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ABSTRACT 

An experimental software package is being used as an extension 
to the DYNAMO IV compiler to linearize the model at any point 
during a simulation, compute the eigenvalues and eigenvectors of. 
the linearized system, identify the levels important in producing 
each behavior mode, and compute the elasticity of a given eigen­
value (corresponding to elasticity of period and damping) with 
respect to all model parameters. The package is intended to help 
modelers understand the causes of behavior in very complex mode~, 
both for debugging implausible behavior, and for presenting the 
causes of plausible behavior more convincingly. The package is 
able to work for the System Dynamics National Model, a model of 
around 300 levels. Practical experience has uncovered some diffi­
culties in making the analysis useful, but these are being sur­
mounted. The experience suggests that mathematical methods should 
be used extensively "in the field" before being offered as 
candidates for expanding the paradigm of System Dynamics modeling. 

INTRODUCTION 

Understanding why a model behaves as it does is an integral 
part of System Dynamics. If the behavior is unrealistic, the 
causes need to be isolated so the model structure can be revised. 
If the behavior is realistic and being explained to clients, or if 
alternative policies are being designed, the dominant mechanisms 
need to be isolated and understood. The customary method of 
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understanding model behavior has been to examine simulations, 
formulate hypotheses about what is causing the behavior, and then 
make further simulations to test and refine the hypothesis. While 
satisfyingly simple for analyzing behavior of small models, such 
hypothesis testing becomes very laborious for large models. For 
the System Dynamics National Model, one author (AKG) has performed 

over 3,000 simulations on various versions of the model, which is 
not unusual for such large models. 

Given the contributions that mathematical analysis has made to 
virtually every branch of science over the centuries, it is not 
unreasonable to wonder why mathematical methods have not been a 
standard part of System Dynamics practice. If one takes a close 
look at the control theory literature, one discovers that the 
majority of the methods are aimed at problems others than 
analyzing the important causes of system behavior; topics include 
solving for system behavior, optimizing system behavior, and 
optimally estimating either parameter or level values. There are 
also a variety of sensitivity measures that are functions of time 
(change in behavior as a function of parameter change), or 
sensitivity of the cost function. 

The result closest to being useful for understanding model 
behavior is the sensitivity of the eigenvalues (which characterize 
the possible modes of model behavior) or the eigenvectors 
(characterizing the movement of the levels in each behavior mode), 
to parameter variation. But as a means of practical model 
analysis, these do not provide very much useful information, 
because the quantities are all dimensioned differently. Looking 
at eigenvalue sensitivities to parameters to determine structural 
importance is like comparing apples per orange to grapes per 
banana. 

Recently, two Ph.D. theses have layed the groundwork for more 

useful mathematical tools. The first, by Jose I. Perez, derives a 
formula for a nondimensional measure of the importance of a given 
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level variable in creating a given behavior mode (i.e. for a given 
eigenvalue), called participations [1]. He also created an 
algorithm for model simplication, that in effect changes the level 
variables not important to a given behavior mode into constants or 
auxilliaries. The algorithm preserves the causal structure of the 
model, and makes minimal changes to the parameter values to 
produce exactly the same eigenvalue in the simplified model as 
within the full system. However, as we rarely if ever focus on a 
few modes to the total exclusion of others, we have not attempted 
to implement this algorithm. 

The second thesis, by Nathan B. Forrester, addressed the 

analysis of the causes of business cycle oscillations in a small 
model [3]. Forrester introduced the idea of eigenvalue 
elasticities with respect to parameters--nondimensional quantities 
that could be compared with one another to assess the importance 

of each parameter, and the causal link in the model that it 
characterized. 

These two recent theses show that there are useful 

mathematical analyses of large systems to be done. The System 
Dynamics National Model Project is a situation where there is 
considerable application for a tool that co.uld speed up behavior 
analysis [4]. The model is intended to show at least three basic 

behavior modes (50-year long wave, 3-7 year business cycle, and 
inflation from expansion of money supply) in a framework rich 
enough for a variety of policy evaluations. The current model has 
about 300 levels, and it is difficult and sometimes extremely 
time-consuming to understand why the model behaves as it does. 
Given the massive need for model analysis and the "pilot study" by 
Nathan Forrester, it seemed worth making the investment in 
software to produce a behavior analysis package coupled with the 
DYNAMO compiler. 

