
Dynamics of Platform-based Product Development

Hazhir Rahmandad
Ph.D. Candidate, Sloan School of

Management, M.I.T
E53-364A, 30 Wadsworth Ave.,

Cambridge, MA 02142
617-253-3865; hazhir@mit.edu

Abstract
Product development (PD) is a crucial capability for firms in competitive markets. Building on
case studies of software development at a large firm, this paper explores the interaction among
the different stages of the PD process, the underlying architecture of the product, and the
products in the field. We introduce the concept of the “adaptation trap,” where intendedly
functional adaptation of workload can overwhelm the PD organization and force it into
firefighting (Repenning 2001) as a result of the delay in seeing the additional resource need
from the field and underlying code-base. Moreover, the study highlights the importance of
architecture and underlying product-base in platform-based product development, through their
impact on quality of new models under development, as well as resource requirements for bug-
fixing. Finally, this study corroborates the dynamics of tipping into firefighting that follows
quality-productivity tradeoffs under pressure. Put together, these dynamics elucidate some of the
reasons why PD capability is hard to build and why it easily erodes. Consequently, we offer
hypotheses on the characteristics of the PD process that increase its strategic significance and
discuss some practical challenges in the face of these dynamics.

 1

mailto:hazhir@mit.edu

Introduction
Firm performance and heterogeneity is a central topic of interest for researchers and

practitioners alike. According to the resource-based view of strategy, it is important to look
inside the firm for capabilities that distinguish it from its competitors (Wernerfelt 1984; Barney
1991; Peteraf 1993) and enable the firm to gain rents. A capability should be valuable, rare,
unimitable, and un-substitutable (Barney 1991) so that it can contribute to sustained competitive
advantage.

Researchers have suggested several broad explanations for why some capabilities elude
imitation and replication. Barney (1991) offers three main factors that result in unimitability:
history dependence, causal ambiguity, and social complexity. Dierickx and Cool (1989) note that
capabilities are stocks, and consequently discuss time compression diseconomies, asset mass
efficiencies, interconnectedness of stocks, asset erosion time constants, and causal ambiguity as
the main reasons why capabilities are hard to imitate. Finally, Amit and Schoemaker (1993)
suggest uncertainty, complexity, and organizational conflict as the main factors that create
heterogeneity in managerial decision-making and firm performance.

While these general explanations are important starting points, the resource-based
literature has not provided a detailed and grounded understanding of the capability evolution that
it suggests underlies the barriers to imitation (Williamson 1999). Opening the black-box of
capability is required for recognizing a capability independent of performance measures it is
supposed to explain, and for proposing testable hypothesis about relative importance of different
capabilities. Such understanding would not only strengthen the resource-based view
theoretically; it is also needed to enhance the practical usefulness of the framework.

A few theoretical perspectives elaborate on barriers to imitation by discussing the factors
that hinder formation of successful strategies through adaptive processes. Leonard-Barton
(1992) introduces the concept of core rigidity, where routines underlying firm’s capabilities
resist change when the environment demands adoption of new capabilities- for example, in the
face of architectural innovations (Henderson and Clark 1990). The organizational learning
literature highlights a similar barrier to learning, competency traps (Levitt and March 1988),
where accumulated experience with old routines reduces their operating cost and makes the new,
potentially superior, practices less rewarding. Finally, the complexity of imitation is elaborated
on through theoretical models of adaptation on rugged fitness landscape (Levinthal 1997; Rivkin
2001). This view of adaptation suggests that interdependency and interaction among the
different elements of the firm strategy (Milgrom and Roberts 1990) creates multiple local peaks
in the landscape of fit between the organization’s strategy and the environmental demands,
making it hard for the firm to achieve new combinations of strategic fit through incremental
adaptation.

More recently, a few empirical studies have enriched the understanding of the nature of
capabilities and their dynamics. Henderson and Cockburn (1994) discuss how component and
architectural competence contribute to research and development productivity of pharmaceutical
firms. An intra-firm evolutionary perspective has been developed (Burgelman 1991; Lovas and
Ghoshal 2000) which views the evolution of strategies as processes of random variation and
selection inside a firm, and several case studies have elaborated on this perspective. (See the
special issue of Strategic Management Journal on evolutionary perspectives on strategy,
Summer 1996.) Finally, a few studies explore the nature and dynamics of organizational
capabilities in different industries, including banking, semi-conductors, automobiles,
communications, pharmaceuticals, and fast food (Dosi, Nelson et al. 2000).

 2

These studies highlight that the complexity of capabilities resides in their evolution
through time and the path dependence in these dynamics. In this paper, drawing on two in-depth
case studies of the software development process, we propose a grounded theory of why
successful product development (PD) capability is hard to establish, and easily erodes when
established. Using the case study method (Eisenhardt 1989), combined with dynamic simulation
modeling (Forrester 1961) (See Black, Carlile et al. (2004) for a detailed description of the
method), we develop a fine-grained and internally consistent perspective on platform-based PD
capability: how it operates through time, and why it is hard to sustain. Through this theory-
building practice we follow a tradition of using the micro-foundations of behavioral decision
theory to explain a phenomenon of interest in strategy (Zajac and Bazerman 1991; Amit and
Schoemaker 1993): operation and erosion of capabilities. Our results show 1) how the long-term
consequences of quality and productivity adjustment under pressure can deteriorate product
development capability, 2) how the adaptation trap makes it hard for organizations to sustain an
efficient product development process, and 3) how continuity in product base and architecture
reinforces these dynamics.

Context of Study: Platform-based PD in the Software Industry
Product development is often highlighted as the prime example of a dynamic capability

(Eisenhardt and Martin 2000; Winter 2003). By creating innovative products that fulfill unmet
market needs firms can create competitive advantage. Moreover, moving into new product
markets through successful product introduction enables firms to change their strategic
orientation; for example, Hewlett-Packard changed from an instruments company to a computer
company through product development (Burgelman 1991). In addition, since dynamic markets
demand continuous introduction of new products, companies in these markets cannot find a
substitute for the product development capability.

The practice of new product development has changed in many ways. While new
products were once developed separately, platform-based product development is gaining
prominence in high-speed competitive markets (Sanderson and Uzumeri 1997; Cusumano and
Nobeoka 1998; Gawer and Cusumano 2002). Platform-based product development entails
building a central set of components around which new products in a product family are
developed. Each new model of the product adds a few new features to the existing architecture
and product base. This process has several benefits, since it allows the firm to get the first
product to the market faster and with less resources; it provides for learning about market and
internal processes from one model to another; it allows for other players in the market to build
around the central platform, thereby creating positive externalities for a product line (Gawer and
Cusumano 2002); and it enhances competitiveness by increasing control over the pacing of
product introduction (Eisenhardt and Brown 1998).

For example, Palm currently has three major product families for the PDA market: Zire,
Tungsten, and Treo. Each product family has had different product releases/models shaped
around a specific platform. For example, the Treo platform combines features of cell phone and
classical PDA, and each new model has included new features, e.g., still camera, MP3 player,
and video camera. Most software products have traditionally followed the principles of the
platform-based development process, even though using a different vocabulary. In the software

 3

industry each new release (=model1) of a product (= product family) builds on the past releases
by adding new features to the current code base (= product base). This multiple release (=
platform-based) development strategy operates across most common software products we use,
from operating systems (e.g., Mac OS, Windows, DOS) to different applications (e.g., MS
Excel, Matlab, Stata).

Compared to single-product development, platform-based product development brings
more continuity across multiple releases of a product, since not only do different releases share
design and development resources, but they also have similar pools of customers, the same
architecture, and a similar product base. These connections among different models highlight
the importance of an integrative view of product development which encompasses the dynamics
across multiple releases of a product family. While there is a rich literature looking at product
development (PD) in general (see Brown and Eisenhardt (1995) and Krishnan and Ulrich (2001)
for reviews) and recent body of work on platform-based PD is growing (e.g., (Sanderson and
Uzumeri 1995; Meyer, Tertzakian et al. 1997; Cusumano and Nobeoka 1998; Muffatto 1999;
Krishnan and Gupta 2001), there has been little research on the dynamics of the platform-based
product development process.

This gap is also observable in the literature on project dynamics. There is a rich set of
studies discussing single-project dynamics (e.g., (Cooper 1980; AbdelHamid and Madnick
1991; Ford and Sterman 1998). These studies have introduced the concept of the rework cycle
and have discussed several different processes, including the effect of pressure on productivity
and quality, morale, overtime, learning, hiring and experience, phase dependency, and
coordination, which endogenously influence the performance of different projects. However,
with the exception of Repenning’s work (2000; 2001), little attention has been spent on the
dynamics when consequent product models are developed by the same development
organization.

Repenning (2000; 2001) looks at multiple-project R&D systems and discusses tipping
dynamics that follow resource allocation between the concept design and development phases of
a PD process. He shows that there potentially exist two equilibria with low and high efficiency
for the PD organization, and a tipping point (a state of the system at which the behavior changes
significantly) between the two. These results, however, rely on the assumption that development
gets higher priority and that concept design adds enough value through avoiding future errors in
development to justify it on efficiency grounds. Moreover, this work fails to consider the quality
considerations of the product development when the product is out of the PD organization.

In this study we focus on the dynamics of platform-based product development with an
emphasis on the effects of products in the field and the architecture and product-base. As a result,
we take into account the continuity between different releases of a product. Moreover, we focus
our analysis on dynamics that make it hard to build and sustain the efficient PD capability that is
crucial to the success of a firm in competitive markets.

The software industry fits well as the setting for this study. In the absence of production
and distribution barriers, product development is the major part of the software business. On the
other hand, the rapid pace of change in software industry makes it a great example of a dynamic
market. Therefore the product development is a crucial dynamic capability for a software firm.
To differentiate the firm’s performance from that of its competitors, a software firm needs a

1 Throughout the text we use these terms interchangeably. We tend to use the software vocabulary when talking
specifically about the two case studies, and use the general terms when discussing the implications for platform-
based PD in general.

 4

strong PD capability that can produce products with more features, faster, and more cheaply than
the competitors.

Moreover, despite the importance of PD capability in this industry, software development
projects often cost more than budgeted, stretch beyond their deadlines, and fall short of
incorporating all their desired features (for a meta-survey see (Moløkken and Jørgensen 2003)).
Cost and schedule overruns in software projects have persisted for over two decades, despite
significant technological and process improvements, such as object-oriented programming,
iterative and agile development, and product line engineering, among other things. The
challenge of learning to successfully manage software development is therefore non-trivial. Yet
this challenge is not insurmountable: Modest improvements in project measures (see Figure 1)
and development productivity (Putnam 2001) are observable in a long time horizon.
Furthermore, the size and complexity of software development projects are considered medium-
range (average size of about 100 person-months (Putnam 2001; Sauer and Cuthbertson 2004))
allowing for an in-depth look at all the components of the PD process. Finally, there is a rich
literature on the software development process, including some of the pioneering work in
applying simulation models to project dynamics (AbdelHamid and Madnick 1991). We can
therefore build on this literature for the research at hand.

IT Project Performance

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1994 1996 1998 2000 2002

Failed
Challenged
Succeeded

Source: Standish Group Surveys

Figure 1- The performance of IT projects in the U.S. based on the bi-annual survey of the
Standish Group. Data is based on 8380 projects, mostly software development. Succeeded
includes projects that were on-time and on-budget. Failed group includes projects that were
never finished, and challenged group includes the rest. The data is compiled from different
sources on the Standish Group surveys, including their 1995 and 2001 surveys which are
available at their website: http://www.standishgroup.com/index.php.

 5

http://www.standishgroup.com/index.php

Data Collection
This study uses interviews and archival data from two product development teams in a

single software organization (Hereafter called Sigma) to build a dynamic simulation model of
platform-based product development. Sigma is a large IT company with over 16,000 employees
and several lines of products in hardware and software, which are distributed in multiple
locations around the world. In recent years the company management has decided on a strategic
shift towards the software side of the business and therefore strong emphasis is put on the
success of a few promising software products. The study was supported by the research
organization of the company, which was interested to learn about the factors important to the
success or failure of software projects. We were given complete access to internal studies and
assessments conducted within Sigma. Moreover, one of the research personnel who was familiar
with several software projects in the company helped us both with connecting with the two cases
we studied and with the data-gathering effort.

We studied closely the development of two products, Alpha and Beta. The two cases
were selected because they had significantly different performance on the quality and schedule
dimensions, despite similarities in size and location. Despite a promising start, Alpha had come
to face many quality problems and delays while Beta’s releases were on-time and had high
quality. Comparing and contrasting the processes in effect in two cases provided a rich context
to build a model capturing the common processes across two projects with different outcomes,
therefore helping shed light on how similar structures can underlie different outcomes.

Seventy semi-structured interviews (by phone and in person, ranging between 30 to 90
min.) and archival data gathered in three months of fieldwork in Sigma inform this study.
Moreover, the first author participated in a few group meetings in the organization that focused
on the progress of products under study. The study is part of a longer research involvement with
the company; therefore, we continued to gather additional data and corroborate on different
themes after the three months of major fieldwork. These efforts included 20 additional interviews
and a group session which elicited ideas from 26 experienced members of the organization. The
interviews included members of all functional areas involved in development, services, and
sales, specifically architects and system engineers, developers, testers, customer service staff,
sales support personnel, and marketing personnel, as well as managers up to two layers in several
of these areas. Interviewees were given a short description of the project, were asked about their
role in the company and the process of work, and then they discussed their experiences in the
development of respective products.

Data Analysis
Interviews were recorded and a summary of each interview was created soon after the

interview session. We used this information to build a simple model of how the mechanics of the
development process work. Moreover, in each interview we searched for factors contributing to
quality and delay issues and looked for corroborations or disagreements with old factors. Based
on these factors and the observations on the site we generated several different hypotheses about
what processes contribute to, or avoid, delay and quality problems in development of Alpha and
Beta. We then narrowed down the list of hypotheses into a core set based on what themes were
more salient in the interviews and in the history of the products. This core set of dynamic
hypotheses created a qualitative theory to be formally modeled using the system dynamics
modeling framework (Forrester 1961; Sterman 2000).

 6

The model allows us to understand the relationship between the process of product
development and the behavior of a PD organization. Using sensitivity analysis and different
simulation experiments, we learned about the dynamic consequences of interaction between the
mechanics of product development and decision-rules used to allocate resources and manage the
system.

In the rest of the paper, we use the simple simulation model to explain why creating,
managing, and sustaining platform-based product development processes is difficult. More
specifically, we explain why PD capability in these settings can erode through random
environmental shocks and adaptation, and describe the role of product architecture and feedback
from the product in the field in the erosion of PD capability. Next, we provide a brief description
of the software development process in the two cases studied. In the following section, the
simple model of multiple-release product development is introduced and the dynamics of interest
are discussed in detail.

Overview of Development Process for Alpha and Beta
In Sigma, we studied the development of two products closely. Both products are

customer relationship management (CRM) solutions (or part of a CRM solution) and follow
similar general processes of software development, as described below. The development
process described here is for one release of a product; however, usually a new release is well
underway when the current release is launched into the market. Therefore the different phases of
development overlap with each other for different releases.

The software development process includes three main phases. These phases can be
followed in a serial manner (waterfall development) or iteratively. Sigma development
organization followed a largely waterfall approach, with some iterative elements. In the concept
design phase, the main features of the product are determined, the product architecture is
designed, and general requirements for developing different pieces of code are created. For
example, a new feature for the next release of a call-center software can be “linking to national
database of households and retrieving customer information as the call is routed to a customer
service agent.” Software architects decide the method by which this new capability should be
incorporated into the current code, which new modules should be written, and how the new code
should interact with current modules of code. Consequently a more detailed outline of the
requirements is developed that describes the inputs, outputs, and performance requirements for
the new modules, as well as modifications of the old code.

The next step of software development process is developing the code. This is usually
the most salient and the largest share of the work. In this step, software engineers (developers)
develop the new code based on the requirements they have received from the concept design
phase. The quality of the development depends on several factors including the skills of
individual developers, complexity of the software, adherence to good development practices
(e.g., writing detailed requirements and doing code reviews), quality of the code they are
building on, and quality of the software architecture (MacCormack, Kemerer et al. 2003). Some
preliminary tests are often run in this stage to insure the quality of the new code before it is
integrated with other pieces and sent to the quality assurance stage.

Quality assurance includes running different tests on the code to find problems that stop
the software from functioning as desired. Often these tests reveal problems in the code that are
referred back to developers for rework. This rework cycle continues until the software passes
most of the tests and the product can be released. It is important to note that not all possible

 7

errors are discovered during testing. Often tests can cover only a fraction of possible
combinations of activities for which the software may be used in the field. Therefore, there are
always some bugs in the released software.

When the software is released, new customers buy and install it and therefore require
service from the company. The service department undertakes answering customer questions
and helping them use the software efficiently, as well as following up on bugs reported by
customers, and referring these bugs to the research and development organization. These bugs
need to be fixed on the customer site through patches and ad hoc fixes if they are critical to
customer satisfaction. Current-Engineering (CE) is the term used for this activity of creating
short-term fixes for bugs on a specific customer site. CE is often undertaken by the same part of
the organization that has developed the code, if not by the same pool of developers. If the bugs
are not critical, they can be fixed in later releases of the software. In this article Bug-Fixing
refers to the activity of fixing problems discovered from old releases in the new release of the
product and therefore is different from CE. Consequently bug-fixing usually competes with
addition of new features to the next release.

The development, launch, and service activities discussed above focus on a single release
(version) of the software. However, different releases are interconnected. First, different
versions of software build on each other and therefore they carry over the problems in code and
architecture, if these problems are not fixed through bug-fixes or refactoring of the architecture,
(Refactoring is improving the design and architecture of the existing code.) Moreover, the
sharing of resources between development and CE means that the quality of past releases
influences the resources available for the development of the current release.

Products Alpha and Beta share the general processes as discussed above. Product Alpha
is a Customer Relationship Management (CRM) software which has been evolving for over 8
years. The research and development team working on Alpha has fluctuated at about 150 full-
time employees who work in five main locations. This product has gone through a few
acquisitions and mergers; its first few releases have led the market; and it has been considered a
promising, strategic product for the company. However, in the past two years, long delays in
delivery and low quality have removed it from leadership position in the market. In fact, the
recent low sales have cast doubt on its viability.

Product Beta is part of a complicated telecommunication switch that is developed largely
independent of the parent product but is tested, launched, and sold together with the parent
product. Beta includes both software and hardware elements and the majority of its over-80-
person R&D resources focus on software part. Beta is also located across multiple locations with
four main sites, three of which overlap with Alpha product. Beta has had exceptionally good
quality and timely delivery consistently through its life. Nevertheless, in two cases in its history,
Beta had to delay a release to keep a synchronized release plan with the parent product which
was delayed.

Model and Analysis
In this section we build a simple model of the multiple-release product development

process, in which the interactions among quality, productivity, and resource requirements for
products in the field and for maintenance of the old code are analyzed. We build and analyze the
model in three steps. First, a very simple model is developed to look at the productivity and
quality tradeoff in the development phase of the PD process. After analyzing this simple model,
we build into it a simple structure to represent what happens when the product is introduced into

 8

the field and the dynamics that follow. Finally, we add the architecture and underlying code-
base and analyze the full model.

The model is built based on the observations of PD processes described in the previous
section. Therefore the decision-rules are modeled based on the observation of individuals’
decision-making and action in practice, rather than theoretical or normative assumptions such as
rationality. Consequently the formulations of the model follow the tenets of behavioral decision
theory (Cyert and March 1963) and bounded rationality (Simon 1979) as applied to simulation
models (Morecroft 1983; Morecroft 1985).

Development Sector: Tipping point in productivity and quality tradeoff
Development of a new release of a software product entails adding new features to

existing release or developing all the new features for the first release. In the same fashion, the
new car from an existing model has some new features added or modified on the existing
platform and a new version of a personal organizer builds on the last version with a few
modifications and additional features. Demand for New Features2 usually comes from market
research, customer focus groups, benchmarking with competitors, and other strategic sources,
with an eye on internal innovative capabilities of the firm. In the case of the software products
studied, new features are proposed by sales, services, and marketing personnel, as well as
product managers who are in charge of finding out about what is offered by the competition and
what is most needed by the potential customers and prioritizing these features to be included in
the future releases. Therefore the demand for new features largely depends on competitive
pressures and factors outside the direct control of the R&D department, even though the product
managers have some flexibility in selecting and prioritizing among hundreds of features that can
be included in a new release (See Figure 2).

