
1 

SYSTEM DYNAMICS BY VISICALC 
Simulation Models Using the New Spreadsheet Programs 

Alan McK Shorb 
Micro Dynamics 

58 Northgate Road 
Wellesley, MA 02181 

ABSTRACT 

. Visicalc, .the original spreadsheet program for 
m1crocomputers 1s explored for suitability as a vehicle for 
system dynamics models. 

It is shown that Visicalc can support most of the model 
~eatures.that DYNAMO allows, but at the price of some 
1nconven1ence and care needed when setting up the model. 
However, ~i~h the widespread distribution of spreadsheet programs 
among dec1s1on makers, there may be situations where they may be 
the vehicle of choice for implementing a dynamic model. 

0. WHY SYSTEM DYNAMICS BY VIS I CALC? 

In many situations, organizations wi~h to develop policies 

for allocating and controlling resources, and are concerned about 

the effect of these policies over an extended period of time. As 

most of the audience of this paper would agree, system dynamics 

is the technology of choice for developing these policies, and 

computer simulation is an essential element of this technology. 

Often, however, these organizations don't have access to the 

larger computers that support DYNAMO, but may have access to 

today's smaller microcomputers. 

154 

2 

The most successful single piece of software written for 

microcomputers is Visicalc (TM), a spreadsheet program. As far 

as I know, Visicalc or one of its emulators, is available on 

every single microcomputer for sale today, and probably has been 

purchased by most owners of microcomputers outside the home. 

Spreadsheet programs are designed to be simulation aids for 

budgeting and planning, but I have not yet seen them used within 

the context of the system dynamics technology. 

The main reason I am writing this paper is that I wondered 

if the spreadsheet programs could be used for making system 

dynamics models. I tried it, found they could be, and wanted to 

let other system dynamicists know about it. But there are other 

reasons than mere curiosity why the ability to construct models 

with spreadsheet programs is of interest to system dynamicists• 

For one .thing, the fact that spreadsheet programs are available 

on a wide variety of microcomputers allows simulation models to 

be easily written for any of them without having to rely on 

special purpose languages like DYNAMO, which may not be available 

on the computer at hand. A related advantage is that since the 

spreadsheet programs are similar, a model developed on one 

computer can be easily transferred to other computers. This 

ability is particularly important when a prototype model is 

developed on one computer to be implemented on a variety of other 

computers owned by the ultimate users of the model. If the user 

is interested in modifying the model, he may not want to go to 

the trouble of learning the formalism of DYNAMO, even if it were 



3 

available, but may be quite willing to use his knowledge of the 

spreadsheet program he has already learned to use. Even if the 

model is not to be altered by the user, if it is written in a 

spreadsheet format it can be quickly and easily distributed to 

its intended audience. 

This paper presents one way that spreadsheet programs can 

be used to construct system dynamics models. After a brief 

overview of the features of spreadshet programs, a sketch of the 

issues to be dealt with is made. Then three of these issues are 

dealt with in greater depth: how the correct computational 

sequence is assured; how time is handled; and how table lookups 

are accomplished. Finally, a fragment of a resource management 

model is presented, first in DYNAMO, then as a spreadsheet 

program. The paper then closes with a brief discussion of the 

merits and shortcomings of this approach. 

1. OVERVIEW OF SPREADSHEET PROGRAMS 

Spreadsheet programs utilize a two-dimensional rectangular 

array to analyze problems of interest. Each position in this 

array can be either a string of characters, an expliticly 

assigned numerical value or a formula. A formula has two 

different aspects: the· algebraic expression for the formula, and 

the value calculated by the formula. The algebraic expression 

can involve the combination of values from other positions by 

means of the four usual arithmetic operations, as well as special 

functions such as maximum, extended sum, and table lookup. In 

these algebraic equations, special expressions are used to 

155 

4 

indicate positions on the spreadsheet array. The most popular 

method is to label the rows of the array by numbers and the 

columns by letters or pairs of letters. Then the expression 

indicating the value for a position is just the column designator 

followed by the row designator. Thus the expression "B6" 

indicates the value at column B, row 6 on the spreadsheet, while 

the expression "AC18" indicates the value in column AC and row 

18. 

