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Game theorists have recommended lots of reasonable strategies for resolving domestic and 
international policy problems. In general, they use a concept of equilibrium strategy for 
analyzing dynamic consequences of available policy options in game situations. One of the most 
famous policy recommendations suggested by game theorists is that of George Tsebelis (1989). 
He contends that an increase in penalty against law-violation is not a viable policy tool for 
decreasing the violation tendencies of drivers. That is because the interactions between police 
and drivers can be best represented as a mixed strategy game in which each player choose their 
alternative actions with a probability. In a mixed strategy game between police and driver, the 
probability of driver's law-violation cannot be decreased by increasing penalty against law­
violation. 

Tsebelis's suggestion seems to be contradictory to the common sense. For most policy 
makers, an increase in penalty is conceived as one of the most effective tools for policy · 
implementation. In Korea, the increase in penalty have vastly reduced the number of drunken 
drivers. In many countries, the penalty management is a major policy implementation tool for 
inducing compliance from the people. 

Our SD model for a mixed strategy game shows that it takes a very long time for an game­
theoretic equilibrium to appear. Therefore, game players cannot and should not depend on the 
equilibrium state for choosing their actions. Furthermore, our mixed game model shows that an 
increase in penalty can induce a compliance from the people. Our model shows a behaviors 
which are contradictory to the game theoretic solution, but consistent to the real world behaviors. 
We have proposed that these gaps between SD model and a game theory come from the 
ambiguous conception of equilibrium state and the lack of dynamic and transient behavior 
analysis in the game theory. 
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Feedback loops in the social world have been regarded as important research areas not only for 
system dynamists but also for various kinds of social scientists. Social psychologists find 
feedback loops in the self-fulfilling prophesy, group dynamics and social interactions (Weick 
1979). Game theorists interpret feedback loops in terms of norms of reciprocity, interdependent 
choices and tit for tat (Komorita et al 1992; Elster 1989; Axerlord 1984). In particular, game 
theorists have developed their ideas on reciprocal decisions with a formal logic. They have 
recommended lots of reasonable strategies for resolving domestic and international policy 
problems (Snidal1985, 1991). 

However, the methodology and propositions of game theorists are different to those of 
system dynamists in many respects. While a building-block of system dynamics modelling is a 
decision-making activity, that of game theory is a game situation which is composed of pairs of 
players, preferences and strategies (Ordeshook 1986). In game situations, it is a general rule that 
more than two decision-makers interact to maximize their interests. While system dynamists 
focus their attentions on dynamic fluctuations of a system, game theorists make efforts to find 
equilibrium states in game situations. In general, game theorists use a concept of equilibrium 
strategy for finding out consequences of available policy options. 

Game theory is contrasted to the decision theory. Within a decision theory, a decision maker 
is assumed to behave independently to the decision of others. In game theory, every players 
change their decisions in response to other players' actions. Players are supposed to exploit 
inferior decisions of others. Furthermore, if possible and desirable, players are assumed to violate 
laws and deceive other players. In these situations, explanations based on decision theory are 
prone to errors. 

One of the most famous policy recommendations suggested by game theorists is that of 
George Tsebelis (1989). He contends that an increase in penalty against law-violation is not a 
viable policy tool for decreasing the violation tendencies of drivers. That is because the 
interactions between police and drivers can be best represented as a mixed strategy game in 
which each player choose their alternative actions with a probability. In a mixed strategy game 
between police and driver, the probability of driver's law-violation cannot be decreased by 
increasing penalty against law-violation. 

In this paper, we have made a system dynamics model for a. mixed-strategy game for 
investigating dynamic processes which are behind the game-theoretic equilibrium. Our SD model 
for a mixed strategy game shows that it takes a very long time for a game-theoretic equilibrium 
to appear. Therefore, game players cannot and should not depend on the equilibrium state for 
choosing their actions. Furthermore, our mixed game model shows that an increase in penalty 
can induce a compliance from the people. Our model shows behaviors which are contradictory to 
the game theoretic solution, but consistent to the real world behaviors. We have proposed that 
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these gaps between SD model and a game theory come from the ambiguous conception of 
equilibrium state and the lack of dynamic and transient behavior analysis in the game theory. 