The proposed features to be added in future releases accumulate in the stock of Features
Under Development until they are developed, tested, and released in the market to become part
of the Features in Latest Release of the software. Feature Release rate determines how fast the
PD organization is developing and releasing new features and therefore how often new releases
are launched. The quality of the new release depends on the Defects in Latest Release, which
accumulates Defect Introduction Rate as defects in the designed product go into the market.
Figure 2 shows how these variables represent the flow of tasks and the defects in the product.
Formally, the stocks (boxes) represent the integration of different flows (thick valves and
arrows), for example Features Under Development is the integral of Feature Addition minus
Feature Release. Appendix A details the equations of the model.

2 The names of variable that appear in the model diagrams are italicized when they are first introduced.

 9

Defects in Latest
Release

Features in Latest
Release

Features Under
Development Feature

Release
Demand for New

Features

Defect
Introduction

Figure 2- The basic stock and flow structure for platform-based new product development.
Demand for New Features accumulates in the stock of Features Under Development until they
are developed and transferred into the Features in Latest Release through Feature Release.

Strong product development capability in this setting translates into getting the highest
rate of Feature Release given a fixed level of development resources. Companies that can
sustain such high rates of features release will have a competitive advantage through having
some combination of more features in their new releases, faster release times, and lower cost of
product development.

In its simplest form, Feature Release (FR) depends on the amount of resources available
for development (RD), the productivity of these resources (P) and the quality of their work (i.e.,
fraction of accomplished work that passes the quality criteria). This fraction depends on two
main factors, the quality of work, represented by the fraction of developed features that are
defective (Error Rate: e), and the comprehensiveness of testing and quality assurance practices,
represented by the fraction of errors discovered in testing (frT). Therefore the fraction of work
that is accepted is one minus the fraction of work rejected or frA=1-e*frT. Consequently Feature
Release can be summarized as:

FR=RD*P*(1-e*frT) (1)
Here we measure the development resources (RD) as the number of individuals working

on development of new features. Productivity (P) represents how many features a typical
developer can create in one month and depends on several factors including the skill and
experience of individual developers, the quality of design and requirements for the development,
the complexity of the code to be developed, the development process used (e.g., waterfall vs.
iterative) and the availability of different productivity tools. Similarly, Error Rate (e) depends on
several factors including the quality of design and detailed requirements, complexity of
architecture, the scope of testing by developers (before the official testing phase), code reviews
and documentation, development process used, and the pressure developers face, among other
things. Finally, the fraction of errors caught in testing (frT) depends both on comprehensiveness
and coverage of test plans as well as on the quality of execution of, and follow-up on, testing.

What creates the dynamics in a product development process is the fact that resources,
productivity, quality, and testing are not constant, but often change through the life of a product
development organization working on multiple releases of a product. While exogenous changes
in these variables (e.g., economic downturn results in a lay-off and a reduction in available
resources) are important, they add little insight into internal dynamics of the PD processes and
offer little leverage for improvement. Therefore here we focus on those changes which are
endogenous to the PD process, for example how resource availability changes because of the

 10

quality of past releases. In what follows we expand the model to capture some of the main
endogenous effects (feedbacks) and analyze the results.

A central concept for understanding the capability erosion dynamics is the balance
between resources available and resources required for finishing a release on schedule. This can
be operationalized as Resource Gap (RG), the ratio of typical person.months of work required to
finish the development of pending Features Under Development by a scheduled date, to available
person.months until that date. Therefore the Resource Gap is a function of three variables: how
many features are under development, how much time the PD organization is given to develop
these features, and how many development resources are available to do this job (See the exact
equations in Appendix A). In the analysis of the determinants of the resource gap, we can
distinguish between Features Under Development that change endogenously due to model
dynamics, versus the time given for development and the resources available, which are mainly
managerial policy levers. Therefore we keep the resources available and the time to develop the
pending features constant when discussing the model dynamics in the absence of policy
interventions. Resource Gap is a measure of pressure on the development team and therefore we
use them interchangeably.

The resource gap can be managed through controlling the amount of resources available
or the scheduled finish date. If pressure is consciously controlled, the desired impact of
increasing schedule pressure is to increase the productivity of developers so that the gap between
available resources and desired resources can be closed. In fact in the case of software
engineering, it is estimated that under pressure people can work as much as 40% faster
(AbdelHamid and Madnick 1991) All else being equal, this balancing loop (Work Faster loop-
see Figure 3) enables development teams to accomplish more work than in the absence of
pressure and potentially meet a challenging schedule. Managers commonly use this lever to
increase the productivity of the development process, as reflected in the comments of a program
manager:

“The thinking that [a higher manager] had, and we think we agree with this, is that if
your target is X and everybody is marching for that target, you fill the time for that target. If you
are ahead of the game, people are probably going to relax a little bit: because we am ahead of
the game, we don't need to work so hard, we can take a longer lunch, we can do whatever; and
guess what: Murphy's law says you now won't make that target. So […] you shoot for X minus
something, you drive for X minus something so that you build in on Murphy’s law to a point.”

However, there is a negative side to increasing work pressure. As pressure increases and
developers try to work faster to meet the schedule, they start to make more errors. This happens
because under pressure they take shortcuts, for example by less detailed requirement
development, little documentation of the code, lack of code review, and poor unit testing (See
(MacCormack, Kemerer et al. 2003) for a quantitative analysis of effect of different practices on
quality and productivity). Moreover, the stress induced by pressure can increase their error rate
and further erode the quality.

Higher Error Rates surface in a few weeks when the code goes into the testing phase,
resulting in the need for more rework. Consequently rework increases the amount of work to be
done and therefore the pressure, closing a potentially vicious, reinforcing cycle (Rework Loop-
Figure 3).

The error rate-productivity trade-off discussed above is well documented for a single
project in different domains, from software development to construction (Cooper 1980;
AbdelHamid and Madnick 1991). These effects were also salient in Alpha and Beta, for

 11

example developers in Alpha found little time to engage in process work that was supposed to
enhance the quality of the product, such as doing code reviews and making detailed requirement
plans. The strength of trade-off between pressure and quality depends not only on individual
skills and experience, but also on the development process and incentive structure at place in the
PD organization. For example in Alpha, the quality of development was hardly transparent to
management at the time of development, therefore under acute pressure, developers had more
incentive to forgo good practices and sacrifice quality to increase the speed of development.

In the simple model, we aggregate the effects of pressure on productivity and quality in
two simple functions. FP(RG), the effect of Resource Gap (RG) on productivity, changes the
productivity around a normal level, PN, so that P=PN* FP(RG). Similarly, Fe(RG) represents the
effect of Resource Gap on Error Rate and therefore Error Rate changes around its normal value
eN: e=eN*Fe(RG). Substituting in Equation (1) we can see how Feature Release depends on
Resource Gap:

FR= FR=RD* PN* FP(RG)*(1- eN*Fe(RG)*frT) (2)
The exact behavior of this function depends on the shape of FP and Fe and therefore on

the strength of the two effects, but in general both functions are upward sloping (increase in
Resource Gap increases both Productivity and Error Rate) and both saturate at some minimum
and maximum levels (Productivity and Error Rate cannot go to infinity or below zero). The
qualitative behavior of the system, however, depends only on the general shape of the Feature
Release with respect to different levels of Resource Gap. An upward sloping function suggests
that the higher the pressure, the higher the output of the development process is (although this
can be at odds with quality if a poor testing system lets the defects to go through). A downward
sloping function suggests that the least pressure is needed to get the best performance out of the
system, since by adding to the Resource Gap, the system performance (Feature Release)
deteriorates. Finally, a more plausible shape is inverse-U shape, where up until some level of
Resource Gap people will work harder and make more progress, but above that level the increase
in pressure is actually harmful since people start to take shortcuts that harm the quality
significantly and therefore developers end up reworking their tasks and therefore releasing fewer
acceptable features on average.

Figure 3 illustrates the causal relationships between Resource Gap, productivity, Error
Rate, and Feature Release. Two feedback loops of Work Harder and Rework are highlighted in
this picture. Work Harder loop suggests that an increase in the Features Under Development
increases the demand for resources and therefore the Resource Gap. As a result productivity
increases and the PD process releases more new features, reducing the stock of Features Under
Development (hence Work Harder loop is balancing (B)). The Rework loop highlights the fact
that in the presence of more features to be developed and higher pressure, people take shortcuts
and work with lower quality, therefore increasing the Error Rate and consequently the amount of
rework needed to fix those errors. This results in slower Feature Release and therefore
potentially higher Features Under Development (Hence Rework loop is reinforcing (R)).

Assuming the more plausible inverse-U shape for the outcome of the tradeoff between
these two loops, the total effect of Resource Gap on output of PD can be categorized into two
regions. For lower levels of Resource Gap and pressure, an increase in Features Under
Development (and therefore pressure) has a desirable net gain, i.e., the PD organization will
produce more. However, above some threshold of Resource Gap, the relationship inverses, that
is, the PD organization will produce fewer new features as a result of an increase in the pressure.

 12

Features in Latest
Release

Features Under
Development Feature

Release
Demand for New

Features

Resource Demand
for Development

+

Resource Gap
(Pressure)Available

Resources -

+

Error Rate
+

-

Productivity

+

+

Ef
fe

ct
 o

f P
re

ss
ur

e
on

 P
ro

du
ct

iv
ity

Fe
at

ur
e

R
el

ea
se

B

Work Faster

R

Rework

Resource Gap

Ef
fe

ct
 o

f P
re

ss
ur

e
on

 E
rr

or

Figure 3- The basic structure of development process and tradeoffs between effects of Resource
Gap on Error Rate and productivity. The graphs show the shape of these two effects, both
increasing as more pressure is added. The Feature release vs. Resource Gap graph shows the
aggregate result of pressure on Feature Release for eN=0.4 and frT=0.9. The values on the axes
are not shown since the qualitative shapes of the functions are what matter in the analysis.