In a wide class of spreadsheet program applications, the 

array is aranged with different rows representing different 

variables of interest, and different columns representing the 

values at different times. This general arrangement will be used 

in the discussions in this paper. More specifically, in the 

terminology of DYNAMO, the rows will represent levels, rates, 

auxiliar.ies and constants, and successive columns will represent 

their values at instants in TIME that are DT apart. In addition, 

some special areas in the array will be set aside for table 

function values and for· computations to assure the correctness of 

the computation order. 

The capabilities of the spreadsheet programs that allow 

this approach to modeling to work are the following: 

The order of computation can be either row-dominant or 

column-dominant. In column-dominant computations, the values for 

each element in a column are computed, from top to bottom, then 



5 

the computation proceeds to the next column. Thus for the format 

described above, with column-dominant computations, all the 

variables for one instant are computed, and then all the 

variables for the instant DT later are calculated. 

Entire rows of formulas can be moved around easily. This 

feature greatly aids in getting the computations to be performed 
~ 

in the correct order. 

Formulas can be easily duplicated across columns or rows, 

with only the appropriate changes in the subscripts. This 

feature is what allows the same formula relating variables to be 

used for all instants during the simulation. 

2. ISSUES TO BE HANDLED 

In order for a computational technique to successfully 

support system dynamics models, a number of technical issues must 

be dealt with. 

Two of the most important of these issues are: How to 

assure that the computation of variables at a given timestep is 

in the correct order: and how to assure that the correct values 

are passed from one timestep to the next for the entire duration 

of the simulation. Another issue which is nearly as important, 

if not as fundamental, is how to provide for table lookups within 

the model. Each of these three issues is dealt with in turn in 

the sections below. 

156 

6 

There are other modelling issues that can be handled within 

the spreadsheet program or by easy-to-write companion programs. 

The most important of these are PLOTTING model results, using 

random functions, computed initialization of levels, and boxcars. 

None of these issues is further discussed in this paper. 

3. COMPUTATIONAL ORDER 

The task of assuring the correct computational order in a 

system dynamics model is a two-fold one. First, it must be 

assured that there are no cyclical causal paths in the model 

without alternation of levels and rates along these paths. 

Second, it must be assured that the order of computation follows 

the order of causation. That is, no auxiliary or rate variable 

should be computed for a given timestep before all the levels and 

auxiliaries on which it depends are computed for that timestep. 

3.1 Levels and Rates 

As the first step toward assuring the correct computation 

sequence, all level variables will be computed before all 

auxiliary variables, which will be computed before all the rate 

variables. In addition, as a technical convenience to be 

explained later, all constants other than level initializers will 

be computed anew at each timestep. Thus the rows of the 

spreadsheet will be arranged as in the diagram below. 



7 

Constants 

Levels 

Auxiliaries 

Rates 

The order described above will cause n.o problem for the 

proper computation of level variables, since they only depend on 

constants and on variables from a previous timestep. Also this 

order will cause no problems in· the computation of rates, since 

the should only depend on the values of constants and on levels 

and auxiliaries from the current timestep. 

3.2 Auxiliaries 

The only problem that could occur is in the order of 

computation of auxiliary variables. The correct order of 

computation is accomplished in two steps. First, it is assured 

that there are no causal cycles among the auxiliary variables. 

Then, the rows corresponding to the variables are rearranged one 

at a time until the computation is in the correct order. The 

same computational device is used in both these steps. Namely, a 

few columns are set aside as scratch space for keeping track of 

the order of computation. The spreadsheet array will then be 

organized as shown below. 

157 

8 

Constants 

Scratch Levels 

Auxiliaries 

Rates 

In the first scratch column, the maximum number of causal 

steps from a level to that variable is computed. This 

computation is accomplished as follows. All values in this 

column are initially set to zero. Then for each auxiliary and 

rate variable, the value in this column is set to one more than 

the maximum value in this column of the variables that have a 

causal influence on it. (A simple 0,1 switch is used to 

distinguish between the two different ways of setting the values 

in the first scratch column. 0,1 switches are discused in detail 

in the section below concerned with initialization of level 

variables.) 

The second scratch column is used to calculate the maximum 

value in the first scratch column. For each auxiliary and rate 

variable the value in this column is set equal to the maximum of 

the value in the first scratch column for that row and the value 

in the second scratch column for the previous row. 

The values in these two columns are calculated repeatedly, 

all the while observing the behavior of the last value in the 

second column. One of two things will happen. Either this value 

will be the same for two successive calculations, or it will 



9 

continue to increase with each new calculation. In the first 

case, the number that ends up in the first scratch column for 

each variable is the maximum number of causal steps from a· level 

to that variable. The rows can then be arranged as explained 

several paragraphs hence. 