The software now being developed performs its calculations in 

a particular order, because many computations use the results of 
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earlier computations. This paper will follow the same order of 
events, beginning with the automatic adaptation of a standard 
DYNAMO model to the needs of linear mathematical analysis. 

LINEARIZATION 

The behavior analysis software is an enhancement to the DYNAMO 

IV compiler, both written by Alexander Pugh [5]. (At present, 
these are only available for IBM 370 computers.) As a result of 
integration with the compiler, the software deals with DYNAMO 
models as they are normally used--no special conversions are 
necessary. The first phase of the behavior analysis computations 
is linearization; subsequent phases .use linear analysis techniques 
(some well-known, and some very new). 

The user can run a simulation to any point in time, and 
linearize the model around the level values that exist at that 
time. More precisely, if the original nonlinear system is 
represented as 

(1) dx 
dt 

where 

~-vector of level variables (n x 1) 

f - rate of change function (n x 1) 

then the linearized version is 



(2) 

(3) 

d.!_ = Ax 
dt 

dfi 
oxj 
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.! -vector of level variables (n x 1) 

A - linearized system matrix (n x n) 

aij - i,jth element of A (scalar) 

The partial derivatives are computed by increasing each level 
in the system by 1 percent, and computing the fractional change in 
the rates of flow. 

EIGENVALUES 

Critical to all later developments is the computation of the· 

eigenvalues, which are also known as roots of the characteristic 
e~uation, or just characteristic values. And the eigenvalues do 
indeed characterize--in a very concise manner--the behavior of the 
system: the behavior of the (linearized) system can be expressed 
as a weighted sum of eigenvectors (discussed below) multiplied by 
an exponential of each of the eigenvalues: 

(4) 

x - vector of level variables (n x 1) 

r - right eigenvector for mth eigenvalue (n x 1) -m 
s - mth eigenvalue (complex scalar) m 

where each pair of eigenvectors and eigenvalues satisfies 
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A - linearized system matrix (n x n) 

r -right eigenvector for mth eigenvalue (n x 1) -m 
sm - mth eigenvalue (complex scalar) 

(The term "right eigenvalue correctly implies that there is also a 
left eigenvalue, which will be discussed below.) 

For clarity, the software does not print out the values of the 
eigenvalues directly, but rather the corresponding period and time 
constant for oscillatory modes, or the time constant for simple 
exponential modes. 

The eigenvalue computation is performed with the QR algorithm, 
using double precision arithmetic [6]. Fortunately, the QR method 
is reliable and sufficiently fast to compute all the eigenvalues. 
The cost of computing the eigenvalues is the major computational 
expense. The cost goes up approximately as the cube of the number 
of levels; for the System Dynamics National Model, taking all 300 
eigenvalues at evening rates costs about $40. 

There is some difficulty at present with the core memory 
re~uired for the eigenvalue computation. The memory holds three 
nxn double-precision matrices and one nxn single-precision matrix. 
For the System Dynamics National Model, the former each contain 
300x300x4x2=720,000 bytes, which is a large enough re~uirement on 
the computer that the eigenvalue computation can normally be done 
only during the evening when the computer is lightly-utilized. 
However, the A matrix is mostly zeros (each level effects only 
some small number of other levels, nowhere close to the full 300 
levels). This means that by using somewhat more complicated 
storage and computing algorithms (the so-called sparse matrix 
techni~ues), the memory re~uirements possibly could be cut 
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considerably, by storing and computing with just the nonzero 
elements. 

By themselves the the eigenvalues are of relatively little 

value; they mostly confirm what is already known from simulating 
the model--the damping, period and time constants of the dominant 
behavior modes. More importantly, the eigenvalues are the 
foundation for succeeding computations. But one interesting 
finding did come from the eigenvalue computation itself. 