The dynamics that emerge from this simple model can be best shown through an
example. First imagine a PD organization which is in equilibrium, i.e., there is a fixed, constant
demand for new features coming into the organization, and the development team is able to meet
this load, and therefore Feature Release equals the demand for new features. What happens if we
perturb the PD organization with a transient increase in workload, through additional demand for
new features? An example of such perturbation is a set of unplanned, new features that the
higher management asks the development team to incorporate into the next release, beyond the
current workload.

Figure 4 portrays the two possible outcomes of such perturbation. In Figure 4-a (left), the
PD organization is working by developing six new features each month, until time ten, when the
demand increases to ten features per month and continues to be so for four month. During this
time, the additional demand results in more Features Under Development and therefore higher
levels of Resource Gap. This additional pressure in fact increases the overall Feature Release
over the equilibrium value, since the increase in the productivity is bigger than the negative
effect of the higher Error Rate. Consequently, after the short-term additional demand is removed
(feature demand goes back to six), the PD organization continues to release more new features
than demanded, and therefore is successful in bringing the stock of Features Under Development
back to its equilibrium value.

 13

Fe
at

ur
e

D
em

an
d

A
nd

 R
el

ea
se

15

11.25

7.5

3.75

0

150

125

100

75

50

Features U
nder D

evelopm
ent

15

11.25

7.5

3.75

00 10 20 30 40 50 60 70

Feature Demand

Features Under
Development

Feature Release

0 10 20 30 40 50 60 70

Feature Demand

Features Under
Development

Feature Release

 Time (Month) Time (Month)

Figure 4- The reaction of PD process under a pulse of increased demand for features. The pulse
lasts for 4 months and increases the feature demand (red), Features Under Development (blue)
represents the features demanded by market but not yet developed. Feature release (green)
represents the output of the PD process. Figure 4-a on the left hand side, represents a case where
additional pressure introduced by the pulse is managed through faster work and the Features
Under Development is moved back to its equilibrium level. Figure 4-b, shows how the PD
organization fails to accommodate a slightly stronger pulse, resulting in erosion of PD capability
as the Feature Release drops down and stays low.

Now consider the same experiment with a slightly stronger perturbation (e.g., demand
going to 13 rather than 10). This time we observe a dramatic shift in the performance of the
simulated PD organization. In the new state, which, following Repenning (Repenning 2001) we
call Firefighting, the Feature Release fails to keep up with demand and in fact goes down, the
Features Under Development grow higher and higher since demand continues to exceed release,
and in short the PD organization moves into a mode of being excessively under pressure, being
behind the market demand, and developing fewer new features than they used to in the initial
equilibrium. What creates such dramatic shift in behavior, for addition of just a few features to
the workload?

 14

Fe
at

ur
e

R
el

ea
se

Resource Gap

Feature Demand

Initial Pressure

Stable Equilibrium

Tipping Pressure

Tipping Point

Maximum Capacity

Figure 5- Schematic inverse-U shape curve of Feature Release as a function of Resource Gap.
The picture highlights the stable equilibrium (where the feature demand meets the upward
sloping part of the curve), the tipping point (where the feature demand meets the downward
sloping part of the curve), and the maximum capacity (where the curve reaches its maximum).

A graphical representation of dynamics helps illuminate this question better. Figure 5
shows an inverse-U shape curve that relates Resource Gap to Feature Release. The equilibrium
level of feature demand is represented by a horizontal line. Initially the system is in equilibrium
at the point marked by stable equilibrium: the Resource Gap is at a level at which Feature
Release equals feature demand, and therefore the Features Under Development does not change
and the system remains in equilibrium. If the system is perturbed by a small pulse (reduction) in
demand, the Features Under Development increase (decrease). Hence the Resource Gap
increases (decreases) to a value right (left) of the stable equilibrium point, and that results in
values of Feature Release higher (lower) than feature demand. As a result, the Features Under
Development decrease faster (slower) than increase, and the stock goes down (up), reducing
(increasing) the Resource Gap until the system gets back to the stable equilibrium. The arrows
on the curve represent the direction towards which the system moves: for small perturbations in
work or schedule pressure the system adjusts itself back into the stable equilibrium. However,
there is threshold of Resource Gap, the tipping pressure (see the Figure 5), over which the
systems behavior becomes divergent. An increase in the Resource Gap over the tipping pressure
results in Feature Release values lower than feature demand. Therefore the stock of Features
Under Development keeps growing, exerting further counterproductive pressure; hence the
rework loop works in its vicious direction and the PD capacity goes down with no recovery.

Now we can address the difference between the first and the second experiment. In the
first experiment, the initial perturbation brought the Resource Gap to the right of the stable
equilibrium but just short of passing the tipping point. Therefore the simulated PD organization
was able to recover by working faster, producing more, and reducing the pressure. However, the
perturbation in the second experiment pushed the Resource Gap over the edge and beyond the
tipping point. The PD organization was caught in a cycle of working harder, making more errors,
spending more time on rework, and sensing more pressure under the unrelenting market demand.

 15

Note that tipping point is different from the point at which we achieve the maximum
development capacity (See Figure 5). Tipping point is where the feature demand and Feature
Release meet on the downward sloping part of the release-pressure curve, while the maximum
Feature Release is achieved at the pressure which maximizes this curve. As a result, the Tipping
Pressure, as well as the stable Equilibrium Pressure, depend on the feature demand. Changing
feature demand shifts the tipping point and stable equilibrium because it shifts the horizontal
demand line on the curve, bringing them closer to (by more demand) or further from (by less
demand) each other and the maximum capacity.

The shift in tipping point and stable equilibrium highlights an important tradeoff between
a PD organization’s operating capacity and its robustness. We can design more new features by
accepting a higher demand rate (e.g., through taking more tasks on in the project planning for a
new release), but that brings the stable equilibrium and the tipping point closer, and therefore the
PD organization can tip into the firefighting mode more easily. For example, an unexpected
demand by higher management, a technical glitch, or departure of a few key personnel can tip
the system into firefighting mode. In the extreme, we can get the maximum output from the PD
organization by demanding features at the maximum capacity rate. In this case we bring the
stable equilibrium to the tipping point and therefore the system is at the tip of the slippery slopes
into firefighting. While highly productive, such a system can easily fall into the firefighting trap
in the face of small unexpected perturbations in the environment of the PD work.

The dynamics discussed in this section look only at the development part of PD process.
Therefore they do not account for the quality consequences of the features designed, when they
go outside of the PD organization. This is not a good assumption and has unrealistic
conclusions, e.g., the PD organization is better off to reduce its testing goals, since that way it
does not find the defects in the features designed, and consequently does not need to do any
rework, avoiding firefighting, and increasing the capacity (in simple terms, ignorance is bliss). In
the next two sections we expand the model to account for two important consequences of the
quality of PD work, and the dynamics that pursue.

Current engineering: shifting capacity and creating an adaptation trap
New features which are introduced into the market through new releases have important

effects for the product development organization. First, there is a demand for customer support
and services. The service organization, which is often different from the R&D unit (as is the
case in Sigma) is in charge of direct interaction with these customers. However, if service
people are unable to solve a customer issue, the customer call is transferred to the R&D
department. These transfers (called escalations in the company) can arise because of complexity
of the software, but also because some defect in the code has created an unexpected issue in the
client site. When such defects are found, the development team often needs to decide on their
fate. If the problem is interfering with important needs of customer, R&D personnel are
allocated to fix the problem, usually through quick, customized patches at the customer site.
This activity is referred to as current engineering (CE) and can take a significant share of R&D
resources. In fact in the product Alpha, 30-50 percent of development resources were allocated
to CE work.

Current engineering is not the only connection between the PD organization and the
product in the field. Initial installation of the product also requires PD resources, therefore a
product design that facilitates quick, smooth installation can save the PD organization from

 16

installation challenges. However, improving installability and serviceability of the product gets
lower priority when important new features should be added to keep up with the market demand.

A more subtle, and potentially more important, feedback of field performance is through
sales level and its influence on resource allocation across a portfolio of products. Delays and
quality problems that identify a PD organization in trouble often reduce customer satisfaction
and sales for a product. Since resource allocation across different product lines in the portfolio
often correlates with the success of the product in the field, i.e. its sales pattern, poor quality and
sales can cost the PD organization its resources for development of future releases. This effect
of product performance in the field on resources given to a product line depends on resource
allocation policies, regardless of product characteristics.

This section focuses on modeling and analyzing the effect of current engineering work.
Figure 6 shows the causal structure of the model that includes CE. Here the features flow into
the field as new releases are launched, and Defect Introduction captures the flow of defects into
the field along these features. These defects create a demand for PD resources to be allocated for
current engineering (Resource Demand for Current Engineering.) This demand further increases
the Resource Gap and can aggravate the Error Rate for the current Features Under Development,
since developers must fix customer-specific bugs rather than spend time on quality work for the
next releases (Current Engineering loop in Figure 6). The demand for CE resources depends not
only on the quality of the product in the field (operationalized as Defects in Latest Release), but
also on the sales, fraction of defects that create noticeable problems, and productivity of doing
CE work. Details of formulations appear in the Appendix A. The analysis that follows keeps
sales and fraction of noticeable problems to be fixed and focus on the dynamics in the interaction
of the Development and the Product in the Field Sectors.

Product In the FieldDevelopment

Defects in Latest
Release

Features in Latest
Release

Features Under
Development Feature

Release
Demand for New

Features

Resource Demand
for Development

Resource Demand
for Current

Engineering

+

+

Resource Gap
(Pressure)

Available
Resources

-

+

+

Error Rate

+

Defect
Introduction+

-

Productivity

+

+

R

Current
Engineering

Figure 6- The structure of the model with the addition of products in the field. The new structures are
highlighted through black variable names and blue, thick causal links.