1. Equilibrium of Mixed-strategy Game 

For certain two-person games like prisoners' dilemma, there exist dominant strategies for each 
game players. For other kinds of games, dominant strategies are not present to the game players. 
In these situations, game players often adopt a mixed strategy in which they choose different 
actions at random. Runners in a baseball game have no dominant strategy for whether or not he 
should steal a base. Best runners would start to steal a base when anyone cannot anticipate it. 
This is a mixed-strategy game. Tsebelis describe it with the case of games between police and 
driver (Tsebelis 1989) 

You are driving your car and you are in a hurry ... There are two state ofthe world: either the police 
are nearby or they are not. There are two acts to choose from: either to violate the speed limit or to 
abide by the law. Again, there are four possible outcomes: (a) you can get a ticket for speeding, (b) 
you can get to work on time without any incident, (c) you can arrive late and avoid a ticket, and 
finally (d) you can arrive late though there were no policemen on the streets. 

Two states mean the acts of other players: decisions of a policeman to patrol or not. Two acts 
are available to the driver. Four outcomes in this game result from the combination of two states 
and two acts. They correspond to each cells in the payoff matrix of table 1. 

Decisions 
of 

the driver 

Decisions of the policeman 

Patrol Not Patrol 

<Table I> Payoffs Matrix for policemen and driver 

The entry in each cell is the vector of utilities for the policemen and the driver. In keeping 
withconvention, the first entry in each cell (a1, b1, c1, d1) denotes the driver's utility, the second 
(a2, b2, c2, d2) denotes the policeman's utility. Note that a1 reflects the amount of penalty for 
the driver's law-violation. 

For the utility of a driver, it is assumed that he would prefer not to speed if there is a 
policeman (c1 > a1) and he would prefer to speed if a policeman decides to patrol (b1 > d1). For 
the utility of a policeman, it is assumed that· he would prefer to patrol if the driver decides to 
speed (a2 > b2), while he would prefer not to patrol if the driver abide by the speed law (d2 > 
c2). 

In table 1, both of the driver and the policeman has no dominant strategy. If the policeman 
decide to patrol, the driver prefers not to speed, and then the policeman prefers not to patrol, and 
then the driver choose to speed. In order to maximize their expected utility, they should choose 
their acts with some probabilities. An equilibrium state in a mixed-strategy game means the state 
in which both players act with a pair of probabilities (p*, q *) that can give them greatest 
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expected utilities (Ordeshook 1986). The p* is the probability with which the driver choose to 
speed, and the q* is the probability with which the policeman decide to patrol. The calculation of 
p* and q * gives (Tsebelis 1989). 

p* = (d2- c2)/(a2- b2 + d2- c2) (1) 
q* = (b1 - d1)/(b1 - d1 + c1 - a1) (2) 

Anyone can derive these formula quickly by maximizing the expected utilities of the driver 
and the policeman. Note that the probability of the driver's law-violation in (1) is not determined 
by the payoffs for the driver in table 1. This means that the penalty for the law-violation (a1 in 
table 1) has no effect on the probability of the driver's law-violation. From this logic, Tsebelis 
concludes following theorems. 

Theorem 1. Under assumptions of cl > al, bl > dl, a2 > b2 and d2> c2, the only equilibrium in 
the police-public game is in mixed strategies as specified by equations (1) and (2). 

Theorem 2. An increase in the penalty leaves the frequency of violation for the law at equilibrium 
(p*) unchanged. 

Theorem 3. An increase in the penalty decreases the frequency that the police enforce the law at 
equilibrium (q*). 

Theorems Tsebelis concluded seem to be contradictory to the common sense. For most 
policy makers, an increase in penalty is conceived as one of the most effective tools for policy 
implementation. In Korea, the increase in penalty have vastly reduced the number of drunken 
drivers. In many countries, the penalty management is a major policy implementation tool for 
inducing compliance from the people. 

2. System dynamics model for a mixed strategy game 

Why does a game theory produce theorems inconsistent to the common sense and to the real 
world? Two kinds of answers can be provided. First, we can reject the hypothesis that the 
interactions between a police and a driver is a kind of game. Second, if we accept their 
interactions as game, we can suspect the validity of a game theoretic solution. In this paper, we 
have a focus on the second possibility. We have made a system dynamics model for investigating 
the validity of a game theoretic solution in the mixed strategy game. 

