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Abstract 
 

Laboratory studies have shown that people cannot handle the time 
constants in dynamic tasks. Yet they obviously cope with such tasks 
with some success outside the laboratory. This study is one in a series 
of studies that examine the hypothesis that people cope by relying on  
heuristics that allow them to simplify the task. The heuristic studied 
here was that of relying on frequency differences, i.e., what Reason 
(1990) calls frequency gambling. It examines the effects of varying the 
relative frequency of scenarios that require different responding, and 
where relying on frequency rather than learning the actual time con-
stants will lead to some success. The results show that the participants 
did not learn the time constants, but the heuristic used did not seem to 
be frequency as much as a heuristic that could be called “better safe 
than sorry”, i.e., they sent out more than the minimum necessary assets 
to fight the fire. A variant of this heuristic involving rapid and massive 
responding has also been identified in earlier studies.  
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The business of system dynamics (SD) is modelling dynamic systems. The purpose is 
to provide aids that can help people cope better with such systems. 
 
This business could certainly be conducted without any reference to how people actu-
ally deal with such systems, except, perhaps, the conviction that they are so bad at 
doing it that SD is their only hope of salvation. So why should SD practitioners be 
interested in studies of how people actually handle dynamic systems, such at that pre-
sented in the paper now before the reader’s eyes? 
 



We think that there are at least two reasons. The first is that SD modelling sometimes 
involves modelling human behaviour in dynamic systems. Such modelling will be as 
successful as the understanding of human behaviour upon which it is based. It is all 
too easy to believe that people’s understanding of dynamics is just a corrupt version 
of the “true” understanding provided by, e,g., a proper STELLA model. As we will 
show here, there are alternative views that point to substantially different ways of han-
dling dynamic systems. 
 
A second reason is that studies of what people actually do may provide new inputs to 
SD modelling of dynamic systems. In fact, people actually cope with (at least some) 
dynamic systems successfully also without the aid of SD and have done so for centu-
ries (see Mayr, 1970, for some interesting examples). The question is how they man-
age to do this despite the obvious lack of understanding of dynamics as documented 
in numerous studies (e.g., Boot Sweeney & Sterman, 2000; Jensen & Brehmer, 2003; 
Moxnes, 2000). Perhaps there is a lesson for SD modellers here, and perhaps there are 
alternative ways of handling dynamics, alternatives to the formal understanding pro-
vided by, for example, SD or control theory. This is not to deny that SD modelling 
would be useful or needed, for it is obvious that people do not cope successfully with 
all dynamic systems. Rather, alternative forms of understanding based on what people 
actually do may provide important new sources for modelling dynamic systems. An 
understanding of these alternatives may also be important for communicating with 
users of SD models, as well as in the process of developing such models with coop-
eration between modellers and users. Specifically, such studies may provide a better 
understanding of intuitive modes of handling dynamics, which sometimes lead to in-
surmountable barriers in communication. 
 
The importance of time constants 
 
In the real world, everything takes time, so feedback never follows upon action im-
mediately. While this is a trivial insight, and something that no person would dispute, 
understanding its consequences for the proper strategy in a dynamic task seems to be 
far from trivial. There is now quite a number of studies that show that even minimal 
delays wreak havoc with a person’s decision making strategy (see e.g., Brehmer, 
1995, Sterman, 2000). 
 
What needs to be done to cope with feedback delays depends of the nature of the de-
lay. It is therefore important to identify, not only that there are delays, but also the 
nature of the delays. Basically, there are three kinds of delays: dead time (the interval 
between the moment when a decision is made and that when the system that the deci-
sion maker wants to affect starts to respond), time constants (the time required for a 
decision to take effect), and information delays (the interval between the moment 
when an action has taken effect and that when the decision maker learns about this 
effect). All three kinds of delays are revealed to the decision maker in the same way: 
some time will pass until he/she learns about the result after a decision has been made. 
To identify the nature of the delay requires additional information about the decision 
task. It is therefore also important to identify what information about the nature of the 
delays that may, or may not, be available to the decision maker. 
 
Like last year’s paper (Brehmer & Nählinder, 2004) the present paper is concerned 
with the second of the kinds of delays mentioned above: the time constants. When a 



decision maker tries to control a process (such as a fire) using another process (such 
as a fire fighting process) and when the control process has appreciable time constants 
(as a fire fighting process has), the process he or she seeks to control will develop 
before the decision takes effect. In fire fighting, the fire will spread while the fire 
fighting units get ready to move out, while they travel to the fire and until they have 
brought the fire under control. This means that when the decision maker makes his 
decision, he/she has to compensate for what happens after he/she has made that deci-
sion. Specifically, the fire chief cannot only send only the number of units that seem 
to be sufficient at the time of the decision, he/she must send the number that will be 
required when the units reach the fire.  
 
In the fire fighting task, the time constant is due to the speed with which the FFUs get 
going, the speed with which they travel to the fire, and the speed with which they ex-
tinguish fire. