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Abstract

Two methods for model behavioural analysis are émgnted on a simplé®%order non-
linear model. The results of applying Ford’s belwa®l approach are compared with those
obtained using both system-wide and variable-sjgeldbp eigenvalue elasticity analysis.
Differences in the division of the time span intwlgsis intervals are identified as are
discrepancies in the outcomes. The effort requioedmplementation and the necessity for
automation also differ substantially. We considerd®s method readily understandable,
whereas the mathematically more powerful eigenvalasticity analysis poses difficulties



in this regard. Future directions for research owael behavioural analysis are identified
based on the results of this critical comparisord a@he learning associated with our
development of a prototypical automated model bielaal analysis framework.

Keywords : Loop dominance, nonlinear dynamics, eigenvaludieigsanalysis, formal
model analysis, model structure

1 Introduction

The endeavour to explain model behaviour in terinsystem structure lies at the heart of
the System Dynamics methodology. Yet as recentB0&, Sterman (2000) identified the
development of tools to aid understanding modehbielur as an outstanding problem for
the future of System Dynamics emphasizing that lhéxal support for understanding the
connections between model structure and behaviaresk to the point of being almost
nonexistent” (Sterman 2000, page 897).

Although this still is an outstanding issue, sigraht research effort has been and still is
being invested in addressing this issue. Since dtatRorrester (Forrester 1982) first
proposed model analysis based on eigenvalue el@stiattention has been devoted to the
development of formal methods for model behavioarellysis. These include the pathway
participation metric (Mojtahedzadeh 1997), basedhaiefinition of loop polarity, and its
implementation within the DIGEST software packad#ojtahedzadeh, Andersen et al.
2004) as well as Kampmann’s (1996) formalizationmaidel structure using graph theory.
The latter enabled the identification of an indegent loop set (ILS) for a model, laying the
foundation for further progress in loop eigenvaglasticity analysis. Oliva’'s subsequent
introduction of the shortest independent loop &it.$) solved some of the problems
associated with a non-unique independent loop leatjing to an improved structural
analysis foundation for loop eigenvalue elasti@atyalysis (Oliva 2004; Kampmann and
Oliva 2005). Recently, Saleh and Glneralp were t@bielate eigenvalue elasticity analysis
to the behaviour of specific state variables andutmmate this (Saleh 2002; AbdelGawad
2005; Guneralp 2005). In addition, Ford (1999) jms®d a non structurally-based method
of analyzing model behaviour using unique atomitaw&ur patterns of variables of
interest.

In this paper, we will report upon our progressamsistently applying and comparing the
model behavioural analysis methods proposed by Eb®89), Kampmann (Kampmann
1996; Kampmann and Oliva 2005) and Guneralp (2006 implementation of these
methods on one and the same model is describedthendutcomes compared. The
reliability of the methods, their implementatiomquaements and their explanatory power
are evaluated. Finally, promising directions fatufe research in this field are identified.



2 Method

The long term goal of our research is consisteplementation, effective intercomparison
and improvement of formal model behavioural analysiethods. To this end, an
automated model behavioural analysis framework BAYlis undergoing development.
For a more detailed description see Appendix A Apgdendix C. Eventually, it will be
feasible to plug in different methods and applyheatthem to a selection of (the same)
models.

2.1 Selection of model analysis methods for comparison

We distinguish two broad classes of methods, nafietliose proposed by Mojtahedzadeh
and Ford and (ii) eigenvalue elasticity analysisvir@ primarily to its inability to deal
effectively with oscillations (Kampmann and Olivad), the pathway participation metric
(Mojtahedzadeh 1997; Mojtahedzadeh, Andersen e€204l4) was excluded from further
implementation at an early stage of this resea@dnsequently, we choose to compare
Ford with a selection of two eigenvalue elastiatyalysis based methods. Further, the
Kampmann variant of eigenvalue elasticity analysiselected for implementation since it
takes the system-wide perspective. The Glneralpntas considered representative of the
methods that relate elasticities to specific staigables. Comparable methods include that
outlined in Abdelgawad (2005).

In this paper, we use the full AMBA framework totamate the implementation of
eigenvalue elasticity analysis (Kampmann 1996; @lpe2005; Kampmann and Oliva
2005), but apply Ford’'s behavioural analysis (Fb®@9) using only some sections of the
framework.

2.2 Selection of the Yeast model

To facilitate comparison of the different model aeioural analysis methods, these had to
be applied to the same models. In this paper, wes#to discuss only their application to
the Yeast model (Figure 1). This is a relativelnglie second order overshoot and decline
model, which has also been used by other authcadexst case for loop dominance analysis
(Saleh 2002; Guneralp 2005).
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Figure 1: Diagram of the Yeast model showing ttagin the model.

The Yeast model (Figure 1) represents the growtteaist cells in a vat. The cells multiply
and eventually die off as a result of the alcolayt produce. There are very few Cells
present and there is virtually no Alcohol at théseti This allows an almost exponential
increase in the number of Cells. As the cell nurmbecrease, the Alcohol concentration
also increases. The influence of Alcohol on thelueaf the cells eventually constrains the
growth of cells causing the amount of Cells to heagnaximum. From then on the effect of
Alcohol on the death of cells is so large that ¢hdecline in number until the number of
Cells approaches zero.

The behaviour of the variables Cells and Alcohalapicted in Figure 4.

3 Results

3.1 Ford’s behavioural approach

Ford (1999) assesses the role of a particular byogeactivating it. To do this, he selects a
variable of interest and divides its behaviour oo idifferent phases characterized by an
atomic behavior pattern. This is determined accgydo the slope of the magnitude of the
net rate of change of the variable of interest.thkn assesses the role of each loop in
determining the behaviour of the variable of insérgy eliminating loops or combinations
of loops and observing the change in behaviour.



We now apply the method of Ford to the Yeast mo@elr variable of interest is the
number of Cells. The graphs of its behaviour arat tf Alcohol, divided into phases
according to their atomic behavior patterns, apgaed in Figure 2.
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(a) Behavior of Cells in the Yeast model. (b) Badranf Alcohol in the Yeast model.

Figure 2: Behavior of the Yeast Model. Divisionoinghases based on Ford’s atomic behaviour
pattern.

I mplementation requirements

In seeking to apply Ford’s method consistently,had first to define a standard method for
eliminating a loop. This issue is mentioned in Forescription of the method. We chose
to deactivate links by modifying the equation oé thependent variable (the “to” variable)
by setting the value of the independent varialihe (from” variable) in that equation to
that at the beginning of the interval to be analysehe option of setting the link under
consideration to infinity or zero was eliminatedchese this sometimes means that one
cannot remove a loop uniquely. For instance, ifwigh to take out the effect of L2 in the
Yeast model, setting the value of Cells to zercCrll deaths would also eliminate L4.
Another option of setting the gain of an edge &ady state was also dismissed since it is
guestionable whether steady state gain is appkoahkn the relation between the structure
of the model in its current state is under investan.

By imposing this consistency, we could easily adjbhse time at which a loop was turned

off and efficiently do the analysis for one loopeoseveral intervals, thereby speeding up
the behavioural analysis process. Note that althabg execution is done per loop the
results are analysed per phase. A difficulty witrd™ approach is that the results of this
behavioural analysis method might differ dependinghe method selected for eliminating

loops.

Furthermore, we restricted the search for sethaflew loops dominating behavior to the
intervals where no dominant loop was found. Thduoed the time required for method
application. Ford defines a set of shadow loopsvas or more dominant loops that



generate the same atomic behaviour pattern, sadkitg out one of the loops does not
cause the atomic behavior pattern to change bed¢hasaether loop continues to generate
this. Consequently, a set of shadow loops has Imemd if the behavior pattern only
changes when two loops are eliminateésee Table 1.

Table 1: Unambiguous conditions for a set of shatimps

Loop A | Loop B | Result

Inactive Active No change in behavior patter
Active Inactive | No change in behavior pattern
Inactive | Inactive Behavior pattern changes

According to the atomic behaviour pattern, the beha of the variable Cells can be

divided into four phases (Figure 2). For each efphases we eliminated each loop in turn
to see if this caused the atomic behavior pattérthe variable of interest to alter. The

loops are taken out at the beginning of each iatefhe equations used in eliminating
each loop are listed in Table 2.

Table 2: Changes applied to the Yeast model inromeerform Ford's behavioral approach to
loop dominance. The s subscript refers to the valu¢he variable at the start of the interval
analyzed

Loop Edge Original Equation Modified equation
Cells
L1 Cells > Cell Births &eﬁAch ———————effAlcB
divisionT me divisionT me
Cells Cells
L2 Cells > Cell Death | ———¢effAlcD ——=_effAlcD
lifeTime lifeTime
Eff. Alc.
L3 Cell Births | —="°__effalcB | — 1S efiaca,
Births divisionT me divisionT me
Eff. Alc. Cell
L4 ¢ © _Cells__ otiaicp Cells_ oD,
Death Deaths lifeTime lifeTime

Results from the analysis of the Yeast Model

The growth loop is clearly dominant in the firstagle with the birth loop L1 causing the
atomic behaviour pattern of exponential growth (iFegg3 (a)). Taking out the third loop

reveals that it functions as a brake on the grafttne Cells (Figure 3(c)). During phase |,
the effect of Alcohol via the two death loops (L&a 4) is so small that the reference run
and the run with the loops eliminated are visuadtistinguishable (Figure 3(b) & (d)).
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Figure 3: Effects of eliminating the different I@guring phase | of the Yeast model. The dashed
blue line is the original behavior of the model.eThray areas denote the intervals where the

behavioral pattern of Cells is negative in the ar@ model, the white areas denote a positive

behavioral pattern.

During phase I, the loop L3 containing the consirg effect of alcohol on birth is
responsible for the balancing growth behaviour ({Feég4 (c)). Its effect on the growth of
the number of cells is so large that the growtk dsclines. The elimination of L1, which
was dominant in the previous phase results onlslower growth and no longer causes a
switch in the sign of the atomic behavior pattern.
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Figure 4: Effects of eliminating the different I@guring phase Il of the Yeast model.

In the third phase, no dominant loop was identifredhe first round of analysis involving
the removal of individual loops (Figure 5), so va®ked for a set of shadow loops. The
effects of removing combinations of loops are digpt in Figure 6. Only when loops L3
and L4 were both removed did the atomic behavidtepa change from exponential
decline to logarithmic with a very large time cardt According to Ford, this means that
loops L3 and L4 form a pair of shadow loops causimegexponential decline of phase IIl.
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Figure 5: First round of analysis for phase Il
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Figure 6: Checking for shadow loops during phasetithe Yeast model
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During phase IV, L2 is found to dominate the bebaviFigure 9(b)). The eventual decline
towards zero is caused by the death of Cells.
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Figure 7: Effects of eliminating the different I@guring phase IV of the Yeast model.

In summary, on the basis of Ford’s method, L1 datas in the exponential growth phase,
L3 dominates the balancing growth phase, L3 andokdh a shadow pair responsible for
phase Ill and L2 dominates the decline of Phase IV.

3.2 Eigenvalue Elasticity Analysis

The methods of Kampmann (Kampmann 1996; KampmadrQdiva 2005) and Glneralp
(2005) were applied to the Yeast model using theBAMframework. These methods
calculate loop eigenvalue elasticities. The elds& represent a relative change in an
eigenvalue induced by changes in a particular lobphe model. The eigenvalues are
descriptors of the behaviour of the model. Consetijyethe influence of the loops of the
model on eigenvalues relate model structure andweh For instance, a loop with a
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positive elasticity to a positive, real eigenvatlreves the exponential growth represented
by that eigenvalue.

The adjacency matrix of the Yeast model was geeétay the model routine of the AMBA
framework and passed to the behavioural analysigin® for structural analysis as
described by Oliva (2002) This structural analysis is required for the okdtion of
eigenvalue elasticities as described by (Kampma@A6;1 Guneralp 2005). In our
application, edge gains were perturbed to numdyicdetermine individual edge
elasticities. By performing the behavioural anasyaesnapshots sufficiently close together
we are able to generate eigenvalue elasticitieshimrentire simulation period and present
these in the form of graphs such as those in Figlre

The behavioural analysis is separated into timervials based on the behaviour of the
eigenvalues of the Yeast model, not on the basiseobehavior of a specific variable as is
the case with the Ford method (Figure 8). Note that division into phases does not
coincide with the identification of phases basedt@atomic behaviour pattern of the state
variable Cells, except at the point where the imagyi pair of eigenvalues changes sign at
t =65 (Figure 8). The first phase is characterized wejent behavior without oscillation
(positive, real eigenvalues). This changes to deet oscillatory behavior in Phase I
(complex pair of eigenvalues with a positive reaftp However, when the real part of the
complex conjugate pair drops below zero, the behavalters to dampened oscillation
(Phase lll). At this time, the variable Cells desyd non balancing behavior (the atomic
behaviour pattern is exponential). At 78, the imaginary pair of eigenvalues bifurcates
into two negative real eigenvalues and Phase thasacterized by convergent behaviour.