Given the fact that most System Dynamics models are fairly 
smoothly nonlinear, our initial expectation was that the choice of 
what conditions at which to linearize the system would make little 
difference. However, System Dynamics models are also pervasively 
nonlinear, so many coefficients of the A matrix will change, 
depending on where the model is linearized. A distinctly 

different set of eigenvalues can result from changing the level 
values around which the model is linearized. (It may be that 

although eigenvalues differ, the important mechanisms and levels 
stay the same; we do not have enough experience with the package 
to know yet.) 

Printing out 300 eigenvalues for a large system like the SDNM 
may seem like an excess of information, especially if one thinks 
about parameter elasticities for each. Our software prints all 
the eigenvalues in the order of the smallest to the largest real 
part. As this led to about 300 real and complex numbers, we will 
truncate this list in the future. (Controling the amount of 

output has been an issue in each step of our development. This is 
the only place where we did not limit output, but just sorted it.) 

Fortunately, the vast majority of eigenvalues are simply 

exponential convergences back to steady-state, or very 
highly-damped oscillations. For the SDNM, there are usually no 

more than five interesting modes--expanding modes (both smooth and 
oscillatory), damped oscillations at two or three periods, and the 
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longest and shortest exponential approach just about fill the 
list. So it should be straightforward to pare down the list of 
eigenvalues of interest to the modeler. 

EIGENVECTORS 

Like the eigenvalues, the usefulness of eigenvectors lies 

mostly in later computations. Equation (5) above gives the 
definition of the right eigenvlue. By symmetry, the left 
eigenvalue is the same equation, but with the eigenvector to the 
left (instead of right) of the system matrix A: 

(6) 

lm- left eigenvector for mth eigenvalue (n x 1) 

~ - linearized system matrix (n x n) 

sm - mth eigenvalue (complex scalar) 

The computations described below require both the left and 
right eigenvectors. Most discussions of eigenvectors use 
equations that yield all n right eigenvectors, and then compute 
from those all n left eigenvectors. But for large models, the 
cost of computing all eigenvectors is about three times as large 
as computing the eigenvalues themselves, and the algorithms are 
very vulnerable to singularity problems. After some analysis and 
search, we arrived at an algorithm that computes just one 
eigenvector at a time, so that only two passes are needed to 
compute both the left and right eigenvectors [7]. Given that only 

a very small number of eigenvalue/eigenvector pairs represent 
interesting dynamics, this algorithm saves computation time, in 
addition to being robust. 
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Although the meaning of the left eigenvector is rather 
abstruse [8], the right eigenvector has a pleasingly simple 
interpretation. If the equilibrium values of the levels are 
defined as a vector of zeroes, then consider what happens if the 
levels are initialized in proportion to ·a particular right 

eigenvector: 

(7) kr -m 

x- vector of level variables (n x 1) 

£m- right eigenvector for mth eigenvalue (n x 1) 

Using the rate of change from equation (2) and the equivalence in 
equation (5), 

(8) dx' -I 
at't=O 

~ - vector of level variables (n x 1) 

A - linearized system matrix (n x n) 

r -right eigenvector for mth eigenvalue (n x 1) -m 
sm - mth eigenvalue (complex scalar) 

So the rate of change vector is exactly parallel to the initial 
condition. In fact, this will always be true, and 
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~(t) 

x- vector of level variables (n x 1) 

r -right eigenvector for mth eigenvalue (n x 1) -m 
s - mth eigenvalue (complex scalar) m 

In other words, the right eigenvector specifies a set of initial 
disturbances from equilibrium such that the levels continue to 
show behavior proportional only to that disturbance, and the 

variation over time is completely characterized by the eigenvalue. 
In short, the right eigenvector specifies how levels move within 

each particular behavior mode of the linearized system. 

