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Abstract 
Product development (PD) is a crucial capability for firms in competitive markets. Building on 
case studies of software development at a large firm, this paper explores the interaction among 
the different stages of the PD process, the underlying architecture of the product, and the 
products in the field. We introduce the concept of the “adaptation trap,” where intendedly 
functional adaptation of workload can overwhelm the PD organization and force it into 
firefighting  (Repenning 2001) as a result of the delay in seeing the additional resource need 
from the field and underlying code-base. Moreover, the study highlights the importance of 
architecture and underlying product-base in platform-based product development, through their 
impact on quality of new models under development, as well as resource requirements for bug-
fixing. Finally, this study corroborates the dynamics of tipping into firefighting that follows 
quality-productivity tradeoffs under pressure. Put together, these dynamics elucidate some of the 
reasons why PD capability is hard to build and why it easily erodes.  Consequently, we offer 
hypotheses on the characteristics of the PD process that increase its strategic significance and 
discuss some practical challenges in the face of these dynamics. 
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Introduction 
Firm performance and heterogeneity is a central topic of interest for researchers and 

practitioners alike.  According to the resource-based view of strategy, it is important to look 
inside the firm for capabilities that distinguish it from its competitors (Wernerfelt 1984; Barney 
1991; Peteraf 1993) and enable the firm to gain rents.  A capability should be valuable, rare, 
unimitable, and un-substitutable (Barney 1991) so that it can contribute to sustained competitive 
advantage.   

Researchers have suggested several broad explanations for why some capabilities elude 
imitation and replication.   Barney (1991) offers three main factors that result in unimitability: 
history dependence, causal ambiguity, and social complexity. Dierickx and Cool (1989) note that 
capabilities are stocks, and consequently discuss time compression diseconomies, asset mass 
efficiencies, interconnectedness of stocks, asset erosion time constants, and causal ambiguity as 
the main reasons why capabilities are hard to imitate. Finally, Amit and Schoemaker (1993) 
suggest uncertainty, complexity, and organizational conflict as the main factors that create 
heterogeneity in managerial decision-making and firm performance. 

While these general explanations are important starting points, the resource-based 
literature has not provided a detailed and grounded understanding of the capability evolution that 
it suggests underlies the barriers to imitation (Williamson 1999).  Opening the black-box of 
capability is required for recognizing a capability independent of performance measures it is 
supposed to explain, and for proposing testable hypothesis about relative importance of different 
capabilities. Such understanding would not only strengthen the resource-based view 
theoretically; it is also needed to enhance the practical usefulness of the framework.   

A few theoretical perspectives elaborate on barriers to imitation by discussing the factors 
that hinder formation of successful strategies through adaptive processes.  Leonard-Barton 
(1992) introduces the concept of core rigidity, where routines underlying firm’s capabilities 
resist change when the environment demands adoption of new capabilities- for example, in the 
face of architectural innovations (Henderson and Clark 1990). The organizational learning 
literature highlights a similar barrier to learning, competency traps (Levitt and March 1988), 
where accumulated experience with old routines reduces their operating cost and makes the new, 
potentially superior, practices less rewarding.  Finally, the complexity of imitation is elaborated 
on through theoretical models of adaptation on rugged fitness landscape (Levinthal 1997; Rivkin 
2001).  This view of adaptation suggests that interdependency and interaction among the 
different elements of the firm strategy (Milgrom and Roberts 1990) creates multiple local peaks 
in the landscape of fit between the organization’s strategy and the environmental demands, 
making it hard for the firm to achieve new combinations of strategic fit through incremental 
adaptation.  

More recently, a few empirical studies have enriched the understanding of the nature of 
capabilities and their dynamics.  Henderson and Cockburn (1994) discuss how component and 
architectural competence contribute to research and development productivity of pharmaceutical 
firms. An intra-firm evolutionary perspective has been developed (Burgelman 1991; Lovas and 
Ghoshal 2000) which views the evolution of strategies as processes of random variation and 
selection inside a firm, and several case studies have elaborated on this perspective. (See the 
special issue of Strategic Management Journal on evolutionary perspectives on strategy, 
Summer 1996.)  Finally, a few studies explore the nature and dynamics of organizational 
capabilities in different industries, including banking, semi-conductors, automobiles, 
communications, pharmaceuticals, and fast food (Dosi, Nelson et al. 2000).  
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These studies highlight that the complexity of capabilities resides in their evolution 
through time and the path dependence in these dynamics.  In this paper, drawing on two in-depth 
case studies of the software development process, we propose a grounded theory of why 
successful product development (PD) capability is hard to establish, and easily erodes when 
established.  Using the case study method (Eisenhardt 1989), combined with dynamic simulation 
modeling (Forrester 1961) (See Black, Carlile et al. (2004) for a detailed description of the 
method),  we develop a fine-grained and internally consistent perspective on platform-based PD 
capability: how it operates through time, and why it is hard to sustain.  Through this theory-
building practice we follow a tradition of using the micro-foundations of behavioral decision 
theory to explain a phenomenon of interest in strategy (Zajac and Bazerman 1991; Amit and 
Schoemaker 1993): operation and erosion of capabilities. Our results show 1) how the long-term 
consequences of quality and productivity adjustment under pressure can deteriorate product 
development capability, 2) how the adaptation trap makes it hard for organizations to sustain an 
efficient product development process, and 3) how continuity in product base and architecture 
reinforces these dynamics. 

 
Context of Study: Platform-based PD in the Software Industry 
Product development is often highlighted as the prime example of a dynamic capability 

(Eisenhardt and Martin 2000; Winter 2003).  By creating innovative products that fulfill unmet 
market needs firms can create competitive advantage.  Moreover, moving into new product 
markets through successful product introduction enables firms to change their strategic 
orientation; for example, Hewlett-Packard changed from an instruments company to a computer 
company through product development (Burgelman 1991).  In addition, since dynamic markets 
demand continuous introduction of new products, companies in these markets cannot find a 
substitute for the product development capability.  

The practice of new product development has changed in many ways.  While new 
products were once developed separately, platform-based product development is gaining 
prominence in high-speed competitive markets (Sanderson and Uzumeri 1997; Cusumano and 
Nobeoka 1998; Gawer and Cusumano 2002).  Platform-based product development entails 
building a central set of components around which new products in a product family are 
developed.  Each new model of the product adds a few new features to the existing architecture 
and product base.  This process has several benefits, since it allows the firm to get the first 
product to the market faster and with less resources; it provides for learning about market and 
internal processes from one model to another; it allows for other players in the market to build 
around the central platform, thereby creating positive externalities for a product line (Gawer and 
Cusumano 2002); and it enhances competitiveness by increasing control over the pacing of 
product introduction (Eisenhardt and Brown 1998).   

For example, Palm currently has three major product families for the PDA market: Zire, 
Tungsten, and Treo.  Each product family has had different product releases/models shaped 
around a specific platform.  For example, the Treo platform combines features of cell phone and 
classical PDA, and each new model has included new features, e.g., still camera, MP3 player, 
and video camera.  Most software products have traditionally followed the principles of the 
platform-based development process, even though using a different vocabulary.  In the software 
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industry each new release (=model1) of a product (= product family) builds on the past releases 
by adding new features to the current code base (= product base).  This multiple release (= 
platform-based) development strategy operates across most common software products we use, 
from operating systems (e.g.,  Mac OS, Windows, DOS) to different applications (e.g.,  MS 
Excel, Matlab, Stata).   

Compared to single-product development, platform-based product development brings 
more continuity across multiple releases of a product, since not only do different releases share 
design and development resources, but they also have similar pools of customers, the same 
architecture, and a similar product base.  These connections among different models highlight 
the importance of an integrative view of product development which encompasses the dynamics 
across multiple releases of a product family.  While there is a rich literature looking at product 
development (PD) in general (see Brown and Eisenhardt (1995) and Krishnan and Ulrich (2001) 
for reviews) and recent body of work on platform-based PD is growing (e.g.,  (Sanderson and 
Uzumeri 1995; Meyer, Tertzakian et al. 1997; Cusumano and Nobeoka 1998; Muffatto 1999; 
Krishnan and Gupta 2001), there has been little research on the dynamics of the platform-based 
product development process.  

This gap is also observable in the literature on project dynamics.  There is a rich set of 
studies discussing single-project dynamics (e.g.,  (Cooper 1980; AbdelHamid and Madnick 
1991; Ford and Sterman 1998).  These studies have introduced the concept of the rework cycle 
and have discussed several different processes, including the effect of pressure on productivity 
and quality, morale, overtime, learning, hiring and experience, phase dependency, and 
coordination, which endogenously influence the performance of different projects.  However, 
with the exception of Repenning’s work (2000; 2001), little attention has been spent on the 
dynamics when consequent product models are developed by the same development 
organization. 

Repenning (2000; 2001) looks at multiple-project R&D systems and discusses tipping 
dynamics that follow resource allocation between the concept design and development phases of 
a PD process.  He shows that there potentially exist two equilibria with low and high efficiency 
for the PD organization, and a tipping point (a state of the system at which the behavior changes 
significantly) between the two.  These results, however, rely on the assumption that development 
gets higher priority and that concept design adds enough value through avoiding future errors in 
development to justify it on efficiency grounds.  Moreover, this work fails to consider the quality 
considerations of the product development when the product is out of the PD organization. 