12
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Figure 8: Eigenvalues of the Yeast Modéland A, describe the real parts], the imaginary part.

These eigenvalues are obtained using the gain maftfrithe linearised model at the defined
shapshot times. The purple dashed lines representchanges in phases according to Ford’s
atomic behavior pattern. The changes in phases ooigycide at the transition from phase Il to
phase lll.

Loop based Eigenvalue Elasticity Analysis

Using the shortest independent loop® 81ILS) of the Yeast model, the loop eigenvalue
elasticities are calculated (see Appendix B for lthogp set). This analysis was performed
with a snapshot interval af8 time units (see Appendix A), while the integratioms
performed using a timestep df time units. We used as the measure of elasticgyldop
influence as defined by (Kampmann and Oliva 2005):

oA
Ii c =—Ig(c)
,9(c) ag(c)
wherel, , ., is the influence of a loop on a particular eigenvalue argic) is the gain of

the loop. The main reason for using this formulaii® its ability to deal with eigenvalues
that are close to zero. The real partlgf,, measures the influence of loap on the

exponential envelope, while the imaginary part;gf,, provides a measure of the effect of
loop con the frequency of oscillation. The magnitudel Qf,, provides an indication of

13



the overall influence of a loop, the overall elasgi The elasticities for all of the
eigenvalues over the full time interval of the slation can be found in Figure 9.

All of these graphs exhibit peaks near 38 andt =78. It turns out that the closer the
analysis comes to either of these points, the higrevalues of the elasticities. These are
the times at which two real eigenvalues join intooanplex pair, or where an imaginary
pair bifurcates into two real eigenvalues. The pesdpresent the efforts of numerical
methods to simulate accurately in the neighbourhobdsingularities. As noted in
(Kampmann and Oliva 2005), the eigenvalue elagt@italysis method cannot deal with
repeated eigenvalues and linearly dependent eig

14
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Figure 9: Elasticities in the Yeast Model for tloeps L1, L2, L3 and L4

In the Yeast model, the eigenvalues are uniquetlamaeigenvectors linearly independent,
except at points such as=38, where, as we approach the point where the eigeeva



merge into the pair, they are almost equal. Atrtierge point, the eigenvalues are non-
unique, the right eigenvectors form a singular matAt these points, the eigenvalue
elasticities are undetermined. The fact that loigeresalue elasticity analysis cannot deal
with a singular matrix of right eigenvectors wasmmened by (Kampmann and Oliva
2005). Not only does this influence the scalabitifythe methol but it also restricts the
domain of the analysis to open intervals on whiwéré is no switch from real, non-equal
eigenvalues to a pair of complex conjugates or viessa. To keep the results of the
analysis readable we scaled the elasticities toegabetween -1 and 1 by dividing them by
the sum of the absolute values of all elasticigsloes Guneralp (2005). We also subdivide
the domain of the analysis into open time interaaighe basis of these singularities in the
eigenvalue elasticities. Also, note that the gaatrin has poorly conditioned eigenvalues
round these points (Deuflhard and Hohmann 1995s€guently, not only are the
elasticities high, but so are the potential errorscalculating the eigenvalues in the
neighbourhood of these points owing to round-ofbes, for instance. Since the entire
analysis relies on the calculation of the eigeneglaf the gain matrix, its validity becomes
guestionable in the neighbourhood of these siniigsr

The analysis is divided into four phases, withtilaasition from phase | to phase Il defined
as the time at which the eigenvalues merge intonaptex pair neat = 38. The transition
from phase Il to Il is defined as the time at whibe real part of the complex conjugate
pair becomes negative. The final transition ocauh&n the complex conjugate pair of
eigenvalues bifurcates.

16
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Figure 10: Rescaled loop eigenvalue elasticitieslie Yeast Model

The loops L1 and L3 (Figure 10) play a significamie in determining the behavior of the
Yeast model in Phase I, with L3 exerting an inflecempposite to L1 on both eigenvalues.