 17

Two major dynamic effects follow the introduction of CE into the analysis. First, the
additional resources needed to serve the CE reduce the effective capacity for developing new
features. The magnitude of this effect depends on several factors that determine demand for CE
resources, some of which are endogenous to the dynamics of development and products in the
field. For example, very good quality in the development phase can significantly reduce the CE
resource demand since the product has few noteworthy bugs when introduced into the market.
Another factor is sales, which increase the CE demand, since it increases the number of
customers who may face problems. The strength of the sales effect also depends on the nature of
the product. For customizable products, different defects show up in different customer sites
because each customer uses a different set of features and those combinations reveal different
hidden problems in the design of the product. However, most defects in off-the-shelf products
are common across different customers and therefore by developing one patch, the PD
organization serves several customers, reducing the burden of CE significantly. Other relevant
factors include the modularity of architecture and complexity of the code, since that determines
how resource-consuming the CE work is; the priority of CE work relative to new development;
the fraction of defects that surface in typical applications; and the power of the customers in
relationship with the focal organization.

In the case of CRM softwares we studied in Sigma, these factors added up to a potentially
strong CE effect: the products are customizable and the CE work gets a high priority because
many customers command special attention in their relationship with Sigma (partially because
future sales depends both on the word of mouth and the direct feedback from current customers).
However, Alpha and Beta faced different levels of pressure with regard to CE: Alpha had to
allocate 30 to 50 percent of its resources (at different times) to CE work, while this figure
remained below 10 percent in Beta. The difference between the two can be explained by the
internal dynamics of the two cases. Alpha had slipped into a firefighting mode, faced significant
quality problems, and poor quality of past releases took a toll on the complexity of the code-base
and architecture, increasing the time needed to figure out and fix a problem. On the other hand,
Beta had largely succeeded in avoiding the firefighting trap and therefore with a good quality
had very few escalations and little demand for CE work.

The second effect of bringing CE into picture highlights an adaptation trap for the PD
organization. Imagine the adaptive path that the management can take to maximize the feature
release of the PD organization. Increasing the pressure (through additional demand or tighter
schedules), the management can monitor the performance of the system to see whether
incremental increases in pressure pay off by higher feature release, and stabilize where the
marginal return on additional pressure is zero. Such adaptation process is analogous to hill-
climbing on the Resource Gap-Feature Release curve in Figure 7, and is discussed as one of the
main ways through which organizational routines adapt and create better performance (Nelson
and Winter 1982).

 18

6

5.25

4.5

3.75

3
0.80 0.90 1 1.10 1.20 1.30 1.40 1.50 1.60

Perceived Adaptation
Path Temporary Peak

Figure 7- The curve for perceived (blue) and sustainable (red) curves for Feature Release vs.
Resource Gap. The perceived curve comes from a simulation in which a short surge of demand
(similar to Figure 4) adds to the Resource Gap, while the feature release is measured when
normal delays for CE work exist. The sustainable path comes from the same experience, where
the CE resource demand is given at its equilibrium value for each level of Error Rate and feature
release.

An important distinction is that, the demand for the CE does not increase at the time that
the pressure (and consequently the output and error rates) is increased. In fact it takes at least a
few months before the product is out and then some more time before the defects show up and
are referred back to the PD organization. During this period, increases in pressure create
unrealistic boosts in the feature release rate, since the CE consequences are not realized.
Therefore the adaptation is not on the sustainable payoff landscape which takes into account the
future CE demands, rather it is on a temporary one with unrealistic returns to additional pressure
(See Figure 7). As a result, the adaptation process points to an optimum feature demand that is
indeed beyond the capacity of the PD organization to supply in long-term , and when the CE
work starts to flow in, the PD organization finds itself in the slippery slopes of firefighting.
Pushed this far, not only the CE demand increases the pressure, but also the tighter schedule and
higher demands that where justified in light of adaptive process, keep up their pressure through
an increasing backlog of features which should be incorporated in the new releases.

The strength of the adaptation trap depends on the magnitude of decoupling between the
sustainable adaptation path and the perceived path. Decoupling increases the extent to which
demand on PD organization could increase beyond the sustainable level. Therefore higher
decoupling increases the magnitude of consequent collapse of the PD process performance and
strengthens the trap. The extent of decoupling depends on two main factors: the length of delay
in observing the CE resource demand, and the speed of adaptation. A longer delay in perceiving
the demand for CE resources, e.g., because of longer release cycle, will result in a longer time
horizon in which the adaptive processes work in absence of CE feedback. Therefore the risk of

Resource Gap

Fe
at

ur
e

R
el

ea
se

Sustainable Path

Perceived
Max

Sustainable
Max Demand

Real Peak

 19

overshoot in adaptation into the unsustainable region increases. Moreover, faster adaptation,
e.g., through faster learning cycles of pressure adjustment and performance monitoring,
increases the extent to which the PD organization expands the pressure and feature demand,
before observing the CE demand.

Architecture and code base: dynamics of bug-fixing and building on error
In this section we expand the simple model of the PD process to include the effects of the

architecture and code base in the dynamics of PD. In this discussion, we focus on two main
features of architecture and code base. First, we include fixing the bugs found in the past
releases when creating a new release, as well as improving the architecture to accommodate
further expansion of the code. Second, we discuss the effect of the problems in architecture and
code base on the error rate for working on the new features.

Releases which are on the market become old when newer products are launched.
Therefore Features in Latest Release move into the Underlying Code category, while the defects
that existed in them are removed from the field (Stock of Defects in Latest Release) and are put
in the Defects in Underlying Code (See Figure 8). In this conceptualization we are lumping
together the underlying code-base and the architecture of the software. Though these two are not
the same, they have important similarities in their dynamic effects on PD processes. Bug-fixing
is the process of fixing defects that has been found in the field (or found during testing, but
ignored under work pressure) in the underlying code. It is different from current engineering
since CE happens for specific customers who face a common issue, and the resulting fixes are
not integrated with the next release of the code, while bug-fixing incorporate improvements into
the main body of the code and will apply to all future customers. The parallel process for
architecture is refactoring, which means improving the design of existing code.

Quality of underlying architecture and code base both depend on the quality of past
development work. Low quality development not only reduces the quality of code base for
future work, but also impacts architecture, since taking shortcuts in development often spoils the
designed relationships between the different modules of the code. Moreover, although we do not
model the concept design phase explicitly in this model, the quality of architecture design
depends on similar pressures that impact development phase. Therefore one can expect the
quality of the code base and the architecture to be positively correlated.

 20

Architecture and Code Base

Product In the FieldDevelopment

Defects in Latest
Release

Features in Latest
Release

Features Under
Development Feature

Release
Demand for New

Features

Defects in Underlying
CodeBug Fixing

Underlying Code Features and
Defects

Becoming Old

Resource Demand
for Development

Resource Demand
for Bug Fixing

Resource Demand
for Current

Engineering

+

+

+
Resource Gap

(Pressure)

Available
Resources

-

+

+
+

Error Rate
+

+

Defect
Introduction+

-

Productivity

+

+

R

Error Creates
Error

-

R

Bug Fixing

Figure 8- The model structure after addition of architecture and code base. New loops are highlighted in
think blue causal links.

Bug-fixing and refactoring need resources from PD organization and the demand for
these resources depends on the quality of the code-base and architecture. This demand for
resources can further increase the Resource Gap, leading to more quality problems in a
reinforcing cycle we call Bug Fixing (Figure 8). The additional resources needed for bug-fixing
are often not separated from those who work on the development of new features, since bug fixes
are part of new releases. In fact most software products have a release schedule with minor and
major releases, in which minor releases mainly focus on fixing bugs. Consequently, despite
lower visibility, bug-fixing can consume a considerable share of PD resources. For example, one
of the recent “minor” releases of Alpha, included fixing over 1000 bugs, and proved to be as
time and resource intensive as any major release.

Including the bug-fixing activity in the picture of PD process has similar consequences to
addition of current engineering. First, the bug-fixing resource demand takes away resources for
development of new features, shifting the effective, long-term, capacity of the PD process further
down. The magnitude of this shift depends on several factors including the quality of the code
developed (Did we create a lot of bugs?), the strength of testing (Did we fail to catch those bugs
initially?), the priority given to fixing bugs (Do we care about fixing bugs?), as well as the
relative productivity of bug-fixing (Does it take more resources to fix a feature than to develop it

 21

correctly in the first place?). In appendix 2 we drive the mathematical formula for the
sustainable capacity of PD process under different parameter settings.

Second, the adaptation trap is made stronger through bug-fixing feedback. The bug-
fixing activities entail even a longer delay between the original development and the observation
of demand for bug-fixing resources. This delay includes the release of new features, the
reporting of the bugs, and the scheduling of these bugs in the work for future releases. The
longer delay suggests that there is even more time during which adaptive processes fail to
observe an overshoot of demand beyond sustainable PD capacity. Moreover, the downward shift
in the sustainable capacity of PD process suggests that the gap between the short-term feature
release and what can be sustained in the long-term is made wider. Consequently, the chances of
adaptation into unsustainable region increases, and when the feedback of CE and bug-fixing
arrives, the PD organization finds itself further down the pressure-Feature Release curve.

If allocating resources to bug-fixing reduces the PD capacity and increases the chances of
slipping into firefighting mode, why not ignore this activity all together? The problem is two
fold. First, doing so will generate further customer dissatisfaction and demand for CE when old
problems surface in the new features. Moreover, ignoring bug fixes results in the accumulation
of defects in the underlying code and architecture, which can significantly increase the chances
of making errors in the current development work and trigger another vicious cycle (The Error
Creates Error loop, Figure 8).

The Error Creates Error loop, when active, is quite detrimental to the product-line. On
the one hand, the effect on the error rate is beyond the effect of pressure and results in even
lower quality. Such lower quality in fact strengthens the rework, current engineering, and bug-
fixing loops in the vicious direction. On the other hand, in the face of longer delays before the
architecture and code base effects surface, typically firefighting starts with rework and current
engineering loops driving the dynamics, followed by the domination of Error Creates Error that
seals the PD organization in firefighting. Consequently, the activation of Error Creates Error
loop suggests that things have been going wrong for quite a while, therefore reversing the trend
requires a significant investment in fixing bugs and refactoring the architecture, and in many
cases may prove infeasible. In short, it is hard to save a product line so far down into firefighting
path that it faces significant quality problems because of the old architecture and code base
quality.