In this study we focus on the dynamics of platform-based product development with an 
emphasis on the effects of products in the field and the architecture and product-base. As a result, 
we take into account the continuity between different releases of a product. Moreover, we focus 
our analysis on dynamics that make it hard to build and sustain the efficient PD capability that is 
crucial to the success of a firm in competitive markets. 

The software industry fits well as the setting for this study. In the absence of production 
and distribution barriers, product development is the major part of the software business. On the 
other hand, the rapid pace of change in software industry makes it a great example of a dynamic 
market. Therefore the product development is a crucial dynamic capability for a software firm. 
To differentiate the firm’s performance from that of its competitors, a software firm needs a 

                                                 
1 Throughout the text we use these terms interchangeably.  We tend to use the software vocabulary when talking 
specifically about the two case studies, and use the general terms when discussing the implications for platform-
based PD in general. 
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strong PD capability that can produce products with more features, faster, and more cheaply than 
the competitors. 

Moreover, despite the importance of PD capability in this industry, software development 
projects often cost more than budgeted, stretch beyond their deadlines, and fall short of 
incorporating all their desired features (for a meta-survey see (Moløkken and Jørgensen 2003)).  
Cost and schedule overruns in software projects have persisted for over two decades, despite 
significant technological and process improvements, such as object-oriented programming, 
iterative and agile development, and product line engineering, among other things.  The 
challenge of learning to successfully manage software development is therefore non-trivial. Yet 
this challenge is not insurmountable:  Modest improvements in project measures (see Figure 1) 
and development productivity (Putnam 2001) are observable in a long time horizon.  
Furthermore, the size and complexity of software development projects are considered medium-
range (average size of about 100 person-months (Putnam 2001; Sauer and Cuthbertson 2004)) 
allowing for an in-depth look at all the components of the PD process.  Finally, there is a rich 
literature on the software development process, including some of the pioneering work in 
applying simulation models to project dynamics (AbdelHamid and Madnick 1991).  We can 
therefore build on this literature for the research at hand.    
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Figure 1- The performance of IT projects in the U.S. based on the bi-annual survey of the 
Standish Group.  Data is based on 8380 projects, mostly software development. Succeeded 
includes projects that were on-time and on-budget. Failed group includes projects that were 
never finished, and challenged group includes the rest. The data is compiled from different 
sources on the Standish Group surveys, including their 1995 and 2001 surveys which are 
available at their website: http://www.standishgroup.com/index.php.   
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Data Collection 
This study uses interviews and archival data from two product development teams in a 

single software organization (Hereafter called Sigma) to build a dynamic simulation model of 
platform-based product development. Sigma is a large IT company with over 16,000 employees 
and several lines of products in hardware and software, which are distributed in multiple 
locations around the world.  In recent years the company management has decided on a strategic 
shift towards the software side of the business and therefore strong emphasis is put on the 
success of a few promising software products.  The study was supported by the research 
organization of the company, which was interested to learn about the factors important to the 
success or failure of software projects.  We were given complete access to internal studies and 
assessments conducted within Sigma. Moreover, one of the research personnel who was familiar 
with several software projects in the company helped us both with connecting with the two cases 
we studied and with the data-gathering effort. 

We studied closely the development of two products, Alpha and Beta.  The two cases 
were selected because they had significantly different performance on the quality and schedule 
dimensions, despite similarities in size and location.  Despite a promising start, Alpha had come 
to face many quality problems and delays while Beta’s releases were on-time and had high 
quality.  Comparing and contrasting the processes in effect in two cases provided a rich context 
to build a model capturing the common processes across two projects with different outcomes, 
therefore helping shed light on how similar structures can underlie different outcomes. 

Seventy semi-structured interviews (by phone and in person, ranging between 30 to 90 
min.) and archival data gathered in three months of fieldwork in Sigma inform this study.  
Moreover, the first author participated in a few group meetings in the organization that focused 
on the progress of products under study.  The study is part of a longer research involvement with 
the company; therefore, we continued to gather additional data and corroborate on different 
themes after the three months of major fieldwork. These efforts included 20 additional interviews 
and a group session which elicited ideas from 26 experienced members of the organization. The 
interviews included members of all functional areas involved in development, services, and 
sales, specifically architects and system engineers, developers, testers, customer service staff, 
sales support personnel, and marketing personnel, as well as managers up to two layers in several 
of these areas.  Interviewees were given a short description of the project, were asked about their 
role in the company and the process of work, and then they discussed their experiences in the 
development of respective products. 

 
Data Analysis 
Interviews were recorded and a summary of each interview was created soon after the 

interview session. We used this information to build a simple model of how the mechanics of the 
development process work. Moreover, in each interview we searched for factors contributing to 
quality and delay issues and looked for corroborations or disagreements with old factors. Based 
on these factors and the observations on the site we generated several different hypotheses about 
what processes contribute to, or avoid, delay and quality problems in development of Alpha and 
Beta.  We then narrowed down the list of hypotheses into a core set based on what themes were 
more salient in the interviews and in the history of the products.  This core set of dynamic 
hypotheses created a qualitative theory to be formally modeled using the system dynamics 
modeling framework (Forrester 1961; Sterman 2000). 
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The model allows us to understand the relationship between the process of product 
development and the behavior of a PD organization.  Using sensitivity analysis and different 
simulation experiments, we learned about the dynamic consequences of interaction between the 
mechanics of product development and decision-rules used to allocate resources and manage the 
system.  

In the rest of the paper, we use the simple simulation model to explain why creating, 
managing, and sustaining platform-based product development processes is difficult.  More 
specifically, we explain why PD capability in these settings can erode through random 
environmental shocks and adaptation, and describe the role of product architecture and feedback 
from the product in the field in the erosion of PD capability. Next, we provide a brief description 
of the software development process in the two cases studied.  In the following section, the 
simple model of multiple-release product development is introduced and the dynamics of interest 
are discussed in detail.   

 
Overview of Development Process for Alpha and Beta 
In Sigma, we studied the development of two products closely. Both products are 

customer relationship management (CRM) solutions (or part of a CRM solution) and follow 
similar general processes of software development, as described below. The development 
process described here is for one release of a product; however, usually a new release is well 
underway when the current release is launched into the market. Therefore the different phases of 
development overlap with each other for different releases.  

The software development process includes three main phases. These phases can be 
followed in a serial manner (waterfall development) or iteratively.  Sigma development 
organization followed a largely waterfall approach, with some iterative elements.  In the concept 
design phase, the main features of the product are determined, the product architecture is 
designed, and general requirements for developing different pieces of code are created.  For 
example, a new feature for the next release of a call-center software can be “linking to national 
database of households and retrieving customer information as the call is routed to a customer 
service agent.”  Software architects decide the method by which this new capability should be 
incorporated into the current code, which new modules should be written, and how the new code 
should interact with current modules of code.  Consequently a more detailed outline of the 
requirements is developed that describes the inputs, outputs, and performance requirements for 
the new modules, as well as modifications of the old code.   

The next step of software development process is developing the code.  This is usually 
the most salient and the largest share of the work.  In this step, software engineers (developers) 
develop the new code based on the requirements they have received from the concept design 
phase.  The quality of the development depends on several factors including the skills of 
individual developers, complexity of the software, adherence to good development practices 
(e.g., writing detailed requirements and doing code reviews), quality of the code they are 
building on, and quality of the software architecture (MacCormack, Kemerer et al. 2003).  Some 
preliminary tests are often run in this stage to insure the quality of the new code before it is 
integrated with other pieces and sent to the quality assurance stage. 

Quality assurance includes running different tests on the code to find problems that stop 
the software from functioning as desired.  Often these tests reveal problems in the code that are 
referred back to developers for rework.  This rework cycle continues until the software passes 
most of the tests and the product can be released.  It is important to note that not all possible 
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errors are discovered during testing.  Often tests can cover only a fraction of possible 
combinations of activities for which the software may be used in the field.  Therefore, there are 
always some bugs in the released software. 

When the software is released, new customers buy and install it and therefore require 
service from the company.  The service department undertakes answering customer questions 
and helping them use the software efficiently, as well as following up on bugs reported by 
customers, and referring these bugs to the research and development organization.  These bugs 
need to be fixed on the customer site through patches and ad hoc fixes if they are critical to 
customer satisfaction.  Current-Engineering (CE) is the term used for this activity of creating 
short-term fixes for bugs on a specific customer site.  CE is often undertaken by the same part of 
the organization that has developed the code, if not by the same pool of developers.  If the bugs 
are not critical, they can be fixed in later releases of the software.  In this article Bug-Fixing 
refers to the activity of fixing problems discovered from old releases in the new release of the 
product and therefore is different from CE.  Consequently bug-fixing usually competes with 
addition of new features to the next release. 

The development, launch, and service activities discussed above focus on a single release 
(version) of the software.  However, different releases are interconnected.  First, different 
versions of software build on each other and therefore they carry over the problems in code and 
architecture, if these problems are not fixed through bug-fixes or refactoring of the architecture, 
(Refactoring is improving the design and architecture of the existing code.)  Moreover, the 
sharing of resources between development and CE means that the quality of past releases 
influences the resources available for the development of the current release. 