Figure 1 shows system dynamics diagram for a two-person mixed-strategy game. We have 
built the model to reflect decision-making processes of both players. In figure 1, two rate 
variables named as decision_ of _police and decision_ of_ driver represent responses of players to 
others' acts. Four stock variables denote historical cumulations of their acts, from which 
probabilities of their acts can be calculated. Eight constant variables correspond to eight payoffs 
in table 1. They are summarized in table 2. 

In table 2, cells in the third column display values of payoffs assumed in the model. Payoff 
values are assumed to satisfy conditions of mixed-strategy game; c1> a1, b1 > d1, a2 > b2 and d2 
> c2. 
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<Figure 1> SD model for a two-person mixed-strategy game 

Symbols for payoffs in table 1 Constant variables iri SDmodel .. ·. Value· assumed 
a I Driver Payoff for Violation with Patrol I 
bi Driver_Payoff_for_ Violation with_No Patrol 4 
cl Driver Payoff for Conform with Patrol 

,., 
.) 

di Driver Payoff for Conform with No Patrol 2 
a2 Police Payoff for Violation with Patrol 4 
b2 Police Payoff for Violation with No Patrol I 
c2 Police Payoff for Conform with Patrol 2 
d2 Police_Payoff_for Conform_with_No Patrol 3 

< Table 2> Constant vanables for payoffs m mixed-strategy game 

In addition to these basic assumptions, we added some assumptions for making the model 
clear and similar to the real world. We have assumed that Driver_Payoff_for_ Violation_ 
with _Patrol (a1) is worst for the driver and Driver _Payoff_for _Violation_ with_ No _Patrol (b 1) is 
best for the driver. Police_Payoff_for_Violation_with_No_Patrol (b2) is assumed worst for the 
police and Police_Payoff_for_ Violation_with_Patrol (a2) is assumed best for the police. One can 
simulate the model without these additional assumptions and get results consistent to ours. 

The equilibrium state in the model can be calculated by applying the equation (1) and (2) to 
the payoffs in table 2. We can get following probabilities for acts of game players. 

p* (probability of driver's violation) = (3 - 2)/( 4 - 1 + 3 - 2) = 0.25 
q* (probability of policeman's patrol)= (4- 2)/(4- 2 + 3 -1) = 0.5 

We can examine three theorems presented by Tsebelis by comparing this equilibrium state to 
model behaviors. 
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3. Simulation results 

I) Oscillation rather than equilibrium 
The first theorem of Tsebelis says that a mixed strategy game has an equilibrium state where two 
players act with the probabilities calculated by equation (1) and (2). However, equation (1) and 
(2) say nothing about the processes by which two players move to the equilibrium state. Even if 
the equilibrium state is unique and stable, the path for reaching to it should be analyzed. If the 
path is filled with fluctuations and dissatisfactions, players will give up using the mixed strategy. 

We have simulated our model until1,000 simulation time with the time-interval of 1 (DT=l). 
In this simulation, DT means an event of repeated games between the police and the driver. If 
one want to interpret a simulation time as a real world time, one should know how many games 
are performed during one unit of a real world time. Figure 2 shows behaviors of the police and 
the driver during the simulation. 

Figure 2 shows the tendency of game-players for moving to the equilibrium state. However, 
the paths for the equilibrium states are filled with oscillations. For getting to the equilibrium 
state, they should overcome the fluctuating behaviors of other players. An adjustment time 
necessary for the equilibrium state is so long that, if we assume one game per a day, it takes more 
than 3 years to get to the equilibrium state. 

In order to examine the existence of the equilibrium states, we have simulated the model until 
10,000 times. And we found that the fluctuations shown in figure 2 disappear in the long run. 
This long run equilibrium should not be interpreted as an structural attribute of a mixed strategy 
game. The essential cause of the long run equilibrium is the frequency of games itself. Only after 
players perform the game lots of times, probabilities of their acts reach a stable state. For 
example, after the games are repeated 5,000 times, their additional acts have little effects on the 
probabilities of violation and patrol. Speaking in a word, the long run equilibrium results from 
the frequency of the game and from the players' memory on past experiences. If we assumed that 
players forget ten percent of their memory, the long run equilibrium is replaced by endless 
oscillations. 

Note that graphs in figure 2 denote the equilibrium pair of probabilities. The probability of 
driver's violation fluctuates around 0.25. However, the probability of patrol for the policeman 
fluctuates above the equilibrium probability of0.5. 