The first eigenvalue is, for most of the intervalich smaller than the second, and exerts
little effect on overall behavior. L1 is primaringsponsible for the exponential growth of
Phase I, with L3 restraining the growth. While theerall elasticities give an indication of
the magnitude of the influence of the loops, thalyus nothing about the direction of that
influence.

In the second phase, the real part of the eigeavalsticity is still dominated by the first

loop L1. However, the third loop exerts a stronfiuence on the imaginary part. Both the
influence of the first loop on the imaginary pattlee complex pair and the absolute value
of the real part of the complex pair decline oweretand the overall elasticity of the third

loop is larger than that of the first loop frans 50 onwards.

In phase llI, the elasticity analysis assigns tlesthmmportance to L2 and L4, the two death
loops responsible for the exponential decline dfsCe

During the fourth phase, the absolute value offits¢ eigenvalue quickly becomes much
larger than the second one. Consequently, we cengid first eigenvalue to determine the
model behaviour during this phase. L2 has by farléngest elasticity for this eigenvalue
with L4 having an opposite elasticity, but quicklgcreasing to zero. We conclude that L2
is the loop responsible for the last phase of egpbal decline.

Relating the elasticities to specific states

It is possible to link eigenvalue elasticities twe tbehavior of states in a model. The
algorithms we used for this are based on Gilinef4lps).

The elasticity measure used by Guneralp (2005) is

_ORe{d) g _0lm(A) g
" ag Redt) | T ag Im(A)

where g is the real elasticitye, the imaginary elasticityg the gain of the loop, and
Re(,) andIm(A,) the real and imaginary part of the eigenvalueeespely. The measure
used by Kampmann and Saleh (Kampmann 1996; Sa?) &)

_O0Re(d) g ezzalm("i)i
og  |A ' og  |A
which dividesg by the magnitude ofi, for both elasticities.

The Gulneralp measure has two advantages. Firstsigine of the elasticity is defined
relative to the eigenvalue. Consequently, if a lmwpa parameter pulls the eigenvalue
towards zero, decreasing the magnitude of its gffée elasticity is negative. This
definition of elasticity relative to the sign ofetleigenvalue makes it suited for determining
the influence of a particular loop to the behawba state (Gluneralp 2005). Secondly, the

18



change in the exponential envelope or the frequefascillation is measured relative to
the appropriate component of the eigenvalue. Sen évthe eigenvalue has a very small
real part (that is the exponential envelope haggeltime constant), a loop that has a large
relative impact on that time constant, is givera@ée elasticity. The same applies to the
imaginary part of the elasticity and the associftequency of oscillation.

However, there is a disadvantage to this measuetgehvalue elasticity. If an eigenvalue
has a real part that is close to zero while thegimaay part is significantly larger, the real
part has relatively little influence over the asated dynamics in the short term. Applying
this measure can result in any loop having a smamt impact on the real part of the
eigenvalue being attributed a large elasticity, lvlis influence on the dynamics of the
model may be small.

Given these issues, we decided to apply both theefalp (Guneralp 2005) and
Kampmann (Kampmann 1996) elasticity measures andpace the outcomes. The
Kampmann (Kampmann 1996) measure for eigenvalusti@ty does not relate an
elasticity to the sign of the eigenvalue. To makesuitable for relating the slope
contributions of the eigenvalues, we multipliedith the sign of the eigenvalue, such that

_ORe(}) g
- ag |A| | Sgn(Reﬂi )) '

_0am(A) g
- ag |Ai|sgn(|m@i ))

where || is the magnitude of the eigenvalue. The contrdsutf each eigenvalue to the

behavior of the selected state variable is caledla similar fashion to Guneralp (2005),
but the solution of the slope equations for thedinsystem is kept in complex form. This
form can be extended for more complex systems (@gher order systems) without
modification (Appendix C).