Products Alpha and Beta share the general processes as discussed above. Product Alpha 
is a Customer Relationship Management (CRM) software which has been evolving for over 8 
years.  The research and development team working on Alpha has fluctuated at about 150 full-
time employees who work in five main locations.  This product has gone through a few 
acquisitions and mergers; its first few releases have led the market; and it has been considered a 
promising, strategic product for the company.  However, in the past two years, long delays in 
delivery and low quality have removed it from leadership position in the market.  In fact, the 
recent low sales have cast doubt on its viability. 

Product Beta is part of a complicated telecommunication switch that is developed largely 
independent of the parent product but is tested, launched, and sold together with the parent 
product.  Beta includes both software and hardware elements and the majority of its over-80-
person R&D resources focus on software part.  Beta is also located across multiple locations with 
four main sites, three of which overlap with Alpha product.  Beta has had exceptionally good 
quality and timely delivery consistently through its life.  Nevertheless, in two cases in its history, 
Beta had to delay a release to keep a synchronized release plan with the parent product which 
was delayed.   

Model and Analysis 
In this section we build a simple model of the multiple-release product development 

process, in which the interactions among quality, productivity, and resource requirements for 
products in the field and for maintenance of the old code are analyzed.  We build and analyze the 
model in three steps.  First, a very simple model is developed to look at the productivity and 
quality tradeoff in the development phase of the PD process.  After analyzing this simple model, 
we build into it a simple structure to represent what happens when the product is introduced into 
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the field and the dynamics that follow.  Finally, we add the architecture and underlying code-
base and analyze the full model. 

The model is built based on the observations of PD processes described in the previous 
section.  Therefore the decision-rules are modeled based on the observation of individuals’ 
decision-making and action in practice, rather than theoretical or normative assumptions such as 
rationality.  Consequently the formulations of the model follow the tenets of behavioral decision 
theory (Cyert and March 1963) and bounded rationality (Simon 1979) as applied to simulation 
models (Morecroft 1983; Morecroft 1985).   

 
Development Sector: Tipping point in productivity and quality tradeoff 
Development of a new release of a software product entails adding new features to 

existing release or developing all the new features for the first release.  In the same fashion, the 
new car from an existing model has some new features added or modified on the existing 
platform and a new version of a personal organizer builds on the last version with a few 
modifications and additional features.  Demand for New Features2 usually comes from market 
research, customer focus groups, benchmarking with competitors, and other strategic sources, 
with an eye on internal innovative capabilities of the firm.  In the case of the software products 
studied, new features are proposed by sales, services, and marketing personnel, as well as 
product managers who are in charge of finding out about what is offered by the competition and 
what is most needed by the potential customers and prioritizing these features to be included in 
the future releases.  Therefore the demand for new features largely depends on competitive 
pressures and factors outside the direct control of the R&D department, even though the product 
managers have some flexibility in selecting and prioritizing among hundreds of features that can 
be included in a new release (See Figure 2). 

The proposed features to be added in future releases accumulate in the stock of Features 
Under Development until they are developed, tested, and released in the market to become part 
of the Features in Latest Release of the software.  Feature Release rate determines how fast the 
PD organization is developing and releasing new features and therefore how often new releases 
are launched.  The quality of the new release depends on the Defects in Latest Release, which 
accumulates Defect Introduction Rate as defects in the designed product go into the market.  
Figure 2 shows how these variables represent the flow of tasks and the defects in the product.  
Formally, the stocks (boxes) represent the integration of different flows (thick valves and 
arrows), for example Features Under Development is the integral of Feature Addition minus 
Feature Release.  Appendix A details the equations of the model. 

                                                 
2 The names of variable that appear in the model diagrams are italicized when they are first introduced.   
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Figure 2- The basic stock and flow structure for platform-based new product development.  
Demand for New Features accumulates in the stock of Features Under Development until they 
are developed and transferred into the Features in Latest Release through Feature Release.   

Strong product development capability in this setting translates into getting the highest 
rate of Feature Release given a fixed level of development resources.  Companies that can 
sustain such high rates of features release will have a competitive advantage through having 
some combination of more features in their new releases, faster release times, and lower cost of 
product development.   

In its simplest form, Feature Release (FR) depends on the amount of resources available 
for development (RD), the productivity of these resources (P) and the quality of their work (i.e.,  
fraction of accomplished work that passes the quality criteria).  This fraction depends on two 
main factors, the quality of work, represented by the fraction of developed features that are 
defective (Error Rate: e), and the comprehensiveness of testing and quality assurance practices, 
represented by the fraction of errors discovered in testing (frT).  Therefore the fraction of work 
that is accepted is one minus the fraction of work rejected or frA=1-e*frT.  Consequently Feature 
Release can be summarized as: 

FR=RD*P*(1-e*frT)      (1) 
Here we measure the development resources (RD) as the number of individuals working 

on development of new features.  Productivity (P) represents how many features a typical 
developer can create in one month and depends on several factors including the skill and 
experience of individual developers, the quality of design and requirements for the development, 
the complexity of the code to be developed, the development process used (e.g.,  waterfall vs.  
iterative) and the availability of different productivity tools.  Similarly, Error Rate (e) depends on 
several factors including the quality of design and detailed requirements, complexity of 
architecture, the scope of testing by developers (before the official testing phase), code reviews 
and documentation, development process used, and the pressure developers face, among other 
things.  Finally, the fraction of errors caught in testing (frT) depends both on comprehensiveness 
and coverage of test plans as well as on the quality of execution of, and follow-up on, testing. 

What creates the dynamics in a product development process is the fact that resources, 
productivity, quality, and testing are not constant, but often change through the life of a product 
development organization working on multiple releases of a product.  While exogenous changes 
in these variables (e.g., economic downturn results in a lay-off and a reduction in available 
resources) are important, they add little insight into internal dynamics of the PD processes and 
offer little leverage for improvement.  Therefore here we focus on those changes which are 
endogenous to the PD process, for example how resource availability changes because of the 

 10



quality of past releases.  In what follows we expand the model to capture some of the main 
endogenous effects (feedbacks) and analyze the results. 

A central concept for understanding the capability erosion dynamics is the balance 
between resources available and resources required for finishing a release on schedule.  This can 
be operationalized as Resource Gap (RG), the ratio of typical person.months of work required to 
finish the development of pending Features Under Development by a scheduled date, to available 
person.months until that date.  Therefore the Resource Gap is a function of three variables: how 
many features are under development, how much time the PD organization is given to develop 
these features, and how many development resources are available to do this job (See the exact 
equations in Appendix A).  In the analysis of the determinants of the resource gap, we can 
distinguish between Features Under Development that change endogenously due to model 
dynamics, versus the time given for development and the resources available, which are mainly 
managerial policy levers.  Therefore we keep the resources available and the time to develop the 
pending features constant when discussing the model dynamics in the absence of policy 
interventions.  Resource Gap is a measure of pressure on the development team and therefore we 
use them interchangeably.   

The resource gap can be managed through controlling the amount of resources available 
or the scheduled finish date.  If pressure is consciously controlled, the desired impact of 
increasing schedule pressure is to increase the productivity of developers so that the gap between 
available resources and desired resources can be closed.  In fact in the case of software 
engineering, it is estimated that under pressure people can work as much as 40% faster 
(AbdelHamid and Madnick 1991)  All else being equal, this balancing loop (Work Faster loop-
see Figure 3) enables development teams to accomplish more work than in the absence of 
pressure and potentially meet a challenging schedule.  Managers commonly use this lever to 
increase the productivity of the development process, as reflected in the comments of a program 
manager: 

“The thinking that [a higher manager] had, and we think we agree with this, is that if 
your target is X and everybody is marching for that target, you fill the time for that target.  If you 
are ahead of the game, people are probably going to relax a little bit: because we am ahead of 
the game, we don't need to work so hard, we can take a longer lunch, we can do whatever; and 
guess what: Murphy's law says you now won't make that target.  So […] you shoot for X minus 
something, you drive for X minus something so that you build in on Murphy’s law to a point.” 

However, there is a negative side to increasing work pressure.  As pressure increases and 
developers try to work faster to meet the schedule, they start to make more errors.  This happens 
because under pressure they take shortcuts, for example by less detailed requirement 
development, little documentation of the code, lack of code review, and poor unit testing (See 
(MacCormack, Kemerer et al. 2003) for a quantitative analysis of effect of different practices on 
quality and productivity).  Moreover, the stress induced by pressure can increase their error rate 
and further erode the quality.  

Higher Error Rates surface in a few weeks when the code goes into the testing phase, 
resulting in the need for more rework.  Consequently rework increases the amount of work to be 
done and therefore the pressure, closing a potentially vicious, reinforcing cycle (Rework Loop- 
Figure 3). 

The error rate-productivity trade-off discussed above is well documented for a single 
project in different domains, from software development to construction (Cooper 1980; 
AbdelHamid and Madnick 1991).  These effects were also salient in Alpha and Beta, for 
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example developers in Alpha found little time to engage in process work that was supposed to 
enhance the quality of the product, such as doing code reviews and making detailed requirement 
plans.  The strength of trade-off between pressure and quality depends not only on individual 
skills and experience, but also on the development process and incentive structure at place in the 
PD organization. For example in Alpha, the quality of development was hardly transparent to 
management at the time of development, therefore under acute pressure, developers had more 
incentive to forgo good practices and sacrifice quality to increase the speed of development. 