On the average, policeman patrols more frequently than the optimum level. Why this 
happens? This comes from the asymmetry between the optimal probability of violation and the 
optimal probability of patrol. The former is 0.25, while the latter is 0.5. In order to maintain the 
probability of violation at 0.25, the driver should violate the law much less frequently than 
abiding by it. 

Therefore, the period for violations (area A in figure 2) is shorter than the period for 
conforming to the law (area B in figure 2). The period for driver's violations corresponds to the 
period during which the probability of patrol is below 0.5. As a result, the period when the 
probability of patrol is below 0.5 is shorter than the period when it is above 0.5. That is why the 
average probability of patrol for the policeman is above the equilibrium probability of 0.5. From 
these results and imbedded dynamics, we can propose a new proposition that in a mixed-strategy 
game those players whose equilibrium probability of certain act is higher than others' are 
destined to over-act. 

596 



System Dynamics '95 - Volume II 

100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0 

<Figure 2> Behavior of players in a mixed-strategy game 

2) The effectiveness of penalty increase 
In order to examine the second and third theorem of Tsebelis, we have increased the penalty for 
violating a speed limit. That is, we have reduced the value of Driver_Payoff_for_ Violation_ 
with_Patrol from 1 to 0. The equilibrium state can be calculated by applying the equation (1) and 
(2) as follows. 

p* (probability of driver's violation) = (3 - 2)/( 4 - 1 + 3 - 2) = 0.25 
q* (probability of policeman's patrol)= (4- 2)/(4- 2 + 3- 0) = 0.4 

An increase in the penalty reduces the equilibrium probability of patrol from 0.5 to 0.4 but 
does not change the equilibrium probability of violation as stated in the second and third theorem 
of Tsebelis. 

Figure 3 shows results from our second simulation. In our second simulation, we have 
introduced the penalty-increase at initial time of simulation. As predicted by the second theorem, 
the average value ofthe probability of violation is not changed. 

100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0 

<Figure 3> Behaviors of players after increase in the penalty 
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However, the number of cycles increased from 8 to 9 (compare figure 2 and figure 3). This 
means that the increase in penalty reduced the stability of a system. Game players change their 
behaviors more frequently with the increase in the penalty. This result is different to the second 
theorem of Tsebelis in the sense that the behavior of the driver is changed by the penalty 
mcrease. 

On the other hand the probability of patrol is reduced by the penalty increase. Although the 
average value of probability of patrol is above the equilibrium of 0.4, it is reduced by 0.1. This 
result partly supports the third theorem of Tsebelis. 

Now we have introduced the penalty-increase at the point of 500 simulation time to examine 
its effects on the evolutionary process of a mixed-game. Figure 4 shows time-behaviors of game 
players produced in our third simulation. A vertical line in figure 4 denotes the time of increasing 
the penalty. Horizontal lines shows the equilibrium probability of patrol and violation. 

In figure 4, one can get two messages about the theorems of Tsebelis. First, a behavior of the 
driver is vastly changed by the increase in the penalty. The probability of violation is reduced 
under 0.25 for a considerable period. Second, after increasing the penalty, the width of response 
cycle is prolonged so that one can see less fluctuations. These messages raise a question on the 
second theorem of Tsebelis. 

Of course, all of these do not continue forever. But the changing effects continue for a 
considerable period enough for the policeman to believe in the power of the penalty-increase. 
The fact that game-players come back to the equilibrium state after 750 time do not say that the 
increase in the penalty can't change the behavior of the driver. The fact is that an increase in the 
penalty decreased the violation tendency of the driver more than 250 times, which should be a 
critical period for policy makers. 

1.000 1.00 

0.900 0.90 

0.800 0.80 

0.700 0.70 

0.600 0.60 

Penalty Increase , 

0 000 O.OOIU-L--1---+-~--1---i---1..__-+---1---i----1 
1 00.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1 000.0 

<Figure 4> The effects of increasing the penalty at 500 simulation time 

3) Information Delay in a Mixed-strategy Game 
We have not included information delays in the model for simplifying discussions about the 
game-theoretic equilibrium. It is reasonable to assume there are information delays between the 
police and the driver. We have assumed that it takes 6 times for game players to know the 
probability of other player's action. In the model two smooth functions were used to represent 
information delays of a driver and a policeman to figure out the probability of other players' 
action. 
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Figure 5 displays the simulation results. The response cycle of players are prolonged and 
have larger amplitude than before. That is, it takes longer time to reach the equilibrium state. It is 
due to the slow adaptiveness of players resulting from the information delay. 