If the first case occurs, it must occur before the last 

value in the second scratch column exceeds the total number of 

non-level variables. Otherwise, the second case holds, and there 

is a causal cycle of variables with no intervening level 

variable. To find the cycles, scan up the second scratch column 

to find the first row in which this last value occurs. (That is, 

if there are 12 auxiliary and rate variables and the last value 

in the second column has reached 14, then scan up the second 

column to find the first occurence of 14 in tha·t column.) The 

variable associated with this row is in a causal cycle. 

To find the other variables in the cycle(s), trace back 

through the cycle as follows. At each variable, find the 

variable(s) that this variable depends on which has(have) values 

in the first column greater than or equal to one less than the 

first column value of this variable. There will be at least one 

such variable. If (any of) the new variable(s) has(have) been 

encountered before in this search, a cycle has been found. 

Otherwise perform the same procedure on each of the new variables 

found, repeating until all variables found have been investigated 

in this manner. This process must find all the cycles that 

158 
10 

contain the variable started with, because there are not enough 

non-level variables in the model to trace back to a level 

variable by the procedure described, yet the procedure will 

always lead to either a new variable or one that has been 

encountered earlier in the search. 

After any cycles have been eliminated, then the model 

builder must assure that the equations are in the correct 

computational_ order. That is, for every auxiliary and rate 

variable, every other variable it depends on must have already 

been computed on an earlier row. There are several strategies 

that can be used to assure that the variables are in the correct 

order. The easiest of these strategies involves the values in 

the first scratch column described above. Merely move the rows 

for auxiliary variables around until this value is in ascending 

order. One acceptable strategy, if there are only a few 

auxiliary variables, is the reordering of rows done by 

inspection. 

When variables are found to be out of order, they can be 

rearranged using the editing features of the particular 

spreadsheet program being used. If the spreadsheet program 

allows rows to be moved around readily, keeping track of the 

proper row references in its equations, then the rows should be 

rearranged using whatever strategy is preferred until they are in 

the proper order according to the values of the first scratch 

column. 



11 

If, as is the case with most spreadsheet programs, the 

editing facilities are limited to adding blank rows and copying 

one row onto another, more care needs to be taken. The row that 

is to be moved is first copied onto a blank row that has been 

created in the proper position. Then references to that row in 

the other equations of the spreadsheet array must be adjusted. A 

process using auxiliary columns reminiscent of the process for 

eliminating cycles can be used to check on this adjustment. 

4. HANDLING TIME 

Spreadsheet programs are well designed to handle time in a 

system dynamics model, but there are a few technical details that 

merit close attention. 

The general arrangement of the spreadsheet array is to let 

each column of the model portion of the array represent one 

timestep, with time increasing to the right. The level variables 

are toward the top of the spreadsheet, with TIME being the 

topmost of these level variables. The auxiliary and rate 

variables come below the level variables, as already described. 

Then, at any given time step, the computations for the level 

variables use values from the previous column, and the 

computations for auxiliary and rate variables use values higher 

up in the same column. 

The three issues in handling time that need to be discussed 

in more detail are: how to do long simulations when there are a 

159 

12 

limited number of columns available for computation: how to 

handle the initialization of the level variables, and how to 

reference the correct positions at each time step. 

4.1 Handling Long Simulations 

Most spreadsheet programs are limited to less than a 

hundred columns, and for any sizable application, the limitations 

on computer memory are reached long before the formal limit on 

the number of columns. On the other hand, a typical system 

dynamics model will use well over a hundred timesteps. The 

problem is how to use the columns to represent timesteps without 

either exceding the limitations of the spreadsheet program, or 

putting undesirable limitations on the characteristics of the 

simulation. 

The solution is to run the simulation only for a convenient 

number of time steps at once, and then to "wrap around" the 

computations, going back to the first timestep column and 

continuing the simulation. 

For example, consider a simulation with 5 timesteps per 

month which is required to display results quarterly over a four 

year period. That is a total of 241 tirnesteps (including both 

beginning and end) that must be computed, well beyond the 

capability of most spreadsheet programs. This simulation can be 

handled by doing the simulation a quarter at a time. More 

precisely, there would be sixteen active columns in the 



13 

simulation. In the first run of the simulation, these columns 

would represent values of TIME running from 0 to 3 months in 

steps of 0.2 months. At the end of this first run, the initial 

values for the simulation will be displayed in the first active 

column, and the end-of-quarter values would be displayed in the 

last active column. 