In the simple model, we aggregate the effects of pressure on productivity and quality in 
two simple functions.  FP(RG), the effect of Resource Gap (RG) on productivity, changes the 
productivity around a normal level, PN, so that P=PN* FP(RG).  Similarly, Fe(RG) represents the 
effect of Resource Gap on Error Rate and therefore Error Rate changes around its normal value 
eN: e=eN*Fe(RG).  Substituting in Equation (1) we can see how Feature Release depends on 
Resource Gap: 

FR= FR=RD* PN* FP(RG)*(1- eN*Fe(RG)*frT)  (2) 
The exact behavior of this function depends on the shape of FP and Fe and therefore on 

the strength of the two effects, but in general both functions are upward sloping (increase in 
Resource Gap increases both Productivity and Error Rate) and both saturate at some minimum 
and maximum levels (Productivity and Error Rate cannot go to infinity or below zero).  The 
qualitative behavior of the system, however, depends only on the general shape of the Feature 
Release with respect to different levels of Resource Gap.  An upward sloping function suggests 
that the higher the pressure, the higher the output of the development process is (although this 
can be at odds with quality if a poor testing system lets the defects to go through).  A downward 
sloping function suggests that the least pressure is needed to get the best performance out of the 
system, since by adding to the Resource Gap, the system performance (Feature Release) 
deteriorates.  Finally, a more plausible shape is inverse-U shape, where up until some level of 
Resource Gap people will work harder and make more progress, but above that level the increase 
in pressure is actually harmful since people start to take shortcuts that harm the quality 
significantly and therefore developers end up reworking their tasks and therefore releasing fewer 
acceptable features on average.   

Figure 3 illustrates the causal relationships between Resource Gap, productivity, Error 
Rate, and Feature Release.  Two feedback loops of Work Harder and Rework are highlighted in 
this picture.  Work Harder loop suggests that an increase in the Features Under Development 
increases the demand for resources and therefore the Resource Gap.  As a result productivity 
increases and the PD process releases more new features, reducing the stock of Features Under 
Development (hence Work Harder loop is balancing (B)).  The Rework loop highlights the fact 
that in the presence of more features to be developed and higher pressure, people take shortcuts 
and work with lower quality, therefore increasing the Error Rate and consequently the amount of 
rework needed to fix those errors.  This results in slower Feature Release and therefore 
potentially higher Features Under Development (Hence Rework loop is reinforcing (R)).   

Assuming the more plausible inverse-U shape for the outcome of the tradeoff between 
these two loops, the total effect of Resource Gap on output of PD can be categorized into two 
regions.  For lower levels of Resource Gap and pressure, an increase in Features Under 
Development (and therefore pressure) has a desirable net gain, i.e.,  the PD organization will 
produce more.  However, above some threshold of Resource Gap, the relationship inverses, that 
is, the PD organization will produce fewer new features as a result of an increase in the pressure. 
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Figure 3- The basic structure of development process and tradeoffs between effects of Resource 
Gap on Error Rate and productivity.  The graphs show the shape of these two effects, both 
increasing as more pressure is added.  The Feature release vs.  Resource Gap graph shows the 
aggregate result of pressure on Feature Release for eN=0.4 and frT=0.9.  The values on the axes 
are not shown since the qualitative shapes of the functions are what matter in the analysis. 

The dynamics that emerge from this simple model can be best shown through an 
example.  First imagine a PD organization which is in equilibrium, i.e.,  there is a fixed, constant 
demand for new features coming into the organization, and the development team is able to meet 
this load, and therefore Feature Release equals the demand for new features.  What happens if we 
perturb the PD organization with a transient increase in workload, through additional demand for 
new features? An example of such perturbation is a set of unplanned, new features that the 
higher management asks the development team to incorporate into the next release, beyond the 
current workload.   

Figure 4 portrays the two possible outcomes of such perturbation.  In Figure 4-a (left), the 
PD organization is working by developing six new features each month, until time ten, when the 
demand increases to ten features per month and continues to be so for four month.  During this 
time, the additional demand results in more Features Under Development and therefore higher 
levels of Resource Gap.  This additional pressure in fact increases the overall Feature Release 
over the equilibrium value, since the increase in the productivity is bigger than the negative 
effect of the higher Error Rate.  Consequently, after the short-term additional demand is removed 
(feature demand goes back to six), the PD organization continues to release more new features 
than demanded, and therefore is successful in bringing the stock of Features Under Development 
back to its equilibrium value.   
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Figure 4- The reaction of PD process under a pulse of increased demand for features.  The pulse 
lasts for 4 months and increases the feature demand (red), Features Under Development (blue) 
represents the features demanded by market but not yet developed.  Feature release (green) 
represents the output of the PD process.  Figure 4-a on the left hand side, represents a case where 
additional pressure introduced by the pulse is managed through faster work and the Features 
Under Development is moved back to its equilibrium level.  Figure 4-b, shows how the PD 
organization fails to accommodate a slightly stronger pulse, resulting in erosion of PD capability 
as the Feature Release drops down and stays low. 

Now consider the same experiment with a slightly stronger perturbation (e.g., demand 
going to 13 rather than 10).  This time we observe a dramatic shift in the performance of the 
simulated PD organization.  In the new state, which, following Repenning (Repenning 2001) we 
call Firefighting, the Feature Release fails to keep up with demand and in fact goes down, the 
Features Under Development grow higher and higher since demand continues to exceed release, 
and in short the PD organization moves into a mode of being excessively under pressure, being 
behind the market demand, and developing fewer new features than they used to in the initial 
equilibrium.  What creates such dramatic shift in behavior, for addition of just a few features to 
the workload?  
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Figure 5- Schematic inverse-U shape curve of Feature Release as a function of Resource Gap.  
The picture highlights the stable equilibrium (where the feature demand meets the upward 
sloping part of the curve), the tipping point (where the feature demand meets the downward 
sloping part of the curve), and the maximum capacity (where the curve reaches its maximum). 

A graphical representation of dynamics helps illuminate this question better.  Figure 5 
shows an inverse-U shape curve that relates Resource Gap to Feature Release.  The equilibrium 
level of feature demand is represented by a horizontal line.  Initially the system is in equilibrium 
at the point marked by stable equilibrium: the Resource Gap is at a level at which Feature 
Release equals feature demand, and therefore the Features Under Development does not change 
and the system remains in equilibrium.  If the system is perturbed by a small pulse (reduction) in 
demand, the Features Under Development increase (decrease).  Hence the Resource Gap 
increases (decreases) to a value right (left) of the stable equilibrium point, and that results in 
values of Feature Release higher (lower) than feature demand.  As a result, the Features Under 
Development decrease faster (slower) than increase, and the stock goes down (up), reducing 
(increasing) the Resource Gap until the system gets back to the stable equilibrium.  The arrows 
on the curve represent the direction towards which the system moves: for small perturbations in 
work or schedule pressure the system adjusts itself back into the stable equilibrium.  However, 
there is threshold of Resource Gap, the tipping pressure (see the Figure 5), over which the 
systems behavior becomes divergent.  An increase in the Resource Gap over the tipping pressure 
results in Feature Release values lower than feature demand.  Therefore the stock of Features 
Under Development keeps growing, exerting further counterproductive pressure; hence the 
rework loop works in its vicious direction and the PD capacity goes down with no recovery.   

Now we can address the difference between the first and the second experiment.  In the 
first experiment, the initial perturbation brought the Resource Gap to the right of the stable 
equilibrium but just short of passing the tipping point.  Therefore the simulated PD organization 
was able to recover by working faster, producing more, and reducing the pressure.  However, the 
perturbation in the second experiment pushed the Resource Gap over the edge and beyond the 
tipping point. The PD organization was caught in a cycle of working harder, making more errors, 
spending more time on rework, and sensing more pressure under the unrelenting market demand.   
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Note that tipping point is different from the point at which we achieve the maximum 
development capacity (See Figure 5).  Tipping point is where the feature demand and Feature 
Release meet on the downward sloping part of the release-pressure curve, while the maximum 
Feature Release is achieved at the pressure which maximizes this curve.  As a result, the Tipping 
Pressure, as well as the stable Equilibrium Pressure, depend on the feature demand.  Changing 
feature demand shifts the tipping point and stable equilibrium because it shifts the horizontal 
demand line on the curve, bringing them closer to (by more demand) or further from (by less 
demand) each other and the maximum capacity.   

The shift in tipping point and stable equilibrium highlights an important tradeoff between 
a PD organization’s operating capacity and its robustness.  We can design more new features by 
accepting a higher demand rate (e.g.,  through taking more tasks on in the project planning for a 
new release), but that brings the stable equilibrium and the tipping point closer, and therefore the 
PD organization can tip into the firefighting mode more easily.  For example, an unexpected 
demand by higher management, a technical glitch, or departure of a few key personnel can tip 
the system into firefighting mode.  In the extreme, we can get the maximum output from the PD 
organization by demanding features at the maximum capacity rate.  In this case we bring the 
stable equilibrium to the tipping point and therefore the system is at the tip of the slippery slopes 
into firefighting.  While highly productive, such a system can easily fall into the firefighting trap 
in the face of small unexpected perturbations in the environment of the PD work. 

The dynamics discussed in this section look only at the development part of PD process.  
Therefore they do not account for the quality consequences of the features designed, when they 
go outside of the PD organization.  This is not a good assumption and has unrealistic 
conclusions, e.g.,  the PD organization is better off to reduce its testing goals, since that way it 
does not find the defects in the features designed, and consequently does not need to do any 
rework, avoiding firefighting, and increasing the capacity (in simple terms, ignorance is bliss). In 
the next two sections we expand the model to account for two important consequences of the 
quality of PD work, and the dynamics that pursue. 