1.000 1.00 

0.900 0.90 

0.800 0.80 

0.700 0.70 

0.500 0.60 

0.500 0.50 

0.400 0.40 

0.300 0.30 

100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0 

<Figure 5> Information delays and the time-behavior of mixed strategies 

With the information delays, it is more difficult for the game players to reach equilibrium 
actions, and the penalty-increase will change the behavior of the driver for longer time. A set of 
experimental simulations shows that, in a mixed game, it takes long time for an equilibrium state 
to appear and that an increase in the penalty against violating the law decreases the probability of 
violation for a short time at least. 

Our study shows that a game theoretic equilibrium is not a stable state. This comes from the 
fact that a game theoretic equilibrium lacks the transient behavior analysis. With the help of a 
game theory, one can find the equilibrium state. However, a game theory has its limit in showing 
various paths to the equilibrium state. In the real world where game players are myopic and 
limited resources, paths to the equilibrium state is more important to them than the equilibrium 
itself. We think that it is too dangerous to judge the effects of penalty-increase only on the basis 
of the game theoretic equilibrium. They should be analyzed within the evolutionary processes 
toward the equilibrium in which lots of unanticipated events arise. 

4. Conclusions and Future Research 

In this study, we developed a SD model for a mixed strategy game and showed that one should 
modify static theorems of a game theory for applying them to the dynamic world. Furthermore, 
our study showed that the penalty management can induce compliances from the people at least 
for a short time. Lacking the transient behavior analysis, most of game theories say little about 
how a system evolves to the equilibrium. The policy recommendations based only on the game 
theory seem to be dangerous. 

We suggest that integrations of a game theory and system dynamics will provide a safe 
ground for describing and recommending policies in real world. System dynamics will simulate 
evolutionary processes of games toward (non) equilibrium states, while game theories provide 
frameworks for modelling the world which is filled with competitions and cooperations. 
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[Appendix: Model Equations] 

Level Viol~~ 
Init =tSJ 
Violation= Violation+ DT*((Decision_of_Driver 

Level Conform 
Init = 1. 
Conform= Conform+ DT*(Decision_of_Driver) 

Level Patrol 
Init = 1. 
Patrol= Patrol+ DT*(Decision_of_police) 

Level NoPatrol 
Init= I. ~ 
NoPatrol =NoPatro~+ *((Decision_of_police-I~ · 

Rate Decision_of_Driver IF ect_Utility_of_Conform ~ect_Utility_of_ Violation~ 
Rate Decision_of_Police = F Expect_Utility_of_Patrol > Expect_Utility_of_No_Patrol Then I Else 0 
Aux Probability_of_patrol =Patrol I (Patrol+ NoPatrol) 
Aux Expect_Utility_of_ Violation= Driver_Payoff_for_ Violation_with_Patrol * Probability_of_Patrol + 

(Driver_payoff_for_ Violation_with_No_Patrol * (1- Probability_of_patrol )) 
Aux Expect_Utility_of_Conform = Driver_Payoff_for_Conform_with_Patrol * Probability_of_Patrol + 

(Driver_Payoff_for_Conform_with_No_patrol * (1- Probability_of_Patrol )) 
Aux Probability_of_ Violation = Violation I (Violation + Conform) 
Aux Expect_Utility~of_patrol = Police_Payoff_for_ Violation_with_patrol * Probability_of_ Violation + 

(Police_Payoff_for_Conform_with_Patrol * (1- Probability_of_ Violation)) 
Aux Expect_Utility_of_No_Patrol = 

Police _Payoff _for_ Violation_ with _No _patrol * Probability_ of_ Violation + 
( Police_payoff_for_Conform_with_No_Patrol * (1- Probability_of_ Violation)) 

Constant Driver_Payoff_for_ Violation_with_No_Patrol = 4 
Constant Driver_Payoff_for_Conform_with_No_Patrol = 2 
Constant Driver_Payoff_for_ Violation_with_Patrol = I 
Constant Driver_Payoff_for_Conform_with_Patrol = 3 
Constant Police_Payoff_for_ Violation_with_No_Patrol =I 
Constant Police_Payoff_for_ Violation_with_Patrol = 4 
Constant Police_Payoff_for_Conform_with_No_Patrol = 3 
Constant Police _Payoff_for _Conform_ with _Patrol = 2 
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