An important factor in determining the propensity of a product to face Error Creates
Error loop is the modularity of its architecture. The modularity of architecture can be
represented by the average number of other modules each module is interacting with. In a highly
modular product, each part is interacting with only a few neighboring parts. In a very integrated
product, however, every piece can be interacting with every other piece. In general, new pieces
can be added safely to the old code, as long as the pieces they are interacting with are not
defective. If the interacting pieces are defective, then we observe the Error Creates Error
feedback. Therefore, in a highly modular architecture, we only need a few interacting pieces to
be fixed to avoid the feedback, regardless of whether non-interacting modules have any defects.
In aggregate this entails keeping the density of errors low (percentage of modules defective).
However, in the case of an integral architecture, things can go wrong because any of the
interacting pieces are defective, therefore we need to control the absolute number of defects.
Controlling density of errors in the code base is much easier than controlling the absolute
number. In fact, as long as the density of errors in the old releases is constant, the density in the
underlying code base does not increase even in the absence of bug-fixing, even though the

 22

absolute numbers increase proportional with new features released. Therefore, the more we
move from a modular to an integral architecture, the more important the feedback of past errors
on error rate becomes, and the more important it becomes to spend resources on bug-fixing.

Discussion
In the model and analysis part of this paper, we built a simple model of platform-based

product development that focuses on the interactions among the development of the product, the
product in the field, as well as the architecture and underlying code the new releases are built on.
When looking only at the development process, the tradeoff between quality and productivity in
the face of pressure results in tipping dynamics. The level of Resource Gap determines where
the stable equilibrium and the tipping point for the system are, and the additional pressure brings
these two points closer together as well as closer to the maximum capacity of the PD
organization. Consequently, there is a tradeoff between robustness and capacity of PD process;
increasing the demand on the system can be beneficial in terms of additional output but increases
chances of tipping into firefighting mode as a result of unexpected changes in the PD work
environment. Moreover, beyond the tipping point, an increase in pressure results in less output
and pressure, driving the PD organization into increasing firefighting.

When we expand our framework to include the products in the market we observe the
current engineering dynamics. These dynamics further highlight the importance of quality since
resources need be allocated to the CE when product quality is low. This consideration reduces
the level of output a PD organization can sustain across multiple releases. Moreover, the delay
between changes in the quality and the observation of their effect on CE workload creates a trap
for the PD organization in which adaptation to increase output of the process can actually take
the system into the firefighting region before this problem is known through feedbacks on the
ground.

Finally, inclusion of underlying architecture and code base strengthens the continuity of
multiple release product development. First, bug-fixing requires resources and further reduces
the effective capacity of the PD process for developing new features. Moreover, the delays are
longer for bug-fixing, which makes the adaptation trap deeper and more significant. Finally, the
effect of the code base and architecture quality on the quality of current development strengthens
rework, current engineering, and bug-fixing dynamics and can seal the system in firefighting
mode by increasing the costs of change.

Platform-based product development is continuous in nature since different releases of
the product are based on the same platform, share resources for development activity, trade
features from one release to another, and share resources for current engineering and bug-fixing.
Consequently, the firefighting dynamics discussed can not be contained in a single development
project; rather, they pass on from one release to another in a contagious fashion. Once the PD
organization tips into firefighting, it is increasingly difficult for future releases to avoid these
dynamics. This is why these dynamics can erode the PD capability: they reduce the performance
of the PD organization in multiple consecutive development projects. In fact, once in the
firefighting mode of behavior, new norms can shape around low quality practices, making future
improvements harder.3

In short, the Rework, Current-Engineering, Bug-fixing, and Error Creates Error
dynamics erode PD capability through sustained firefighting. The PD organization enters
firefighting not only as a result of unexpected demands when the organization is critically
loaded, but also does so following intendedly functional adaptation to get the maximum utility

 23

out of the PD resources. Moreover, the dynamics pass on from one release of the product to
another, therefore eroding PD capability. These dynamics degrade the architecture and code
base of the product line to the extent that the PD organization has difficulty making high quality
products anymore, sealing the product line in the firefighting mode.

We developed the model based on the case study of two software products. However, the
basic dynamics are based on a few boundary assumptions that can hold in domains beyond the
software industry and therefore can inform understanding of platform-based product
development processes. The first critical assumption is that there is a level of resource gap
beyond which the average output of the organization per resource unit decreases, rather than
increase. When this assumption is true, we have an inverse U-shape Resource Gap-Feature
Release curve and the rework dynamics exist. In fact, if this assumption is not true, the best
option for a PD organization may be overloading the group completely with an unmanageable
feature demand so that ever increasing pressure maximizes the output; the practices of successful
PD organizations do not suggest the feasibility, not to mention the optimality, of such a policy.

Another assumption in the model is that the quality problems are not lost, i.e., there is a
cost for a low-quality product that the company will shoulder through some mechanism,
including fixing errors, warranty and lawsuit costs, lost revenues, lower customer loyalty, and
loss of brand name, among other costs. This might be close to a truism across the board, but the
cost of quality problems differ from one case to another. The higher the cost of finding errors in
later stages (e.g., when the product is in the field vs. when the product is under development), the
stronger are the firefighting and contagion dynamics. Moreover, there needs to be a link
between cost of quality and the resources available to develop future releases. This cost can be
direct, as is the case for sharing current-engineering and development resources in software, or
indirect, as implied by resource allocation policies that give more resources to more successful
products in a company’s portfolio. In the latter case, future quality costs influence the amount of
resources available to future releases as long as they are accounted for in evaluating the
product’s success. The existence of quality costs after launch and the effect of these costs on the
current development resources are enough to generate the Current-engineering and Bug-fixing
dynamic (or their equivalents in other settings) and therefore the contagion of issues from one
release to another.

The other dynamic (Error Creates Error) rests on a third assumption: that the quality of
the current release impacts the quality of work for the next release. This is usually true for the
architectural aspects of the product that have strong impact on the quality of work as well as
future concept design and architecture. In software, this assumption holds also for code quality,
since the documentation of code and its seamless integration with other pieces influence the
quality of future code to be built on top of it.

Erosion of organizational capabilities is theoretically important. On the one hand
capability erosion can take away the competitive edge of organizations. This effect is especially
salient in the case of the PD capability which is the cornerstone of building other capabilities in
dynamic markets (Teece, Pisano et al. 1997; Eisenhardt and Martin 2000). In other terms, it is
not only important to build a capability, but also it is important to be able to keep it.

Moreover, processes that erode organizational capabilities overlap with those that
prohibit imitation and replication of these capabilities. Tipping dynamics and adaptation traps
not only can erode existing capabilities, but also can stand in the way of building a successful PD
capability. These dynamics create multiple ways in the evolutionary path of capabilities for
things to go wrong, and therefore reduce the chance that the PD organization can navigate its

 24

way into a high performance arrangement. For example, the tipping dynamics suggest that
fluctuations in the level of workload can potentially tip the PD organization into firefighting. As
a new firm attempts to build its PD capability, there are many instances at which an unexpected
surge of workload can tip the PD organization into a degrading mode of working fast and doing
low-quality work. Furthermore, attempting to get the most out of the PD process early on, when
the resource demand from the field is yet not realized, can result in overloading the organization
through the adaptation trap dynamics.

Therefore the tipping dynamics, the adaptation trap, and the contagion of firefighting
dynamics highlighted in this study complement the literature exploring the mechanisms that
make capabilities hard to build and sustain (including core rigidities, competency traps, and
rugged payoff landscape). The sources of capability erosion discussed in this paper add to the
literature on barriers to imitation of capabilities by highlighting the role of time in the operation
of adaptive processes. Curiously, in the case of adaptive trap, not only does the organization fail
to realize better opportunities (as is the case in landscape complexity, core rigidity, and
competency trap), but also may actually degrade its performance through adaptation.

By elaborating on some of the challenges in the way of successful PD processes, this
study offers some factors for when PD capability is hard to imitate and under what condition it is
easy to build. If the dynamics discussed here play a visible role in the large picture of product
development across different industries, one would expect the strength of these dynamics to
partially determine the difficulty of building and maintaining a successful PD organization.
Following the resourced-based line of argument, one expects PD to explain a larger fraction of
firm heterogeneity in industries that PD is hard to build and sustain. Therefore, our study offers
a few hypotheses on the strategic importance of PD across different industries:

H1: All else being equal, PD is strategically more important in industries where
platform-based PD is dominant.

First hypothesis suggests that the move towards platform-based product development
increases the interconnection between different products and therefore increases the significance
of firefighting dynamics. As a result PD capability is harder to build and has a higher
competitive value in such industries.

H2: Flexibility of PD processes increases their performance heterogeneity across firms.
If the quality of PD is highly dependent on flexible processes that individuals should

follow, the effect of pressure on error rate will be stronger. The logic behind this assertion is that
flexible processes give individuals more flexibility to mitigate the pressure by cutting corners,
taking shortcuts, and different practices that lead to lower quality in the long-run. As a result, the
Resource Gap-Feature Release curve will have a sharper U-shaped curve and the firefighting
becomes more salient.

H3: PD capability is more heterogeneous in industries where quality of the products
launched influences the resources available to current development.

The strength of the adaptation trap depends on how much the resources available to a
project are influenced quality of products which are launched. The stronger the feedback of past
product quality on PD resources (e.g., through CE and bug-fixing), the stronger is the capability
erosion dynamics and the higher is the competitive value of PD in an industry.

H4: The delay between development and observing the quality feedback on PD resources
increases the heterogeneity of PD organizations across an industry.

The decoupling between the perceived and sustainable Resource Gap-Feature Release
curves, and therefore the risk of falling into adaptation trap depends on the delay in the effect of

 25

old development quality on the current PD resources. The longer the delay between development
and feedback of quality on resources, the stronger is the adaptation trap and the higher is the
competitive value of PD in the industry.

H5: Quality consequences of architecture and product base increase the heterogeneity of
PD organizations’ performance in an industry.

In industries where architecture and product base have a strong influence on the quality
of current PD work, the dynamics of Error Creates Error and Bug-fixing are more salient and
make it harder to sustain a successful PD process. Therefore we expect that the stronger the
effect of current development on future architecture and product base, the higher would be the
value of PD capability.

This study also highlights important practical challenges for companies which rely on
their product development capability. First, an important concern for the start-up companies is to
get their product to the market as fast as possible, with the least resources they can afford. This
is both because of limited availability of resources, and because of the importance of early
presence in the competitive market. Consequently, the quality of their PD work receives lower
priority than time to market and maximizing the feature release rate becomes the highest priority.