 
Current engineering: shifting capacity and creating an adaptation trap 
New features which are introduced into the market through new releases have important 

effects for the product development organization.  First, there is a demand for customer support 
and services.  The service organization, which is often different from the R&D unit (as is the 
case in Sigma) is in charge of direct interaction with these customers.  However, if service 
people are unable to solve a customer issue, the customer call is transferred to the R&D 
department.  These transfers (called escalations in the company) can arise because of complexity 
of the software, but also because some defect in the code has created an unexpected issue in the 
client site.  When such defects are found, the development team often needs to decide on their 
fate.  If the problem is interfering with important needs of customer, R&D personnel are 
allocated to fix the problem, usually through quick, customized patches at the customer site.  
This activity is referred to as current engineering (CE) and can take a significant share of R&D 
resources.  In fact in the product Alpha, 30-50 percent of development resources were allocated 
to CE work.   

Current engineering is not the only connection between the PD organization and the 
product in the field.  Initial installation of the product also requires PD resources, therefore a 
product design that facilitates quick, smooth installation can save the PD organization from 
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installation challenges.  However, improving installability and serviceability of the product gets 
lower priority when important new features should be added to keep up with the market demand. 

A more subtle, and potentially more important, feedback of field performance is through 
sales level and its influence on resource allocation across a portfolio of products.  Delays and 
quality problems that identify a PD organization in trouble often reduce customer satisfaction 
and sales for a product.  Since resource allocation across different product lines in the portfolio 
often correlates with the success of the product in the field, i.e. its sales pattern, poor quality and 
sales can cost the PD organization its resources for development of future releases.  This effect 
of product performance in the field on resources given to a product line depends on resource 
allocation policies, regardless of product characteristics. 

This section focuses on modeling and analyzing the effect of current engineering work.  
Figure 6 shows the causal structure of the model that includes CE.  Here the features flow into 
the field as new releases are launched, and Defect Introduction captures the flow of defects into 
the field along these features.  These defects create a demand for PD resources to be allocated for 
current engineering (Resource Demand for Current Engineering.) This demand further increases 
the Resource Gap and can aggravate the Error Rate for the current Features Under Development, 
since developers must fix customer-specific bugs rather than spend time on quality work for the 
next releases (Current Engineering loop in Figure 6).  The demand for CE resources depends not 
only on the quality of the product in the field (operationalized as Defects in Latest Release), but 
also on the sales, fraction of defects that create noticeable problems, and productivity of doing 
CE work.  Details of formulations appear in the Appendix A.  The analysis that follows keeps 
sales and fraction of noticeable problems to be fixed and focus on the dynamics in the interaction 
of the Development and the Product in the Field Sectors. 
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Figure 6- The structure of the model with the addition of products in the field.  The new structures are 
highlighted through black variable names and blue, thick causal links. 
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Two major dynamic effects follow the introduction of CE into the analysis.  First, the 
additional resources needed to serve the CE reduce the effective capacity for developing new 
features.  The magnitude of this effect depends on several factors that determine demand for CE 
resources, some of which are endogenous to the dynamics of development and products in the 
field.  For example, very good quality in the development phase can significantly reduce the CE 
resource demand since the product has few noteworthy bugs when introduced into the market.  
Another factor is sales, which increase the CE demand, since it increases the number of 
customers who may face problems.  The strength of the sales effect also depends on the nature of 
the product.  For customizable products, different defects show up in different customer sites 
because each customer uses a different set of features and those combinations reveal different 
hidden problems in the design of the product.  However, most defects in off-the-shelf products 
are common across different customers and therefore by developing one patch, the PD 
organization serves several customers, reducing the burden of CE significantly.  Other relevant 
factors include the modularity of architecture and complexity of the code, since that determines 
how resource-consuming the CE work is; the priority of CE work relative to new development; 
the fraction of defects that surface in typical applications; and the power of the customers in 
relationship with the focal organization.   

In the case of CRM softwares we studied in Sigma, these factors added up to a potentially 
strong CE effect: the products are customizable and the CE work gets a high priority because 
many customers command special attention in their relationship with Sigma (partially because 
future sales depends both on the word of mouth and the direct feedback from current customers).  
However, Alpha and Beta faced different levels of pressure with regard to CE: Alpha had to 
allocate 30 to 50 percent of its resources (at different times) to CE work, while this figure 
remained below 10 percent in Beta.  The difference between the two can be explained by the 
internal dynamics of the two cases.  Alpha had slipped into a firefighting mode, faced significant 
quality problems, and poor quality of past releases took a toll on the complexity of the code-base 
and architecture, increasing the time needed to figure out and fix a problem.  On the other hand, 
Beta had largely succeeded in avoiding the firefighting trap and therefore with a good quality 
had very few escalations and little demand for CE work. 

The second effect of bringing CE into picture highlights an adaptation trap for the PD 
organization.  Imagine the adaptive path that the management can take to maximize the feature 
release of the PD organization.  Increasing the pressure (through additional demand or tighter 
schedules), the management can monitor the performance of the system to see whether 
incremental increases in pressure pay off by higher feature release, and stabilize where the 
marginal return on additional pressure is zero.  Such adaptation process is analogous to hill-
climbing on the Resource Gap-Feature Release curve in Figure 7, and is discussed as one of the 
main ways through which organizational routines adapt and create better performance (Nelson 
and Winter 1982).   
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Figure 7- The curve for perceived (blue) and sustainable (red) curves for Feature Release vs.  
Resource Gap.  The perceived curve comes from a simulation in which a short surge of demand 
(similar to Figure 4) adds to the Resource Gap, while the feature release is measured when 
normal delays for CE work exist.  The sustainable path comes from the same experience, where 
the CE resource demand is given at its equilibrium value for each level of Error Rate and feature 
release.   

An important distinction is that, the demand for the CE does not increase at the time that 
the pressure (and consequently the output and error rates) is increased.  In fact it takes at least a 
few months before the product is out and then some more time before the defects show up and 
are referred back to the PD organization.  During this period, increases in pressure create 
unrealistic boosts in the feature release rate, since the CE consequences are not realized.  
Therefore the adaptation is not on the sustainable payoff landscape which takes into account the 
future CE demands, rather it is on a temporary one with unrealistic returns to additional pressure 
(See Figure 7).  As a result, the adaptation process points to an optimum feature demand that is 
indeed beyond the capacity of the PD organization to supply in long-term , and when the CE 
work starts to flow in, the PD organization finds itself in the slippery slopes of firefighting.  
Pushed this far, not only the CE demand increases the pressure, but also the tighter schedule and 
higher demands that where justified in light of adaptive process, keep up their pressure through 
an increasing backlog of features which should be incorporated in the new releases. 

The strength of the adaptation trap depends on the magnitude of decoupling between the 
sustainable adaptation path and the perceived path.  Decoupling increases the extent to which 
demand on PD organization could increase beyond the sustainable level.  Therefore higher 
decoupling increases the magnitude of consequent collapse of the PD process performance and 
strengthens the trap.  The extent of decoupling depends on two main factors: the length of delay 
in observing the CE resource demand, and the speed of adaptation.  A longer delay in perceiving 
the demand for CE resources, e.g.,  because of longer release cycle, will result in a longer time 
horizon in which the adaptive processes work in absence of CE feedback.  Therefore the risk of 
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overshoot in adaptation into the unsustainable region increases.  Moreover, faster adaptation, 
e.g.,  through faster learning cycles of pressure adjustment and performance monitoring, 
increases the extent to which the PD organization expands the pressure and feature demand, 
before observing the CE demand. 

 
Architecture and code base: dynamics of bug-fixing and building on error 
In this section we expand the simple model of the PD process to include the effects of the 

architecture and code base in the dynamics of PD.  In this discussion, we focus on two main 
features of architecture and code base.  First, we include fixing the bugs found in the past 
releases when creating a new release, as well as improving the architecture to accommodate 
further expansion of the code.  Second, we discuss the effect of the problems in architecture and 
code base on the error rate for working on the new features. 

Releases which are on the market become old when newer products are launched.  
Therefore Features in Latest Release move into the Underlying Code category, while the defects 
that existed in them are removed from the field (Stock of Defects in Latest Release) and are put 
in the Defects in Underlying Code (See Figure 8).  In this conceptualization we are lumping 
together the underlying code-base and the architecture of the software.  Though these two are not 
the same, they have important similarities in their dynamic effects on PD processes.  Bug-fixing 
is the process of fixing defects that has been found in the field (or found during testing, but 
ignored under work pressure) in the underlying code.  It is different from current engineering 
since CE happens for specific customers who face a common issue, and the resulting fixes are 
not integrated with the next release of the code, while bug-fixing incorporate improvements into 
the main body of the code and will apply to all future customers.  The parallel process for 
architecture is refactoring, which means improving the design of existing code.   

Quality of underlying architecture and code base both depend on the quality of past 
development work.  Low quality development not only reduces the quality of code base for 
future work, but also impacts architecture, since taking shortcuts in development often spoils the 
designed relationships between the different modules of the code.  Moreover, although we do not 
model the concept design phase explicitly in this model, the quality of architecture design 
depends on similar pressures that impact development phase.  Therefore one can expect the 
quality of the code base and the architecture to be positively correlated.   
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Figure 8- The model structure after addition of architecture and code base.  New loops are highlighted in 
think blue causal links. 

Bug-fixing and refactoring need resources from PD organization and the demand for 
these resources depends on the quality of the code-base and architecture.  This demand for 
resources can further increase the Resource Gap, leading to more quality problems in a 
reinforcing cycle we call Bug Fixing (Figure 8).  The additional resources needed for bug-fixing 
are often not separated from those who work on the development of new features, since bug fixes 
are part of new releases.  In fact most software products have a release schedule with minor and 
major releases, in which minor releases mainly focus on fixing bugs.  Consequently, despite 
lower visibility, bug-fixing can consume a considerable share of PD resources.  For example, one 
of the recent “minor” releases of Alpha, included fixing over 1000 bugs, and proved to be as 
time and resource intensive as any major release. 

Including the bug-fixing activity in the picture of PD process has similar consequences to 
addition of current engineering.  First, the bug-fixing resource demand takes away resources for 
development of new features, shifting the effective, long-term, capacity of the PD process further 
down.  The magnitude of this shift depends on several factors including the quality of the code 
developed (Did we create a lot of bugs?), the strength of testing (Did we fail to catch those bugs 
initially?), the priority given to fixing bugs (Do we care about fixing bugs?), as well as the 
relative productivity of bug-fixing (Does it take more resources to fix a feature than to develop it 
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correctly in the first place?).  In appendix 2 we drive the mathematical formula for the 
sustainable capacity of PD process under different parameter settings. 

Second, the adaptation trap is made stronger through bug-fixing feedback.  The bug-
fixing activities entail even a longer delay between the original development and the observation 
of demand for bug-fixing resources.  This delay includes the release of new features, the 
reporting of the bugs, and the scheduling of these bugs in the work for future releases.  The 
longer delay suggests that there is even more time during which adaptive processes fail to 
observe an overshoot of demand beyond sustainable PD capacity.  Moreover, the downward shift 
in the sustainable capacity of PD process suggests that the gap between the short-term feature 
release and what can be sustained in the long-term is made wider.  Consequently, the chances of 
adaptation into unsustainable region increases, and when the feedback of CE and bug-fixing 
arrives, the PD organization finds itself further down the pressure-Feature Release curve. 

If allocating resources to bug-fixing reduces the PD capacity and increases the chances of 
slipping into firefighting mode, why not ignore this activity all together? The problem is two 
fold.  First, doing so will generate further customer dissatisfaction and demand for CE when old 
problems surface in the new features.  Moreover, ignoring bug fixes results in the accumulation 
of defects in the underlying code and architecture, which can significantly increase the chances 
of making errors in the current development work and trigger another vicious cycle (The Error 
Creates Error loop, Figure 8).   

The Error Creates Error loop, when active, is quite detrimental to the product-line.  On 
the one hand, the effect on the error rate is beyond the effect of pressure and results in even 
lower quality.  Such lower quality in fact strengthens the rework, current engineering, and bug-
fixing loops in the vicious direction.  On the other hand, in the face of longer delays before the 
architecture and code base effects surface, typically firefighting starts with rework and current 
engineering loops driving the dynamics, followed by the domination of Error Creates Error that 
seals the PD organization in firefighting.  Consequently, the activation of Error Creates Error 
loop suggests that things have been going wrong for quite a while, therefore reversing the trend 
requires a significant investment in fixing bugs and refactoring the architecture, and in many 
cases may prove infeasible.  In short, it is hard to save a product line so far down into firefighting 
path that it faces significant quality problems because of the old architecture and code base 
quality. 

An important factor in determining the propensity of a product to face Error Creates 
Error loop is the modularity of its architecture.  The modularity of architecture can be 
represented by the average number of other modules each module is interacting with.  In a highly 
modular product, each part is interacting with only a few neighboring parts.  In a very integrated 
product, however, every piece can be interacting with every other piece.  In general, new pieces 
can be added safely to the old code, as long as the pieces they are interacting with are not 
defective.  If the interacting pieces are defective, then we observe the Error Creates Error 
feedback.  Therefore, in a highly modular architecture, we only need a few interacting pieces to 
be fixed to avoid the feedback, regardless of whether non-interacting modules have any defects.  
In aggregate this entails keeping the density of errors low (percentage of modules defective).  
However, in the case of an integral architecture, things can go wrong because any of the 
interacting pieces are defective, therefore we need to control the absolute number of defects.  
Controlling density of errors in the code base is much easier than controlling the absolute 
number.  In fact, as long as the density of errors in the old releases is constant, the density in the 
underlying code base does not increase even in the absence of bug-fixing, even though the 
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absolute numbers increase proportional with new features released.  Therefore, the more we 
move from a modular to an integral architecture, the more important the feedback of past errors 
on error rate becomes, and the more important it becomes to spend resources on bug-fixing. 

 
Discussion 
In the model and analysis part of this paper, we built a simple model of platform-based 

product development that focuses on the interactions among the development of the product, the 
product in the field, as well as the architecture and underlying code the new releases are built on.  
When looking only at the development process, the tradeoff between quality and productivity in 
the face of pressure results in tipping dynamics.  The level of Resource Gap determines where 
the stable equilibrium and the tipping point for the system are, and the additional pressure brings 
these two points closer together as well as closer to the maximum capacity of the PD 
organization.  Consequently, there is a tradeoff between robustness and capacity of PD process; 
increasing the demand on the system can be beneficial in terms of additional output but increases 
chances of tipping into firefighting mode as a result of unexpected changes in the PD work 
environment.  Moreover, beyond the tipping point, an increase in pressure results in less output 
and pressure, driving the PD organization into increasing firefighting. 

When we expand our framework to include the products in the market we observe the 
current engineering dynamics.  These dynamics further highlight the importance of quality since 
resources need be allocated to the CE when product quality is low.  This consideration reduces 
the level of output a PD organization can sustain across multiple releases.  Moreover, the delay 
between changes in the quality and the observation of their effect on CE workload creates a trap 
for the PD organization in which adaptation to increase output of the process can actually take 
the system into the firefighting region before this problem is known through feedbacks on the 
ground. 

Finally, inclusion of underlying architecture and code base strengthens the continuity of 
multiple release product development.  First, bug-fixing requires resources and further reduces 
the effective capacity of the PD process for developing new features.  Moreover, the delays are 
longer for bug-fixing, which makes the adaptation trap deeper and more significant.  Finally, the 
effect of the code base and architecture quality on the quality of current development strengthens 
rework, current engineering, and bug-fixing dynamics and can seal the system in firefighting 
mode by increasing the costs of change. 

Platform-based product development is continuous in nature since different releases of 
the product are based on the same platform, share resources for development activity, trade 
features from one release to another, and share resources for current engineering and bug-fixing.  
Consequently, the firefighting dynamics discussed can not be contained in a single development 
project; rather, they pass on from one release to another in a contagious fashion.  Once the PD 
organization tips into firefighting, it is increasingly difficult for future releases to avoid these 
dynamics.  This is why these dynamics can erode the PD capability: they reduce the performance 
of the PD organization in multiple consecutive development projects.  In fact, once in the 
firefighting mode of behavior, new norms can shape around low quality practices, making future 
improvements harder.3 

In short, the Rework, Current-Engineering, Bug-fixing, and Error Creates Error 
dynamics erode PD capability through sustained firefighting. The PD organization enters 
firefighting not only as a result of unexpected demands when the organization is critically 
loaded, but also does so following intendedly functional adaptation to get the maximum utility 
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out of the PD resources.  Moreover, the dynamics pass on from one release of the product to 
another, therefore eroding PD capability.  These dynamics degrade the architecture and code 
base of the product line to the extent that the PD organization has difficulty making high quality 
products anymore, sealing the product line in the firefighting mode. 

We developed the model based on the case study of two software products.  However, the 
basic dynamics are based on a few boundary assumptions that can hold in domains beyond the 
software industry and therefore can inform understanding of platform-based product 
development processes.  The first critical assumption is that there is a level of resource gap 
beyond which the average output of the organization per resource unit decreases, rather than 
increase.  When this assumption is true, we have an inverse U-shape Resource Gap-Feature 
Release curve and the rework dynamics exist.  In fact, if this assumption is not true, the best 
option for a PD organization may be overloading the group completely with an unmanageable 
feature demand so that ever increasing pressure maximizes the output; the practices of successful 
PD organizations do not suggest the feasibility, not to mention the optimality, of such a policy.   

Another assumption in the model is that the quality problems are not lost, i.e., there is a 
cost for a low-quality product that the company will shoulder through some mechanism, 
including fixing errors, warranty and lawsuit costs, lost revenues, lower customer loyalty, and 
loss of brand name, among other costs.  This might be close to a truism across the board, but the 
cost of quality problems differ from one case to another.  The higher the cost of finding errors in 
later stages (e.g., when the product is in the field vs. when the product is under development), the 
stronger are the firefighting and contagion dynamics.  Moreover, there needs to be a link 
between cost of quality and the resources available to develop future releases.  This cost can be 
direct, as is the case for sharing current-engineering and development resources in software, or 
indirect, as implied by resource allocation policies that give more resources to more successful 
products in a company’s portfolio.  In the latter case, future quality costs influence the amount of 
resources available to future releases as long as they are accounted for in evaluating the 
product’s success.  The existence of quality costs after launch and the effect of these costs on the 
current development resources are enough to generate the Current-engineering and Bug-fixing 
dynamic (or their equivalents in other settings) and therefore the contagion of issues from one 
release to another.   