Then the simulation for the second quarter would be run by 

first placing the values of the level variables from the end of 

the first quarter back into the first active column, and then 

proceeding with the computation for one more quarter. At the tnd 

of these computations, the columns would represent values of TIME 

running from 3 to 6 months. This process could be continued 

indefinitely, producing a simulation that lasts as many quarters 

as desired. 

In the general case, after the simulation of the first 

stretch of time, the values of the level variables at the end of 

that stretch would be placed back into the first active column, 

and the simulation repeated as often as necessary. 

The placement of the level variables back into the first 

active column would be controlled by a simple zero-one switch 

parameter under the control of the person doing the simulation. 

At the start of the simulation the switch would be set to zero 

and would select the initial values for the levels and put them 

into the first column. Then the switch would be set to one, and 

160 

14 

in subsequent runs it would select values of the level variables 

at the end of the previous simulation, and place them into the 

first active column. The formulation of this zero-one switch is 

described in the next section. 

4.2 Initializing Levels 

As described above, the initialization of level variables 

for a simulation run depends on whether the run is the first run 

of the overall simulation, or is a continuation of previous runs. 

This initialization is done in the first active column of the 

level variable rows by spreadsheet equations corresponding to the 

psuedo-DYNAMO equation: 

LEVELN=(l-SWITCH)*LEVELO+SWITCH*LEVELF, 

where LEVELN is the value of the level variable selected to start 

the current run, LEVELO is the initial value of the level for the 

total simulation, LEVELF is the value of the level at the end of 

the previous run of the simulation (active column 16 in the 

earlier example), and SWITCH is either 0 or 1. The initial 

values of the level variables should be placed in a convenient 

location, such as in the column just before the first active 

column. 

4.3 Equations at Each Time Step 

Unlike in DYNAMO, the equations of a spreadsheet 

representation of a simulation model cannot be written once for 

each variable, and then forgotten. For each variable they must 

be reproduced for each timestep. Fortunately, the editing 



15 

capabilities of most spreadsheet programs ease this task 

considerably. 

First, the equations for the variables and the values for 

the constants must be written into the spreadsheet in an 

"initial" position. For level variables, the initial equations 

must go into the second active column, written in terms of 

auxiliary and rate variables from the first active column. (The 

selection equations for initializing the variables are in the 

first active column.) For auxiliary and rate variables, the 

initial equations go into the first active column. In addition, 

values for constants, other than those initializing level 

variables, should go into the first active column. The reason 

for this will be seen shortly. 

Then each of these equations should be replicated along its 

row, all the way to the final active column. In this replication 

the "relative" attribute should be applied to all position 

references in these equations (except for table functions, as 

discussed later). This attribute ensures that all references to 

a position move along the row with the position for which the 

equation is being written, so that levels are always computed in 

terms of variables from the previous timestep, etc. 

Since there is no way for the spreadsheet program to 

automatically distinguish between constants and variables, the 

relative replication of equations will generate relative 

161. 

16 

references to constants as well as variables. In order to 

relieve the user of the burden of worrying about this distinction 

for each equation, it turns out to be easier to replicate the 

values of the constants (other than level initializers) across 

all time steps. To do this, with the constant value entered into 

the first active column, it is only necessary to enter ·the 

equation in the second active column saying that the value in 

that column is equal to the value in the previous column in the 

same row. Relative replication of these equations through the 

last active column will assure that the constants are really 

constant. 

Thus the layout for the active, simulating part of the 

spreadsheet for a system dynamics model will be organized 

according to the diagram below. 

Active 
Columns 

Constants 

Levels 

Auxiliary 
Variables 

Rates 

I Initial 
Values 

1 

·Values 

Selection 
Equations 

Initial 
Equations 

Initial 
Equations 

2 Last 

Initial 
Equations 

Initial 
Equations 

Replications 

(•; 



17 

5. TABLE LOOKUPS 

All spreadsheet programs I. am familiar with provide for 

table lookups by comparing two rows (or columns) of numbers on 

the spreadsheet. The first of these rows must be listed in 

ascending order. A key value for the table lookup is given and 

the program searches along the first row of .the table from left 

to right until it finds the last number in that row that is less 

than or equal to the given key. The value in the second row just 

below that value is the value returned by the table lookup 

function. If the key is less than the first number or greater 

than the last number in the first row then an error message is 

given. 

·Unfortunately, this type of table lookup is not suitable 

for most system dynamics applications, since an interpolated 

value is usually needed. However, the interpolated value can be 

obtained by using a trick. To see how this trick works, we first 

look more closely at the interpolation formula: 

where 

TBVALU=LOVALU+(HIVALU-LOVALU)*(KEY-LOWKEY)/GAP, 

TBVALU is the desired interpolated table value 

KEY is the value given the table lookup function 

GAP is the difference between successive values in 1st row 

(assumed constant) 

LOWKEY is the largest value in the first table row not 

greater than KEY 

LOVALU is the value returned by the lookup function, ie the 

value in the second row below LOWKEY 

162 
18 

HIVALU is the value in the second table row just after 

LOVALU and is the value returned for KEY+GAP. 

The trick is to duplicate the first row and use it as both 

the first and second row in a lookup function. Then LOWKEY is 

the value returned for KEY by this lookup and all the values in 

this formula can be computed. It is suggested that in actual 

practice the table lookup using this trick be divided into four 

steps. The first three steps will be the table lookups for 

LOWKEY, LOVALU and HIVALU,·and the fourth step is the above 

interpolation formula. 

6. EXAMPLE MODEL 

As an example of this technique, I have written a system 

dynamics model using Visicalc, the original spreadsheet program. 

This model is a simplified representation of the basic 

interactions between groundwater supply and usage in an area 

relying heavily on groundwater supplies, like many regions in the 

Middle East. 



19 

6.1 Causal Diagram 

This model is based on the causal diagram: 

---Water 

+ 
~ Inherent 

Usage _ Water ---User 
Fraction ----------~~~Usage~~~+--------- Demand +\ + :ay 

Water ~ + Aquifer 
Sufficiency ~ Aquifer~Recharge 

Traditional 
Aquifer 
Level 

, __________ Level Rate 

+ -\ 
Natural 
Aquifer 

Discharge 
Rate 

6.2 DYNAMO Version of Model 

The DYNAMO equations for the model are displayed below. 

The parameters were chosen to have a Traditionat Aquifer Level of 

500 million galons (MG), a Water Usage Rate of 90 MG/YR and an 

Inherent User Demand of 100 MG/YR. 

R WUR.KL=IUD.K*WUF.K 

L 

N 
c 

c 

c 

Water Usage Rate (MG/YR) 
IUD.K=IUD.J+(DT/DAT)(l-DAS*(l-WUF.J)) 

Inherent User Demand (MG/YR) 
IUD=NIUD 
NIUD=lOO 

Initial Inherent User Demand (MG/YR) 
DAT=4 

Demand Adjustment Time (YRS) 
DAS=lO 

Demand Adjustment Sensitivity (Dimensionless) 

163 

A 

T 

A 

c 

L 

N 
c 

R 

c 

R 

c 

N 

c 

c 

20 

WUF.K=TABLE(WUFT,WS.K,O,l,.2) 
Water Usage Fraction (Dimensionless) 

WUFT=0/.39/.61/.77/.9/1 
Water Usage Fraction Table 

WS.K=AQLEV.K/TAQLEV 
Water Sufficiency (Dimensionless) 

TAQLEV=SOO 
Traditional Aquifer Level (MG) 

AQLEV.K=AQLEV.J+DT(AQRR.JK-WUR.JK-NAQDR.JK) 
Aquifer Level (MG) 

AQLEV=NAQLEV 
NAQLEV=400 

Initial Aquifer Level (MG) 
AQRR.KL=CAQRR 

Aquifer Recharge Rate (MG/YR) 
CAQRR=l30 

Constant Aquifer Recharge Rate (MG/YR) 
NAQDR.KL=AQLEV.K/AQRT 

Natural Aquifer Discharge Rate (MG/YR) 
AQRT=lO 

Aquifer Residence Time (YRS) 

TIME=O 
Time (YRS) 

DT=.l 
Simulation Ihcrement (YRS) 

LENGTH=lO 
Simulation Length (YRS) 

The reader is invited to try out this model on his own 

computer. 

