuring out the gains of the 
individual pathways during the elasticity analysis is trivial. Assuming the rest of the 
analysis remains the same, the search only needs to be performed once, in the structural 
phase of the analysis. 
10 One tool that seems promising for developing static visualizations and perhaps even 
animations is the Java Universal Network/Graph framework. (JUNG). JUNG is “a software 
library that provides a common and extendible language for the modeling, analysis, and 
visualization of data that can be represented as a graph or network”. The homepage for this 
project is http://jung.sourceforge.net. 
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