The other dynamic (Error Creates Error) rests on a third assumption: that the quality of 
the current release impacts the quality of work for the next release.  This is usually true for the 
architectural aspects of the product that have strong impact on the quality of work as well as 
future concept design and architecture.  In software, this assumption holds also for code quality, 
since the documentation of code and its seamless integration with other pieces influence the 
quality of future code to be built on top of it. 

Erosion of organizational capabilities is theoretically important.  On the one hand 
capability erosion can take away the competitive edge of organizations.  This effect is especially 
salient in the case of the PD capability which is the cornerstone of building other capabilities in 
dynamic markets (Teece, Pisano et al. 1997; Eisenhardt and Martin 2000).  In other terms, it is 
not only important to build a capability, but also it is important to be able to keep it. 

Moreover, processes that erode organizational capabilities overlap with those that 
prohibit imitation and replication of these capabilities.  Tipping dynamics and adaptation traps 
not only can erode existing capabilities, but also can stand in the way of building a successful PD 
capability.  These dynamics create multiple ways in the evolutionary path of capabilities for 
things to go wrong, and therefore reduce the chance that the PD organization can navigate its 

 24



way into a high performance arrangement.  For example, the tipping dynamics suggest that 
fluctuations in the level of workload can potentially tip the PD organization into firefighting.  As 
a new firm attempts to build its PD capability, there are many instances at which an unexpected 
surge of workload can tip the PD organization into a degrading mode of working fast and doing 
low-quality work. Furthermore, attempting to get the most out of the PD process early on, when 
the resource demand from the field is yet not realized, can result in overloading the organization 
through the adaptation trap dynamics.   

Therefore the tipping dynamics, the adaptation trap, and the contagion of firefighting 
dynamics highlighted in this study complement the literature exploring the mechanisms that 
make capabilities hard to build and sustain (including core rigidities, competency traps, and 
rugged payoff landscape).  The sources of capability erosion discussed in this paper add to the 
literature on barriers to imitation of capabilities by highlighting the role of time in the operation 
of adaptive processes.  Curiously, in the case of adaptive trap, not only does the organization fail 
to realize better opportunities (as is the case in landscape complexity, core rigidity, and 
competency trap), but also may actually degrade its performance through adaptation. 

By elaborating on some of the challenges in the way of successful PD processes, this 
study offers some factors for when PD capability is hard to imitate and under what condition it is 
easy to build.  If the dynamics discussed here play a visible role in the large picture of product 
development across different industries, one would expect the strength of these dynamics to 
partially determine the difficulty of building and maintaining a successful PD organization. 
Following the resourced-based line of argument, one expects PD to explain a larger fraction of 
firm heterogeneity in industries that PD is hard to build and sustain.  Therefore, our study offers 
a few hypotheses on the strategic importance of PD across different industries:    

H1: All else being equal, PD is strategically more important in industries where 
platform-based PD is dominant. 

First hypothesis suggests that the move towards platform-based product development 
increases the interconnection between different products and therefore increases the significance 
of firefighting dynamics.  As a result PD capability is harder to build and has a higher 
competitive value in such industries.   

H2: Flexibility of PD processes increases their performance heterogeneity across firms. 
If the quality of PD is highly dependent on flexible processes that individuals should 

follow, the effect of pressure on error rate will be stronger. The logic behind this assertion is that 
flexible processes give individuals more flexibility to mitigate the pressure by cutting corners, 
taking shortcuts, and different practices that lead to lower quality in the long-run. As a result, the 
Resource Gap-Feature Release curve will have a sharper U-shaped curve and the firefighting 
becomes more salient. 

H3: PD capability is more heterogeneous in industries where quality of the products 
launched influences the resources available to current development.   

The strength of the adaptation trap depends on how much the resources available to a 
project are influenced quality of products which are launched. The stronger the feedback of past 
product quality on PD resources (e.g.,  through CE and bug-fixing), the stronger is the capability 
erosion dynamics and the higher is the competitive value of PD in an industry.   

H4: The delay between development and observing the quality feedback on PD resources 
increases the heterogeneity of PD organizations across an industry. 

The decoupling between the perceived and sustainable Resource Gap-Feature Release 
curves, and therefore the risk of falling into adaptation trap depends on the delay in the effect of 
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old development quality on the current PD resources. The longer the delay between development 
and feedback of quality on resources, the stronger is the adaptation trap and the higher is the 
competitive value of PD in the industry.   

H5: Quality consequences of architecture and product base increase the heterogeneity of 
PD organizations’ performance in an industry.  

In industries where architecture and product base have a strong influence on the quality 
of current PD work, the dynamics of Error Creates Error and Bug-fixing are more salient and 
make it harder to sustain a successful PD process. Therefore we expect that the stronger the 
effect of current development on future architecture and product base, the higher would be the 
value of PD capability. 

This study also highlights important practical challenges for companies which rely on 
their product development capability.  First, an important concern for the start-up companies is to 
get their product to the market as fast as possible, with the least resources they can afford.  This 
is both because of limited availability of resources, and because of the importance of early 
presence in the competitive market.  Consequently, the quality of their PD work receives lower 
priority than time to market and maximizing the feature release rate becomes the highest priority.   

However, this is the recipe for adaptation trap: at the early stages, when current 
engineering, bug-fixing, and other multiple-release dynamics are not active, the startup approach 
yields a very high output which is not sustainable for future releases.  During this period, 
however, the norms of the PD organization are set and routines shape based on potentially 
unsustainable practices that want to get the product out as fast as possible.  These routines make 
it much harder during later releases to shift the organizing patterns of the PD process to 
sustainable arrangements that emphasize better process and higher quality.   

The challenge of managing a transition from the norms of quick-and-dirty design to 
sustainable quality work is especially salient when companies expand through acquisitions.  In 
these settings, a large firm enters a new product market by acquiring a start-up in that market.  If 
the product is platform-based in nature, e.g., software, the parent company will need to support 
and encourage a transition from the start-up mindset, to that of a successful platform-based PD 
process.  In the absence of such transition, the new line of product will slip into firefighting as 
soon as current engineering and bug-fixing feedbacks activate.  In fact the challenges that one 
product face can then spill into other lines of development through the fact that resources are 
shared among different PD groups.   

Another important challenge in the light of the dynamics discussed in this study is the 
strategy for managing customer demands and expectations.  One of the main customer demands 
is a good product support after the sales, which includes current-engineering. CE is the activity 
with the least value added compared to development and bug-fixing because it only solves the 
problems of one (a few) customer(s), and does not influence the quality of future releases 
significantly.  However, demand for CE is very salient in the face of customer interaction.  
Doing CE work solves an urgent problem, thereby it receives high visibility, and it can easily be 
rewarded because it draws attention from different parts of the company, including the service 
organization and the higher management who wants to see customer complains addressed 
quickly.  Therefore, in practice, the PD organization often gives higher priority to CE than 
warranted based on long-term considerations, therefore compromising the quality of future 
releases to fix the current problems in the field.  This prioritizing challenge is ironic because a 
policy of ignoring customers’ request for firefighting may make them happier in the long-run.   
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A different type of tradeoff with regard to customer demand is in the inclusion of new 
features.  It is generally assumed that including more features in the future releases of the 
product benefits customers. Contrary to this belief however, beyond the tipping point, trying to 
incorporate more feature will in fact reduce the output of the PD process.  Under these 
conditions canceling features may in fact be a favor to customers since it helps the PD process to 
recover, to develop more features in total, and to get the next release out sooner and with better 
quality.  Therefore the relationship between customer satisfaction and the efforts to add new 
features is contingent on the state of the product development organization: after some point, 
pushing harder does harm to the employees as well as the customers. 

 Finally, this study highlights the importance of evolution of the architecture and 
underlying product base.  If resource gap in early releases compromises quality of architecture 
and product base, the platform can not last for long and will lose viability soon after Error 
Creates Error feedback is activated.  From a behavioral perspective, this is a noteworthy risk: 
the feedback from quality of architecture and product base comes with long delays, therefore the 
immediate payoff to invest in architecture design, bug-fixing, and refactoring is low.  Under the 
resource gap pressure, it is more likely to skip these activities than the CE, even though in the 
long-run it can prove counter productive. 

This study has several limitations which open up room for further research.  First, the 
model is built based on two case studies in software industry and therefore not all potential 
processes that matter to dynamics of product development could be observed.  For example, CE 
effect is very strong in software, but not so strong in case of automobile development, while 
manufacturability is central in the latter case but not important in software.  Consequently, the 
generalizability of the conclusions can not be decided until further empirical work with larger 
number of PD organizations is conducted.  The hypotheses developed in the discussion section 
offer one avenue for such studies.   

Another question that merits further attention is the persistence of the firefighting 
dynamics.  These dynamics persist despite the time for learning, multiple chances to experience 
different policies (multiple releases), and high stakes for the PD organization.  Some of the 
discussions in this paper allude to persistence question, for example the contagion of dynamics 
from one release to another, yet a deep understanding of this question is crucial if a PD 
organization want to enhance its learning from experience. 