6.3 Visicalc Version of Model 

The model presented above can be entered into a spreadsheet 

according to the discussion in earlier sections. The way this 

can be done is indicated below, using the notation for Visicalc. 

In this formulation, since there are only two auxiliary 

variables, the correct computational order was easily obtained by 

inspection, so no scratch columns were used. The computation 

order and the rows the quantities appear on are: 



21 

QUANTITY ROW 

DT 2 
DAT 3 
DAS 4 
TAQLEV 5 
CAQRR 6 
AQRT 7 

TIME 9 
IUD 10 
AQLEV 11 

WS 13 
(LOVALU for WUF) 14 
(HIVALU for WUF) 15 
(LOWKEY for WUF) 16 

WUF 17 

WUR 19 
AQRR 20 
NAQDR 21 

The gaps in the sequence are for purposes of punctuation 

only. In addition, space was set aside for the table listing in 

rows 23 through 25, columns C through H, and for GAP in row 26, 

columns C through M. 

There are eleven active columns, to cover an entire year 

with DT=.l. The first active column is column C, and the last 

one is column M. The values indicated above for constants were 

put into column C, rows 2 through 7, and for the level 

initializing constants in column B, rows 9 through 11. 

The initial equations for the constants are in column D. 

They each say that the value in column D is the same as the value 

in column C: 

164 
22 

Di Ci, for i from 2 to 7. 

The equations used to select the initialization of the 

level variables were in column C, rows 9 through 11. The value 

of the switch for this selection was stored in column B, row 3. 

These equations were of the form: 

Ci (1 - B3) * Bi + B3 * Mi, i from 9 to 11. 

For each level, the first active equation appeared in 

column D. The actual equations for rows 9 to 11 are displayed 

below, acompanied by their corresponding DYNAMO equation. 

D9 = C9 + D2 
(TIME.K=TIME.J+DT) 

.DlO = ClO + (D2/D3)*(1 - D4*(1 - Cl7)) 
(IUD.K=IUD.J+(DT/DAT)(l-DAS*(l-WUF.J))) 

Dll = Cll + D2*(C20 - Cl9 - C21) 
(AQLEV.K=AQLEV.J+DT*(AQRR.JK-WUR.JK-NAQDR.JK)) 

The two auxiliary variable equations are presented below in 

the same style, but for column C, the first column for these 

variables: 

Cl3 = Cll/C5 
(WS.K=AQLEV.K/TAQLEV) 

Cl4 = @LOOKUP(Cl3,C24.H24) 
(LOVALU in the formulation in.the section on table lookups) 

Cl5 = @LOOKUP (Cl3+D26,C24.H24) 
(HIVALU from earlier section) 

Cl6 = @LOOKUP (Cl3,C23.H23) 
(LOWKEY) 



23 

Cl7 = Cl4 + (Cl5 - Cl4) * (Cl3 - Cl6) I C26 
(WUF.K=LOVALU+(HIVALU-LOVALU)*(KEY-LOWKEY)IGAP, or 

=TABLE(WUFT,WS.K, 0, 1,. 2)). 

The rate equations are given below in the same style. 

Cl9 = ClO * Cl7 
(WUR.KL=IUD.K*WUF.K) 

C20 = C6 
(AQRR.KL=CAQRR) 

C21 = Cll I C1 
(NAQDR.KL=AQLEV.KIAQRT). 

These equations for rows 2 through 21 are then propagated 

across to column M, as described above, using the relative method 

of copying blocks of ·equations, but being careful not to change 

the ranges in the table lookups. 

The model as described runs on Visicalc. Along column M on 

successive computation runs will be found exactly those numbers 

that would be printed out for the corresponding variables in a 

DYNAMO simulation of the same model with DT = .1 and PRTPER = 1. 

The reader is invited to try this comparison himself, or to 

attend my presentation of this paper for a demonstration. 

165 

24 

7. CONCLUSION 

_system dynamics models can indeed be implemented using 

Visicalc or similar spreadsheet programs. But there is a price 

to be paid in terms of ease of formulation of the model, and the 

convenience of obtaining. the results, as compared to DYNAMO 

implementations of the same model. However, the widespread 

availability of spreadsheet programs may make them the vehicle of 

choice for models to be run on computers for which DYNAMO is not 

available. Also, turnkey programs which are to be used by a 

person not familiar with DYNAMO and are not to be altered can 

reach a wide audience very quickly if they are formulated for 

spreadsheet programs. 