The contributions of the different eigenvalueshe thange in slope differ somewhat from
the graph presented in Guneralp (2005) (Figure Whereas Guneralp (2005) keeps the
contributions of the conjugate pair together tanfaa single positive contribution of one,
we assign a contribution of, to each member of the pair. This is due to difiees in
calculating these contributions (see Appendix Cs)¢ce our method calculates the partial
contribution per individual eigenvalue. The othé&cdepancy lies in the change of sign of
the cantributions of the eigenvalues between tifieation points of Cells at =50 and
t=75"
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The overall elasticity (Guneralp 2005) is used &fcualate the relative influence of each
loop on the behavior of the rate of change of staeable Cells. The results of

implementing both the Kampmann definition of eleisgiand the Glneralp one are shown
in Figure 12.
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Overall Elasticity

—L1--L2 L3 L4—phase|

(a) Loop dominance dynamics for Cells in the Yeastlel calculated as in Guneralp
(2005)
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Overall Elasticity

(@) Loop dominance dynamics for Cells in the Yeastel using the overall Kampmann
elasticities

Figure 12: Loop dominance dynamics in the Yeastahod

In contrast to the original results, the secondsueaattributes dominance to L2 in the end
of phase Il and L4 in phase lll, in agreement vtk system wide analysis using loop

influence presented in the previous paragraph. \Wagards to the dominance of L4, the

effect of alcohol on Cell Death displays a shagyease over the third phase. This is one of
the reasons for the exponential decline as sephase lll, providing yet another argument

for identifying the loop containing this variabls dominant. This analysis (Figure 12)

shows that there can be significant differencesuttomes depending on which elasticity

measure the analyst chooses to use.

4 Comparative Analysis

4.1 Disparities in results

The eigenvalue elasticity analysis provides us withathematical criterion for dividing the
continuous time span of the analysis into spegfiases. These phases are determined on
the basis of overall model behavior rather thanbiseavior of a single variable. In contrast,
Ford’s method focuses on the behavior of a singleable and on this basis determines its
time intervals for analysis. This means that thalysis of second or further variables of
interest could result in different time intervalbdt is, different phases) and make for lack
of clarity in interpreting the results. See Fig8réor the differences in phase determination
between the two methods.

Ford’s method ascribes dominance to L1 in the egpbal growth phase of Cells, L3 in
the balancing growth phase, L3 and L4 - as a sha@om- in phase IlIl and L2 in phase IV.
However, the loop based eigenvalue elasticity amlyelated to the variable Cells
indicates that the loops L1 and L3 (Figure 10) péasignificant role in determining
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behavior in Phase I, with L3 exerting an influenggposite to L1. L1 is primarily
responsible for the exponential growth of Phassith L3 restraining the growth. At the
start of phase II, L1 still dominates behavior, B becomes increasingly dominant
towards the end of the phase. In strong contraBbtd, the elasticity analysis for phase Il
assigns the most importance to L2 and L4, the twatld loops responsible for the
exponential decline of Cells. During phase IV, L2 d¢onsidered most influential in
determing the balancing decline of cells. The tssaf the eigenvalue elasticity analysis
relating the elasticities to the behavior of thatestCells agree with the results from the
system wide analysis.

Clearly, there are discrepancies in the outcomebetwo methods, particularly in phase
[ll. Whereas the eigenvalue elasticity method idest the two death loops L2 and L4 as
responsible for the decline of Cells after 66, the Ford method points to loops L3 and L4.
In obtaining these results, the lack of single latminance in phase Il meant that the
Ford method required elimination of pairs of loojge find the difference between the
original model and the model with one loop takeh small enough to be acceptable. In
contrast, a model with two loops eliminated is gtecent from the original model that it is
doubtful whether the conclusions based on the nemtihodel can be translated directly to
the original model. In the case of the Yeast motes was equivalent to reducing the
second order non-linear model to a linear firsteordhodel and drawing conclusions
regarding the original based on the behavior ofittear first order system in phase lll.

4.2 Implementation requirements

For Ford's behavioural analysis, two modificatiotts the prescribed procedure were
required for efficient implementation. These in@dda consistent means of deactivating a
loop and an unambiguous definition of shadow lo&js. did not fully automate Ford, but
used both the model representation and solver moutf the AMBA in executing the
analysis. However, we consider full automationéddrsible.

An additional argument for this automation is tharrently, applying the method to a
larger model makes the required effort significatiérgef. While Ford suggests that the
method can be adjusted to include only those loihyad the analyst suspects to be
influential, this approach is methodologically weskbecause there is no test that loops
outside of the set of loops regarded as influemtialcorrectly excluded.