Finally, beyond generalizations about resource gap and quality, this study did not go into 
details of remedies for firefighting dynamics and what needs be done to avoid them. For 
example, one may expect loosely structured processes for development to increase the effect of 
pressure on quality. However, it is possible to combine flexibility and high quality by frequent 
synchronization of different development activities and providing quick feedback on quality of 
recent work (Cusumano 1997). Recognizing and designing such prossesess is of great interest to 
practitioners who need realistic ways for avoiding adaptation trap and getting out of firefighting, 
rather than a description of how one may fall into these dynamics. 
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Appendix A- Detailed model formulations 
The following table lists the equations for the full model. To avoid complexity, all switches and 
parameters used to break feedback loops are removed from the equations. 
Allocated Bug Fix Resources = Allocated Resources[BugFix]     Units: Person 
Allocated Resources[Function] = Min(Desired Resources[Function]/SUM(Desired 
Resources[Function!])*Total Resources, Desired Resources[Function])     Units: Person 
Desired Resources[Development] = Des Dev Resources  
Desired Resources[CurrentEng] = Desired Resources for Current Engineering  
Desired Resources[BugFix] = Desired Bug Fix Resources  
Development Resources Allocated = Allocated Resources[Development]  
CE Resources Allocated = Allocated Resources[CurrentEng]  
Allocated Bug Fix Resources = Allocated Resources[BugFix] 
Average size of a new release = 40    Units: Feature 
Bug Fixing = Allocated Bug Fix Resources*Productivity of Bug Fixes     Units: 
Feature/Month 
Des Dev Resources = Features Under Development / Desired Time to Develop / Productivity 
/ (1-Normal Error Rate*Frac Error Caught in Test)     Units: Person 
Desired Bug Fix Resources = Errors in Base Code / Time to Fix Bugs / Productivity of Bug 
Fixes     Units: Person 
Desired Resources for Current Engineering = Sales*(Errors in New Code 
Developed+Effective Errors in Code Base)*Fraction Errors Showing Up / Productivity of CE   
Units: Person 
Desired Time to Develop = 10    Units: Month 
Dev Work Pressure = if then else (Resource Pressure Deficit < 0.99, Resource Pressure 
Deficit, ZIDZ (Des Dev Resources , Development Resources Allocated))     Units: Dmnl 
Eff Architecture and Code Base on Error Rate = (Modularity Coefficient*"Tl Eff Arc & Base 
on Error"(Fraction Old Features Defective)+(1-Modularity Coefficient)*Max (1, Errors in 
Base Code))     Units: Dmnl 
Eff Pressure on Error Rate = Tl Eff Pressure on Error Rate (Dev Work Pressure)     Units: 
Dmnl 
Effect of Pressure on Productivity = Tl Eff Pressure on Productivity (Dev Work Pressure)    
Units: Dmnl 
Effective Errors in Code Base = Min (Effective Size of Old Release Portion , Old Features 
Developed)*Fraction Old Features Defective     Units: Feature 
Effective Size of Old Release Portion = 0    Units: Feature 
Error Becoming Old = Features Becoming Old*Fraction New Features Defective     Units: 
Feature/Month 
Error Frac in Released Feature = Error Fraction*(1-Frac Error Caught in Test) / (1-Error 
Fraction*Frac Error Caught in Test)     Units: Dmnl 
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Error Fraction = Min (1, Normal Error Rate*Eff Architecture and Code Base on Error 
Rate*Eff Pressure on Error Rate)     Units: Dmnl 
Error Generation = Feature Release*Error Frac in Released Feature     Units: Feature/Month 
Errors in Base Code = INTEG(Error Becoming Old-Bug Fixing , Errors in New Code 
Developed*Time to Fix Bugs / Desired Time to Develop)     Units: Feature 
Errors in New Code Developed = INTEG(Error Generation-Error Becoming Old , Normal 
Error Rate*(1-Frac Error Caught in Test)*New Features Developed / (1-Normal Error 
Rate*Frac Error Caught in Test))     Units: Feature 
External Shock = 0    Units: Feature 
Feature Addition = Fixed Feature Addition+PULSE (Pulse Time , Pulse Length)*External 
Shock / Pulse Length     Units: Feature/Month  
Feature Release = Rate of Development*Fraction of Work Accepted     Units: Feature/Month 
Features Becoming Old = New Features Developed / Time Between Releases     Units: 
Feature/Month 
Features Under Development = INTEG(Feature Addition-Feature Release , Fixed Feature 
Addition*Desired Time to Develop)     Units: Feature 
FINAL TIME = 100    Units: Month 
Fixed Feature Addition = 4    Units: Feature/Month  
Frac Error Caught in Test = 0.9    Units: Dmnl  
Fraction Errors Showing Up = 0.1    Units: Dmnl 
Fraction New Features Defective = ZIDZ (Errors in New Code Developed , New Features 
Developed)     Units: Dmnl 
Fraction of Work Accepted = 1-Error Fraction*Frac Error Caught in Test     Units: Dmnl 
Fraction Old Features Defective = ZIDZ (Errors in Base Code , Old Features Developed)     
Units: Dmnl 
Modularity Coefficient = 0.5    Units: Dmnl 
New Features Developed = INTEG(Feature Release-Features Becoming Old , Average size of 
a new release)     Units: Feature 
Normal Error Rate = 0.4    Units: Dmnl  
Old Features Developed = INTEG(Features Becoming Old , Initial Old Features)     Units: 
Feature 
Productivity = 0.1    Units: Feature/(Person*Month) 
Productivity of Bug Fixes = Productivity*Relative Producitivty of Bug Fixing     Units: 
Feature/(Person*Month) 
Productivity of CE = Productivity*Relative Productivity of CE     Units: 
Feature/(Person*Month) 
Pulse Length = 1    Units: Month 
Pulse Time = 10    Units: Month 
Rate of Development = Development Resources Allocated*Productivity*Effect of Pressure 
on Productivity     Units: Feature/Month 
Relative Producitivty of Bug Fixing = 0.5    Units: Dmnl 
Relative Productivity of CE = 1    Units: Dmnl 
Resource Pressure Deficit = SUM (Allocated Resources[Function!]) / Total Resources    
Units: Dmnl 
Sales = 10    Units: 1/Month 
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Time Between Releases = Average size of a new release / Feature Release     Units: Month 
TIME STEP = 0.125    Units: Month  
Time to Fix Bugs = 9    Units: Month [0,20] 
"Tl Eff Arc & Base on Error" ([(0,0)-
(1,2)],(0,1),(0.13,1.13),(0.28,1.34),(0.42,1.68),(0.54,1.84),(0.72,1.94),(1,2))    Units: Dmnl 
Tl Eff Pressure on Error Rate ([(0.5,0)-(2,2)],(0.5,0.8),(1,1),(1.15,1.11) 
,(1.29,1.33),(1.40,1.54),(1.53,1.74),(1.68,1.89),(1.99,2))    Units: Dmnl 
Tl Eff Pressure on Productivity ([(0,0)-(2,1.5)],(0,0.6),(0.26,0.61),(0.45,0.64) 
,(0.64,0.73),(0.83,0.84),(1,1),(1.22,1.2),(1.43,1.28),(1.77,1.32),(2,1.33))    Units: Dmnl 
Total Resources = 100    Units: Person 
 
Appendix B- The maximum PD capacity 
With a few assumptions, we can draw the analytical expressions for long-term capacity of the 
product development organization as modeled in the paper.  These assumptions include: 

- That products remain in the field for a fixed time  
- Product modularity is not very high, therefore we need to keep the absolute level of 

problems in the code-base and architecture low. 
The logic for driving the capacity is simple. We can write the total resources needed for 
development, CE, and bug-fixing in terms of Feature Release and Resource Gap.  Since in this 
model allocation is proportional to request, the ratio of resources requested to those allocated are 
the same across the three functions and equal resource gap. Therefore we can find the resources 
allocated to each activity in terms of resource gap and Feature Release. Consequently, knowing 
that when resource gap is above 1, the total resources allocated equal the total resources 
available, we can find Feature Release in terms of resource gap, which is the equation we need to 
find the optimum capacity.   
Formally, we can write resources allocated to each activity: 
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And note the conservation of resources: 

BFCED RRRR ++=       (6) 
Plugging the equations 3-5 into equation 6, and solving for FR, we find the following 
relationship that describes Feature Release as a function of resource gap: 
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Note that, as expected, in the special case where bug-fixing and current engineering don’t need 
any resources (e.g., by letting RPCE and RPBF go to infinity), the equation 7 is the same as 
equation 2, discussed in the text.   
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To find the maximum FR rate, one needs to take the derivative of FR with respect to RG (for 
which we need specific fe and fp functions) and equal it to zero. Finding the optimum RG 
(through numerical or analytical solution), we can plug it back into equation 7 to find the 
optimum level of capacity. 
Below are the variable definitions: 
eN: Normal error rate 
fe(.): Effect of resource gap on error rate 
fp(.): Effect of resource gap on productivity 
FR: Feature Release 
frT: Fraction of errors caught in test 
k: Number of fixes that need be made on the customer sites, for each defect in the code 
PN: Normal Productivity 
Ps: resource gap/ Work Pressrue 
R: Total resources allocated 
RD: Resources allocated to development 
RCE: Resources allocated to current engineering 
RBF Resources allocated to bug frixing 
RG: Resource Gap 
RPBF Relative productivity of bug-fixing as compared to normal development 
RPCE: Relative productivity of CE, as compared to normal development 
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