However, this is the recipe for adaptation trap: at the early stages, when current
engineering, bug-fixing, and other multiple-release dynamics are not active, the startup approach
yields a very high output which is not sustainable for future releases. During this period,
however, the norms of the PD organization are set and routines shape based on potentially
unsustainable practices that want to get the product out as fast as possible. These routines make
it much harder during later releases to shift the organizing patterns of the PD process to
sustainable arrangements that emphasize better process and higher quality.

The challenge of managing a transition from the norms of quick-and-dirty design to
sustainable quality work is especially salient when companies expand through acquisitions. In
these settings, a large firm enters a new product market by acquiring a start-up in that market. If
the product is platform-based in nature, e.g., software, the parent company will need to support
and encourage a transition from the start-up mindset, to that of a successful platform-based PD
process. In the absence of such transition, the new line of product will slip into firefighting as
soon as current engineering and bug-fixing feedbacks activate. In fact the challenges that one
product face can then spill into other lines of development through the fact that resources are
shared among different PD groups.

Another important challenge in the light of the dynamics discussed in this study is the
strategy for managing customer demands and expectations. One of the main customer demands
is a good product support after the sales, which includes current-engineering. CE is the activity
with the least value added compared to development and bug-fixing because it only solves the
problems of one (a few) customer(s), and does not influence the quality of future releases
significantly. However, demand for CE is very salient in the face of customer interaction.
Doing CE work solves an urgent problem, thereby it receives high visibility, and it can easily be
rewarded because it draws attention from different parts of the company, including the service
organization and the higher management who wants to see customer complains addressed
quickly. Therefore, in practice, the PD organization often gives higher priority to CE than
warranted based on long-term considerations, therefore compromising the quality of future
releases to fix the current problems in the field. This prioritizing challenge is ironic because a
policy of ignoring customers’ request for firefighting may make them happier in the long-run.

 26

A different type of tradeoff with regard to customer demand is in the inclusion of new
features. It is generally assumed that including more features in the future releases of the
product benefits customers. Contrary to this belief however, beyond the tipping point, trying to
incorporate more feature will in fact reduce the output of the PD process. Under these
conditions canceling features may in fact be a favor to customers since it helps the PD process to
recover, to develop more features in total, and to get the next release out sooner and with better
quality. Therefore the relationship between customer satisfaction and the efforts to add new
features is contingent on the state of the product development organization: after some point,
pushing harder does harm to the employees as well as the customers.

 Finally, this study highlights the importance of evolution of the architecture and
underlying product base. If resource gap in early releases compromises quality of architecture
and product base, the platform can not last for long and will lose viability soon after Error
Creates Error feedback is activated. From a behavioral perspective, this is a noteworthy risk:
the feedback from quality of architecture and product base comes with long delays, therefore the
immediate payoff to invest in architecture design, bug-fixing, and refactoring is low. Under the
resource gap pressure, it is more likely to skip these activities than the CE, even though in the
long-run it can prove counter productive.

This study has several limitations which open up room for further research. First, the
model is built based on two case studies in software industry and therefore not all potential
processes that matter to dynamics of product development could be observed. For example, CE
effect is very strong in software, but not so strong in case of automobile development, while
manufacturability is central in the latter case but not important in software. Consequently, the
generalizability of the conclusions can not be decided until further empirical work with larger
number of PD organizations is conducted. The hypotheses developed in the discussion section
offer one avenue for such studies.

Another question that merits further attention is the persistence of the firefighting
dynamics. These dynamics persist despite the time for learning, multiple chances to experience
different policies (multiple releases), and high stakes for the PD organization. Some of the
discussions in this paper allude to persistence question, for example the contagion of dynamics
from one release to another, yet a deep understanding of this question is crucial if a PD
organization want to enhance its learning from experience.

Finally, beyond generalizations about resource gap and quality, this study did not go into
details of remedies for firefighting dynamics and what needs be done to avoid them. For
example, one may expect loosely structured processes for development to increase the effect of
pressure on quality. However, it is possible to combine flexibility and high quality by frequent
synchronization of different development activities and providing quick feedback on quality of
recent work (Cusumano 1997). Recognizing and designing such prossesess is of great interest to
practitioners who need realistic ways for avoiding adaptation trap and getting out of firefighting,
rather than a description of how one may fall into these dynamics.

References:
AbdelHamid, T. and S. Madnick. 1991. Software project dynamics: An integrated approach.

Englewood Cliffs, NJ, Prentice-Hall.
Amit, R. and P. J. H. Schoemaker. 1993. Strategic assets and organizational rent. Strategic

Management Journal 14(1): 33-46.

 27

Barney, J. 1991. Firm resources and sustained competitive advantage. Journal of Management
17(1): 99-120.

Black, L. J., P. R. Carlile and N. P. Repenning. 2004. A dynamic theory of expertise and
occupational boundaries in new technology implementation: Building on barley's study
of ct scanning. Administrative Science Quarterly 49(4): 572-607.

Brown, S. L. and K. M. Eisenhardt. 1995. Product development - past research, present findings,
and future-directions. Academy of Management Review 20(2): 343-378.

Burgelman, R. A. 1991. Intraorganizational ecology of strategy making and organizational
adaptation: Theory and field research. Organization Science 2(3): 239-262.

Cooper, K. G. 1980. Naval ship production: A claim settled and a framework built. Interfaces
10(6).

Cusumano, M. A. 1997. How microsoft makes large teams work like small teams. Sloan
Management Review 39(1): 9-20.

Cusumano, M. A. and K. Nobeoka. 1998. Thinking beyond lean: How multi-porject management
is transforming product development at toyota and other companies. New York, Free
Press.

Cyert, R. M. and J. G. March. 1963. A behavioral theory of the firm. Englewood Cliffs, N.J.,,
Prentice-Hall.

Dierickx, I. and K. Cool. 1989. Asset stock accumulation and sustainability of competitive
advantage. Management Science 35(12): 1504-1511.

Dosi, G., R. R. Nelson and S. G. Winter. 2000. The nature and dynamics of organizational
capabilities. Oxford ; New York, Oxford University Press.

Eisenhardt, K. M. 1989. Building theories from case study research. Academy of Management
Review 14(4): 532-550.

Eisenhardt, K. M. and S. L. Brown. 1998. Time pacing: Competing in markets that won't stand
still. Harvard Business Review 76(2): 59-+.

Eisenhardt, K. M. and J. A. Martin. 2000. Dynamic capabilities: What are they? Strategic
Management Journal 21(10-11): 1105-1121.

Ford, D. N. and J. D. Sterman. 1998. Dynamic modeling of product development processes.
System Dynamics Review 14(1): 31-68.

Forrester, J. W. 1961. Industrial dynamics. Cambridge, The M.I.T. Press.
Gawer, A. and M. A. Cusumano. 2002. Platform leadership : How intel, microsoft, and cisco

drive industry innovation. Boston, Harvard Business School Press.
Henderson, R. and I. Cockburn. 1994. Measuring competence - exploring firm effects in

pharmaceutical research. Strategic Management Journal 15: 63-84.
Henderson, R. M. and K. B. Clark. 1990. Architectural innovation - the reconfiguration of

existing product technologies and the failure of established firms. Administrative Science
Quarterly 35(1): 9-30.

Krishnan, V. and S. Gupta. 2001. Appropriateness and impact of platform-based product
development. Management Science 47(1): 52-68.

Krishnan, V. and K. T. Ulrich. 2001. Product development decisions: A review of the literature.
Management Science 47(1): 1-21.

Leonard-Barton, D. 1992. Core capabilities and core rigidities - a paradox in managing new
product development. Strategic Management Journal 13: 111-125.

Levinthal, D. A. 1997. Adaptation on rugged landscapes. Management Science 43(7): 934-950.

 28

Levitt, B. and J. G. March. 1988. Organizational learning. Annual Review of Sociology 14: 319-
340.

Lovas, B. and S. Ghoshal. 2000. Strategy as guided evolution. Strategic Management Journal
21(9): 875-896.

MacCormack, A., C. F. Kemerer, M. Cusumano and B. Crandall. 2003. Trade-offs between
productivity and quality in selecting software development practices. Ieee Software
20(5): 78-+.

Meyer, M. H., P. Tertzakian and J. M. Utterback. 1997. Metrics for managing research and
development in the context of the product family. Management Science 43(1): 88-111.

Milgrom, P. and J. Roberts. 1990. The economics of modern manufacturing - technology,
strategy, and organization. American Economic Review 80(3): 511-528.

Moløkken, K. and M. Jørgensen. 2003. A review of surveys on software effort estimation. IEEE
International Symposium on Empirical Software Engineering, Rome, Italy.

Morecroft, J. D. 1983. System dybnamics: Portraying bounded rationality. OMEGA 11(2): 131-
142.

Morecroft, J. D. W. 1985. Rationality in the analysis of behavioral simulation models.
Management Science 31(7): 900-916.

Muffatto, M. 1999. Introducing a platform strategy in product development. International
Journal of Production Economics 60-1: 145-153.

Nelson, R. R. and S. G. Winter. 1982. An evolutionary theory of economic change. Cambridge,
Mass., Belknap Press of Harvard University Press.

Peteraf, M. A. 1993. The cornerstones of competitive advantage - a resource-based view.
Strategic Management Journal 14(3): 179-191.

Putnam, D. 2001. Productivity statistics buck 15-year trend. QSM articles and papers.
Repenning, N. P. 2000. A dynamic model of resource allocation in multi-project research and

development systems. System Dynamics Review 16(3): 173-212.
Repenning, N. P. 2001. Understanding fire fighting in new product development. The Journal of

Product Innovation Management 18: 285-300.
Rivkin, J. W. 2001. Reproducing knowledge: Replication without imitation at moderate

complexity. Organization Science 12(3): 274-293.
Sanderson, S. and M. Uzumeri. 1995. Managing product families - the case of the sony-

walkman. Research Policy 24(5): 761-782.
Sanderson, S. W. and M. Uzumeri. 1997. The innovation imperative : Strategies for managing

product models and families. Chicago, Irwin Professional Pub.
Sauer, C. and C. Cuthbertson. 2004. The state of it project management in the uk 2002-2003.