No standard, readily available software exists ifmplementing eigenvalue elasticity
analysis. So, it was necessary to automate modelviomural analysis to obtain the results
presented in this paper. We chose to develop atgpmtal generic framework for this
purpose because we intend to proceed further Wwetcomparison of different behavioural
analysis methods. Once the AMBA framework was dpmral, it became possible to
perform the steps required by eigenvalue elastiaitglysis (namely structural analysis,
linearizations and the computation of the elastisithemselves) in a standard fashion.
Until such software becomes commonplace, signifiedfort and investment is required
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for the implementation of eigenvalue elasticity lggs. However, within the AMBA
framework, the application of the method to a giwerdel is relatively easy.

4.3 Explanatory power

Since the definition of the atomic behavioral pattexccords well with an intuitive
understanding of model behavior and the mechaniSndeactivating loops is readily
explicable, Ford’s method is understandable. Thiheé strongest argument for the routine
application of Ford’s method.

The restriction of the analysis to separate tinterwrals limits its explanatory power for an

oscillating model. Its conclusions are confinedtitoe intervals displaying one atomatic
behavior pattern, causing effects spanning mone ¢ime interval to be ignored. In the case
of a model with dampened oscillation, where onepla® responsible for the speed of
dampening, Ford’s approach will have difficulty distinguishing this effect, since it is

restricted to time intervals in which the dampergagnot show.

In contrast, the method of eigenvalue elasticitglgsis determines the relative contribution
of loops to the behaviour of eigenvalues or spedfate variables in an almost continuous
fashion. This means that it has no trouble idemigfysystem-wide effects and is the
analytically stronger method. However, understagcind interpreting the results of the
analysis requires in-depth knowledge of the method its mathematical basis. It is
difficult to explain even tanalystswho are not familiar with the method. This curfgnt
restricts its application to experts in the fiefdmodel behavioural analysis.

In our view, the strongest contribution of the eig@lue elasticity analysis method to date
is its visualization of the fractional influence lofops on eigenvalues and state variables.
We suggest that the term “fractional influence db@p” be adopted as a descriptor of the
role that system structure plays in determining ehdihaviour instead of the term “loop
dominance”, which implies that a single loop isp@ssible for model behaviour. This may
help to improve the explanatory power of eigenvaiasticity analysis.

5 Future Research

This research confirms that eigenvalue elasticitalgsis holds promise as a tool for
powerful model behavioural analysis despite th&atilfties associated with understanding
and explaining the method itself and its resutisdéveloping the method further, there are
a few hiccoughs that need to be addressed. Thelsel@

* Analytically determining individual edge elastiesi. Using structural analysis it is
possible to identify the pathways between diffeitates, as in the identification of
pathways in DIGEST (Mojtahedzadeh, Andersen e2@04) and in (AbdelGawad
2005). Once these are identified, the pathways lichv each causal link is a
member can be listddand their gains as well as their elasticities taen be
calculated analytically.
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* Edges in some models are not always active. lbssiple that a loop included in
the shortest independent loop set becomes inaatiseme time during a simulation
while another loop, excluded from the SILS, yetniorg an alternative path,
remains active. This poses a problem if the origBidS is used throughout the
analysis of the eigenvalue elasticities. By chegkior such a condition and re-
executing a structural analysis when it occurs @éip 2006), this problem can be
resolved. Current developments as mentioned in ¢&lwes, Lerpattarapong et al.
2000) are making progress in this area.

* Quantifying the contributions of real and imaginaparts of the complex
eigenvalues. The eigenvalue elasticities are hardesterpret when there is a
complex conjugate pair of eigenvalues. Currentyyrimal and imaginary parts of the
elasticities of the pair of eigenvalues are sepdrabut the relative contributions of
the real and imaginary parts of the eigenvalugbedoehavior of the state variable
of interest are not. This limits the insights dedv By quantifying the contributions
of real and imaginary parts of the complex eigemes] this problem can also be
addressed.

With increasing model size, the applicability oetkystem-wide variant of eigenvalue
elasticity analysis decreases. The larger thedilee model, the more difficult the system-
wide variant becomes to interpret. In the casegi brder, nonlinear models, a variant that
relates model structure to the behavior of specifidables is potentially more powerful
than a system-wide variant (Kampmann and Oliva 20AB0, numerical issues may arise
as model size increases. Further analysis is nedaddress and resolve this issue. For
example, a plot of either the condition number log tleterminant (Appendix B.2) can
reveal how close the matrix of right eigenvectadd being singular. Such information
accompanying the eigenvalue and contribution platsild enable the analyst to make a
better judgment of whether a singularity shouldelpected or is purely a characteristic
feature of the model under study.