For shedding light on what causes a given mode of behavior, 
the right eigenvector is fairly opaque, for it tells about the 
movements of the levels, each measured in its own units of 
measure. Moreover, there is no distinction within the right 
eigenvector between levels that are essential to creating a 
behavior mode, and levels that are merely driven by the behavior 

and are not essential--the eigenvector indiscrimminately mixes the 
tails with the dogs that wag them. But it is possible to 

circumvent these difficulties by combining both the left and the 
right eigenvectors, to compute participations. 
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PARTICIPATIONS 

as 

(10) 

The participation of the 1 th level in the m th mode is .defined 

Participation of lth level in mth mode (complex scalar) Pml -

lml - lth element of lm (complex scalar) 

r lth element of r (complex scalar) ml- -m 

provided that 1m and !m have been normalized so that 

( 11 ) 1 'r -m -m 

1 - left eigenvector for mth eigenvalue (n x 1) -m 

r -right eigenvector for mth eigenvalue (n x 1) -m 

For an oscillatory behavior mode, then, the participation 
factor will be complex. It is provable that the sum of all the 
participations for a particular eigenvalue is 1+0j (j=sqrt(-1 )) 
[9]. Moreover, the real part of the participations is 
nonnegative, so they are well-behaved as indices of importance; 
the participations of the key levels are typically greater than .1 

in magnitude. 

There are at least two interpretations of the participation 
factors. One interpretation revolves around the response of the 
system to an initial disturbance in one level, say x1 (0)=1 [10j. 
The response will be a weighted sum of exponentials representing 
each of the eigenvalues (and thus behavior modes) of the system. 
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Those weights are the participation factors, so that the 
participaiton factors for that level give the extent to which a 
disturbance in that level is able to excite the behavior mode. As 
argued heuristically by Graham [11], the cause of oscillatory 
behavior is the ability for a disturbance in one level to 
propagate itself around a loop. So the participation factors 
would seem to identify the levels that are most instrumental in 
causing a given behavior mode to persist. 

The other interpretation of the participation factors revolves 
around commonality with the equations for sensitivity (see below); 
mathematically, the participation factor is equal to the 
sensitivity of the eigenvalue with respect to the gain from the 
given level to itself--the sensitivity of a minor loop around the 
level. So levels with high participation factors can also be 
thought of as the levels which, when they are constrained by 
increasing the strength of a minor negative loop around them, have 
the most effect on the behavior. Again, this interpretation 
relates back to the identification of levels whose freedom of 
motion is important to creating the behavior mode. 

In earlier versions of the software, we have experimented with 
heuristics using the participation factors as the basis for 
selecting which data to compute and display. That isn't done now, 
so there are only two uses left for the participation factors. 
The first use, of course, is to refine one's ideas of what causes 

the behavior mode. Knowing the important levels is not the same 
as knowing the important connections between the levels, but the 
levels by themselves are sometimes useful, especially when a level 
is unexpectedly important, for that points up part of the model 
that is operating differently than expected. 

The second use of the participation factors is as a 
(relatively) unique identifier for a behavior mode. The 
eigenvalue software hasn't enough information to print out a 
behavior mode under the label "business cycle." It comes out as 
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mode number 85, or such. Only the period and damping from the 
eigenvalue, and knowing the important levels from the 
participations lets one identify a given mode as "the busi.ness 
cycle." The damping and period of the eigenvalue plus the 

important participationg levels provide a unique idnetification 
for a given behavior mode. 

Participations identify the key levels involved in a 
particular mode but do not explicitly identify loops. To obtain 
more explicit information about which loops are important to the 
model behavior, it is natural to turn to modifications of 
traditional linear analysis--elasticities. 

GAIN ELASTICITIES 

Given that the endogenous dynamics of the linearized system 
are fully determined by the gain coefficients within the A matrix, 

it is both logical and mathematically simple to address the 
question of where the important gain coefficients (sometimes 

called coupling time constants) are, within the A matrix. One 
could look at the ability of changes in each of the gain elements 
of the A matrix to alter the eigenvalues; this should tell us 
where the important connections between levels lie. 