Oxford, University of Oxford: 82.
Simon, H. A. 1979. Rational decision making in business organizations. American Economic

Review 69(4): 493-513.
Sterman, J. 2000. Business dynamics: Systems thinking and modeling for a complex world. Irwin,

McGraw-Hill.
Teece, D. J., G. Pisano and A. Shuen. 1997. Dynamic capabilities and strategic management.

Strategic Management Journal 18(7): 509-533.
Wernerfelt, B. 1984. A resource-based view of the firm. Strategic Management Journal 5(2):

171-180.
Williamson, O. E. 1999. Strategy research: Governance and competence perspectives. Strategic

Management Journal 20(12): 1087-1108.

 29

Winter, S. G. 2003. Understanding dynamic capabilities. Strategic Management Journal 24(10):
991-995.

Zajac, E. J. and M. H. Bazerman. 1991. Blind spots in industry and competitor analysis -
implications of interfirm (mis)perceptions for strategic decisions. Academy of
Management Review 16(1): 37-56.

Appendix A- Detailed model formulations
The following table lists the equations for the full model. To avoid complexity, all switches and
parameters used to break feedback loops are removed from the equations.
Allocated Bug Fix Resources = Allocated Resources[BugFix] Units: Person
Allocated Resources[Function] = Min(Desired Resources[Function]/SUM(Desired
Resources[Function!])*Total Resources, Desired Resources[Function]) Units: Person
Desired Resources[Development] = Des Dev Resources
Desired Resources[CurrentEng] = Desired Resources for Current Engineering
Desired Resources[BugFix] = Desired Bug Fix Resources
Development Resources Allocated = Allocated Resources[Development]
CE Resources Allocated = Allocated Resources[CurrentEng]
Allocated Bug Fix Resources = Allocated Resources[BugFix]
Average size of a new release = 40 Units: Feature
Bug Fixing = Allocated Bug Fix Resources*Productivity of Bug Fixes Units:
Feature/Month
Des Dev Resources = Features Under Development / Desired Time to Develop / Productivity
/ (1-Normal Error Rate*Frac Error Caught in Test) Units: Person
Desired Bug Fix Resources = Errors in Base Code / Time to Fix Bugs / Productivity of Bug
Fixes Units: Person
Desired Resources for Current Engineering = Sales*(Errors in New Code
Developed+Effective Errors in Code Base)*Fraction Errors Showing Up / Productivity of CE
Units: Person
Desired Time to Develop = 10 Units: Month
Dev Work Pressure = if then else (Resource Pressure Deficit < 0.99, Resource Pressure
Deficit, ZIDZ (Des Dev Resources , Development Resources Allocated)) Units: Dmnl
Eff Architecture and Code Base on Error Rate = (Modularity Coefficient*"Tl Eff Arc & Base
on Error"(Fraction Old Features Defective)+(1-Modularity Coefficient)*Max (1, Errors in
Base Code)) Units: Dmnl
Eff Pressure on Error Rate = Tl Eff Pressure on Error Rate (Dev Work Pressure) Units:
Dmnl
Effect of Pressure on Productivity = Tl Eff Pressure on Productivity (Dev Work Pressure)
Units: Dmnl
Effective Errors in Code Base = Min (Effective Size of Old Release Portion , Old Features
Developed)*Fraction Old Features Defective Units: Feature
Effective Size of Old Release Portion = 0 Units: Feature
Error Becoming Old = Features Becoming Old*Fraction New Features Defective Units:
Feature/Month
Error Frac in Released Feature = Error Fraction*(1-Frac Error Caught in Test) / (1-Error
Fraction*Frac Error Caught in Test) Units: Dmnl

 30

Error Fraction = Min (1, Normal Error Rate*Eff Architecture and Code Base on Error
Rate*Eff Pressure on Error Rate) Units: Dmnl
Error Generation = Feature Release*Error Frac in Released Feature Units: Feature/Month
Errors in Base Code = INTEG(Error Becoming Old-Bug Fixing , Errors in New Code
Developed*Time to Fix Bugs / Desired Time to Develop) Units: Feature
Errors in New Code Developed = INTEG(Error Generation-Error Becoming Old , Normal
Error Rate*(1-Frac Error Caught in Test)*New Features Developed / (1-Normal Error
Rate*Frac Error Caught in Test)) Units: Feature
External Shock = 0 Units: Feature
Feature Addition = Fixed Feature Addition+PULSE (Pulse Time , Pulse Length)*External
Shock / Pulse Length Units: Feature/Month
Feature Release = Rate of Development*Fraction of Work Accepted Units: Feature/Month
Features Becoming Old = New Features Developed / Time Between Releases Units:
Feature/Month
Features Under Development = INTEG(Feature Addition-Feature Release , Fixed Feature
Addition*Desired Time to Develop) Units: Feature
FINAL TIME = 100 Units: Month
Fixed Feature Addition = 4 Units: Feature/Month
Frac Error Caught in Test = 0.9 Units: Dmnl
Fraction Errors Showing Up = 0.1 Units: Dmnl
Fraction New Features Defective = ZIDZ (Errors in New Code Developed , New Features
Developed) Units: Dmnl
Fraction of Work Accepted = 1-Error Fraction*Frac Error Caught in Test Units: Dmnl
Fraction Old Features Defective = ZIDZ (Errors in Base Code , Old Features Developed)
Units: Dmnl
Modularity Coefficient = 0.5 Units: Dmnl
New Features Developed = INTEG(Feature Release-Features Becoming Old , Average size of
a new release) Units: Feature
Normal Error Rate = 0.4 Units: Dmnl
Old Features Developed = INTEG(Features Becoming Old , Initial Old Features) Units:
Feature
Productivity = 0.1 Units: Feature/(Person*Month)
Productivity of Bug Fixes = Productivity*Relative Producitivty of Bug Fixing Units:
Feature/(Person*Month)
Productivity of CE = Productivity*Relative Productivity of CE Units:
Feature/(Person*Month)
Pulse Length = 1 Units: Month
Pulse Time = 10 Units: Month
Rate of Development = Development Resources Allocated*Productivity*Effect of Pressure
on Productivity Units: Feature/Month
Relative Producitivty of Bug Fixing = 0.5 Units: Dmnl
Relative Productivity of CE = 1 Units: Dmnl
Resource Pressure Deficit = SUM (Allocated Resources[Function!]) / Total Resources
Units: Dmnl
Sales = 10 Units: 1/Month

 31

Time Between Releases = Average size of a new release / Feature Release Units: Month
TIME STEP = 0.125 Units: Month
Time to Fix Bugs = 9 Units: Month [0,20]
"Tl Eff Arc & Base on Error" ([(0,0)-
(1,2)],(0,1),(0.13,1.13),(0.28,1.34),(0.42,1.68),(0.54,1.84),(0.72,1.94),(1,2)) Units: Dmnl
Tl Eff Pressure on Error Rate ([(0.5,0)-(2,2)],(0.5,0.8),(1,1),(1.15,1.11)
,(1.29,1.33),(1.40,1.54),(1.53,1.74),(1.68,1.89),(1.99,2)) Units: Dmnl
Tl Eff Pressure on Productivity ([(0,0)-(2,1.5)],(0,0.6),(0.26,0.61),(0.45,0.64)
,(0.64,0.73),(0.83,0.84),(1,1),(1.22,1.2),(1.43,1.28),(1.77,1.32),(2,1.33)) Units: Dmnl
Total Resources = 100 Units: Person

Appendix B- The maximum PD capacity
With a few assumptions, we can draw the analytical expressions for long-term capacity of the
product development organization as modeled in the paper. These assumptions include:

- That products remain in the field for a fixed time
- Product modularity is not very high, therefore we need to keep the absolute level of

problems in the code-base and architecture low.
The logic for driving the capacity is simple. We can write the total resources needed for
development, CE, and bug-fixing in terms of Feature Release and Resource Gap. Since in this
model allocation is proportional to request, the ratio of resources requested to those allocated are
the same across the three functions and equal resource gap. Therefore we can find the resources
allocated to each activity in terms of resource gap and Feature Release. Consequently, knowing
that when resource gap is above 1, the total resources allocated equal the total resources
available, we can find Feature Release in terms of resource gap, which is the equation we need to
find the optimum capacity.
Formally, we can write resources allocated to each activity:

)).(.1.().(TeNNP
D frRGfePRGf

FRR
−

= (3)

RGRPfrRGfeP
kfrRGfeFRR
CETeNN

TeN
CE

1*
).).(.1.(

).1).((..
−

−
= (4)

RGRPfrRGfeP
frRGfeFRR

BFTeNN

TeN
BF

1*
).).(.1.(

)1).((..
−

−
= (5)

And note the conservation of resources:

BFCED RRRR ++= (6)
Plugging the equations 3-5 into equation 6, and solving for FR, we find the following
relationship that describes Feature Release as a function of resource gap:

]1)[1).((.
)(

).).(.1.(.

BFCE
TeN

P

TeNN

RPRP
kfrRGfe

RGf
RG

RGfrRGfePRFR
+−+

−
= (7)

Note that, as expected, in the special case where bug-fixing and current engineering don’t need
any resources (e.g., by letting RPCE and RPBF go to infinity), the equation 7 is the same as
equation 2, discussed in the text.

 32

To find the maximum FR rate, one needs to take the derivative of FR with respect to RG (for
which we need specific fe and fp functions) and equal it to zero. Finding the optimum RG
(through numerical or analytical solution), we can plug it back into equation 7 to find the
optimum level of capacity.
Below are the variable definitions:
eN: Normal error rate
fe(.): Effect of resource gap on error rate
fp(.): Effect of resource gap on productivity
FR: Feature Release
frT: Fraction of errors caught in test
k: Number of fixes that need be made on the customer sites, for each defect in the code
PN: Normal Productivity
Ps: resource gap/ Work Pressrue
R: Total resources allocated
RD: Resources allocated to development
RCE: Resources allocated to current engineering
RBF Resources allocated to bug frixing
RG: Resource Gap
RPBF Relative productivity of bug-fixing as compared to normal development
RPCE: Relative productivity of CE, as compared to normal development

 33