We plan to contribute to endeavours in this fiefdesearch by developing the AMBA
framework further. This development will include pfamentations of the algorithms not
analyzed in this paper (Goncalves, Lerpattarapdrg.e€2000; AbdelGawad 2005; Saleh
2005) and the automation of Ford’s method.

Eigenvalue elasticity analysis and the automateuigiion of Ford’s behavioural analysis
are still in the development phase. However withéktension of the AMBA framework, it
should be feasible to expand testing and compatsomore and larger models. We concur
with Diker (Diker 2006) that a standard, formal wafyrepresenting models would be of
significant help in performing this type of resdarc

Furthermore, the explanatory power of eigenvalaetality analysis can be improved by

the design of alternative approaches to the comeatinh and visualization of resufls
Researh on this aspect is necessary. We also eorbat a consistent and more insightful
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terminology for describing the relationships betwesodel behaviour and structure would
be useful for explaining the method and its results
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1 In this paper it is assumed that a shadow feedisamicture resulted in the atomic
behavior patter (ABP) not changing by removing eladp separately, but changing if we
eliminate both loops. That is, two dominant loogmnerate the same behavior, one taking
over if the other is eliminated. However, accordiog-ord’s Long Wave example in his
paper (Ford, 1999) it appears to be the case tshtdow feedback loop is found by first
taking out a dominant loop and than determiningtifer loops are dominant in the model
that is missing the dominant loop. So, in this egmLoop B is said to be a shadow loop
of A if the ABP generated over a given time intérvg eliminating loop B and Loop A is
different from the ABP generated by the model ifyohoop A is eliminated. In other
words, the result of the dominance test for A clesnif B is also eliminated. If this is the
case, A can still be a shadow loop of B. This bifieeasoning imotused in this paper.

% The functions were obtained BaOliva's resource page. Their output contains
descriptions of all loops, but not in the form dDmected Cycle Matrix. The output had to
be rewritten to a form usable for the rest of thalgsis.

% The time between the different points of analgsies not need to be kept constant during
the analysis. For instance, AMBA enabled us toease the granularity of the analysis of
the more dynamic phases of behavior of the Long&\agdel.

* The shortest independent loop set is a subsaedbops in the model is defined as [...]
consisting entirely of geodetic loops where théngmtween any two variables in the loop
is also te shortest pah between those variables(Kampmann and Oliva, 2005)

® This is clear from the analytical formulation fam influence on), of a particular element

at the position (p,qy,, in the gain matrixG, for which

oA .

—— 0y =i (P)ri(a)g

agpq pq Pq

where [, is the left eigenvector associated with and r, the right eigenvector (Saleh,

2002) Since,

L=R™
where R is the matrix composed of right eigenvecénd L the matrix of left eigenvectors.
The left eigenvectors are undetermined wikermas linearly dependent columns.
® Larger matrices are more likely to have singulatiose to singular matrices of right
eigenvectors.
" This is due to a minor error in calculation in tBeneralp paper. The current results are
consistent with the definition of the contributiohan eigenvalue to the behavior of the
state variable of interest.
% In his own application of the method on the Longw& model, Ford only tests the role of
those loops already identified as dominant by Kaipm) using the EEA as a guideline for
selecting loops. If we havea loops in our ILS, there ar@" possible combinations of
eliminated or active loops. The analysis of the steaodel required 22 different model
runs on a second order model with four differenag@ds of behavior. This includes
rewriting equations to support the switching offlobps. Analysing a second variable in
the same model would require comparable effothoalh some work can be reused.
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® The end result would be hash table with the edgéi®e model as keys and the pathways
they belong to as values. Once this has been @atagiiguring out the gains of the
individual pathways during the elasticity analyisigrivial. Assuming the rest of the
analysis remains the same, the search only nedmspgerformed once, in the structural
phase of the analysis.

19 One tool that seems promising for developing stégualizations and perhaps even
animations is the Java Universal Network/Graph &aark. (JUNG). JUNG is “a software
library that provides a common and extendible laggufor the modeling, analysis, and
visualization of data that can be representedgaajEh or network”. The homepage for this
project ishttp://jung.sourceforge.net.
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