We can define a nondimensional quantity, the elasticity of the 
mth eigenvalue with respect to some gain parameter aij' in the 
standard form for elasticities used in economics. For brevity, 
these will be referred to as gain elasticities. 
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( 12) 

e -elasticity of mth eigenvalue with respect mij 

to aij (complex scalar) 

sm - mth eigenvalue (complex scalar) 

a .. - i,jth element of A (scalar) 
lJ 

This gain elasticity can be computed using a well-known formula 
for response to any system parameter 

(13) 1 •d! r 
-m -- -m 

<)pg 

Sci 

(14) 

sm - mth eigenvalue (complex scalar) 

p - gth parameter (scalar) g 

lm- left eigenvector for mth eigenvalue (n x 1) 

! - linearized system matrix (n x n) 

£m- right eigenvector for mth eigenvalue (n x 1) 

e .. 
mlJ 

1 .~! r 
-m -- -m 

oaij 

e - elasticity of mth eigenvalue with respect to mij 

aij (complex scalar) 

1 - left eigenvector for mth eigenvalue (n x 1) -m 

! - linearized system matrix (n x n) 

£m - right eigenvector for mth eigenvalue (n x 1) 

aij - i,jth element of A (scalar) 



Once the eigenvectors are known, then, the computation of the 

gain elasticities is very simple. 

So the elasticity of an eigenvalue with respect to a parameter 
is defined as the relative change in the eigenvalue devided by the 
relative change in the parameter. Thus an elasticity of .5 
implies that a 1% increase in the parameter will result in a .5% 
increase in the eigenvalue. If the eigenvalue is complex, both 
the real and imaginary parts will increase .5%. By considering 
the elasticities of the eigenvalue with respect to the links 
between the levels (the A matrix) one should be able to identify 
the key feedback loops that determine a mode. 

The elasticities as defined above have several interesting 
properties. They are nondimensional, and can thus be compared 
with one another, even for parts of the system with vastly 
differing units of measure. Moreover, they are complex numbers, 
and the real and imaginary parts contain information about the 
effect of the parameter on period and damping. If the real part 
is positive, an increase in the parameter will decrease the 
undamped natural period Pu, which is defined as 

( 15) p 
u 2pi/lsml 

Pu - undamped natural period (time units) 

pi- 3-141592 ••• 

am - mth eigenvalue (complex scalar) 

Pu will usually be shorter than the actual period; the name for 
this ~uantity comes from the formula for the ·behavior of a 
second-order negative feedback loop with minor loops (either 
positive or negative)--Pu is what the period would be if the minor 
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loops are removed. Generally, one can expect the direction of 
change of Pu to match that of the actual period, except in cases 
where there are large changes in the damping. 

The imaginary part of the gain elasticity gives the effect on 
the damping ratio, which is defined as 

( 16) d 

d - damping ratio (dimensionless) 

cos - cosine function 

L- function taking angle of a complex number 

am - mth eigenvalue (complex scalar) 

Re - function taking real part of a complex number 

I I - function taking magnitude of a complex number I I 

A damping ratio of 1.0 denotes a simple exponential convergence, 
and -1.0 a simple exponential growth. A damping index between 1.0 
and 0 denotes convergent oscillation, 0 sustained oscillations, 
and. between 0 and -1.0 divergent oscillations. Now if the complex 
part of the elasticity is positive, an increase in the parameter 
will dec'rease the damping ratio, i.e. damping will decrease L 13 J. 
The preceding rules are not easy to remember; we anticipate that 
in the future, the software will calculate elasticity of period 
and damping directly. 

A. number of properties of elasticities with respect to 
elements of the A matrix have yet to be fully exploited. It is 
possible to show, using implicit differentiation and invariance 
with respect to choice of time units and units of measurement of 
the levels, that the elasticities for all elements sum to 1, and 
the sum of elasticities from all levels to a given level e~uals 
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the sum of all elasticities from that level--a kind of Kirchoff's 
law for all linear systems. Nathan Forrester has extended this 
particular property of gain elasticities to be able to place a 
value on the importance of every loop of the model, for a given 
mode of behavior [14]. This is an exciting result, but it appears 
that it will require considerable computational effort-­
apparently, models with more that 25 or 50 levels will require 
unresonable computer resources. 

When the software was first being implemented, it was fully 
expected that the elasticities with respect to elements of the A 
matrix would give good indication of the important structural 
connections for a given behavior mode. But such was not the case. 
The failure arose because System Dynamics models frequently 
represent conserved flows--of orders, of goods, of people, and of 
money. When such relationships are expressed in matrix form, the 

model parameters controlling the conserved flow in effect 
influence the matrix twice--once for the outflow from one level, 
and once for the inflow to the other level. But the formula for 
elasticity with respect to a single element of the A matrix 

represents the results of changing only one of the pairs of such 
parameters at a time. In effect, elasticity with respect to such 
an element of the A matrix represents the s~nsitivity of the 
behavior to allowing more to flow into one level than comes out 
the other in a situation where the modeler intended conserved 
flows. Such elasticities might be called elasticities of 
violating conservation laws. 

The System Dynamics National Model has numerous conserved 
flows of money. And, as one might imagine, several of the most 
interesting behavior modes are sensitive to money creation. So 
the list of the most important elasticities was filled with, for 
example, the elasticity of the parameters governing accounts 
payable. There were so many of these "elasticities of violation 
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of conservation" that the causal structure determining the 
behavior was not discernable from the elasticities with respect to 
the A matrix. 

What seems necessary to determine the significant structural 
connections, then, is the assessment of those connections as they 
appear in the DYNAMO model, in which parameters are expressed in 
physically meaningful terms--in terms of conserved flows and model 
variables. 

PARAMETER ELASTICITIES 

Elasticities of the eigenvalues with respect to the parameters 
of the model can explicitly identify the "handles" of the model; 
if we wish to change a mode we must change one (or more) of the 
parameters that affects it. 

An elasticity of eigenvalues with respect to model parameters 
can be defined analogously to gain elasticities: 

( 17) l ·~A r x P., 
-m 3Pg -m S: 

.E -elasticity of mth eigenvalue with respect mg 
to gth parameter (complex scalar) 

sm - mth eigenvalue (complex scalar) 

p - gth parameter (scalar) 
g 

l -left eigenvector for mth eigenvalue (n x 1) -m 
A - linearized system matrix (n x n) 

r -right eigenvector for mth eigenvalue (n x 1) -m 

The partial derivative of the A matrix with respect to the 
parameter poses a problem. To compute this in brute-force 
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fashion, one varies the parameter, recomputes the A matrix, and 
compares it with the original A matrix to determine the matrix of 
partial derivatives. Computing the A matrix requires running the 
model one time interval n times, one for each level. To perform 
an exhaustive parameter analysis on the System Dynamics National 
Model with perhaps 300 parameters and 300 levels calls for 90,000 
model evaluations--too many to be practical. 

As an interim measure, the parameter elasticity software asks 
for a list of parameters for which elasticities are desired. 
While this is very useful, one will never discover an unexpectedly 
sensitive parameter, if every parameter elasticity that is to be 
computed must be asked for. 

There is a way around this "curse of dimensionality." Equa­
tion (15) can be expressed as 

( 18) E "" .)aij mg = ~ e 
lJ clpg mij 

Emg- elasticity of mth eigenvalue with respect 

to gth parameter (complex scalar) 

a .. - i,jth element of! (scalar) 
lJ 

p _ gth parameter (scalar) 
g 

emij - elasticity of mth eigenvalue with respect 

to a. . (complex scalar) . lJ 

The vast majority of the partial derivatives will be zero; only 
those links from level to level that the given parameter effects 
will have nonzero partial derivatives. So for the SDNM, of the 
300x300=90,000 partial derivatives, perhaps an average of between 
2 and 20 are nonzero. So if it is known which level-to-level 
links a parameter influences, then only 2 to 20 model evaluations 
would yield the parameter elasticity, instead of the 300. With 
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such a reduction in computation, exhaustive parameter search 
becomes feasible even for large models. 

Parameter elasticities are another answer to the question 

"what's causing this behavior?" Parameters with large 
elasticities should define the important channels of influence in 
the model. Moreover, the parameter elasticities have the same 
interpretations as the gain elasticities discussed above for the 
effect of the given parameter change on both period and damping. 
(Technically, the analysis is valid only for small parameter 
changes, but usually within the range of plausible values, both 
large and small parameter changes have the same qualitative 
effect). So in addition to identifying important structure, the 
parameter elasticities should also be very useful in adjusting the 
behavior to real data. 

CONCLUDING REMARKS 

There are a number of avenues for extending the work now in 
progress, ranging from the mechanical to the conceptual. 
Mechanically, the software will become steadily more user-friendly 
and efficient of computer space and time. As mentioned above, the 
eigenvalue algorithms compute with an a matrix of the full nxn 
size, which for the System Dynamics National Model presses against 
the limits of MIT's IBM 370. It will be desirable at some point 
to adapt the algorithms to work with information expressed in a 
more compact format, so that they can be run taking less space (of 
course, smaller models don't take as much space). 

At the conceptual end of the spectrum lie two ideas mentioned 
previously: Forrester has outlined an algorithm to identify 

dominant loops, and Perez has specified in detail an algorithm for 
producing a simple model with the same principle behavior mode and 
the same causal structure as a more complex model. These would 
both be interesting to look into. 
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Finally, we need to continue to gather operating experience in 
the uses and pitfalls of linearized analysis. Are there more 
phenomena like "elasticity of violating conservation" that 
undermine the usefulness of the analysis? Can linearization away 
from equilibrium or even at extreme conditions tell us anything 
about the dominant structure? Are there systems where the 
eigenvalue analysis is misleading for the full nonlinear system? 
We need more experience with actual application to be able to say 
when, how, and by whom this software package ought to be used. 

Some observations on the System Dynamics paradigm are in 
order. "Classical" System Dynamics is a self-contained discipline 
that can be taught to a wide variety of people. It is closely 
oriented toward solving the real problems at hand. While 
mathematical tools increase the modeler's power, they also 
complicate the process of modeling. For which modelers and tasks 
is the complication worthwhile? This question vis a' vis 

eigenvalue analysis is similar to the larger qu.estion of how much 
control theory students should learn [15]. The consensus of the 

field to date seems to have been that very little formal 
mathematics should be taught to people who are only taking two or 
three courses in System Dynamics. Indeed, .at MIT, it is only 
Ph.D. candidates who are required to take seperate control theory 
courses. Now that control theory concepts are becoming more 
embedded in the easy-to-use software described here, it may be 
that some mathematical content is justified in the third course or 
so in SD. 

To the extent that a mathematical tool is not well-understood 
in practice, it should remain in the domain of the professional SD 
researcher, not students. One can imagine scenarios where 
students, encountering phenomena like "elasticities of violating 
conservation" are frustrated and disappointed not only with the 
tool, but by extension with the whole field of System. Dynamics. 
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And even if a mathematical tool is taught to students, a 
number of undesirable tendencies may emerge unless care is taken. 
There is a tendency for the tools to select the problems tackled 
and the formulations used. For example, the field of operations 
research was originally research into operations, with results 
applied immediately in the front lines of World War II [16]. But 
over the years, the field has become academized, with elegant 
theorems about optimal queueing policies that may never be 
applied, and certainly don't address the today's major problems. 

Mathematical tools such as eigenvalue analysis and parameter 
estimation pose a similar threat to System Dynamics: 

There is a temptation to exclude even realistic and necessary 
nonlinearities, or the use of important but nonmeasurable 
variables (goals, traditions, re~utation, etc.), if they hinder 
the use of mathematical tools. (Find one microeconomics 
textbook that talks about goals, traditions or reputation!) 

There is a temptation to substitute computation for thinking; 
the phenomenon of doing many simulations instead of studying 
one insightfully is well enough known that it's come to be 
called "terminal hypnosis." 

Substituting computation for thinking also threatens to 
dramatically decrease the modeller's ability to speak 
insightfully about the problem with clients. 

The realistically robust models that typify many system 
Dynamics applications result from serious attention to the 
underlying structure of systems, rather than only its 
parameters. Even without mathematical methods that elevate the 
role of parameter values, there is a great temptation to 
manipulate model behavior with parameter changes, rather than 
seriously considering whether or not the structure is adequate. 

In short, unless precautions are taken, mathematical tools are 
capable of undermining many of the unique advantages that System 
Dynamics now offers. 

The cautions above notwithstanding, we believe that eigenvalue 
and elasticity analysis hold great promise for the field. We will 
continue research into its practical use. 
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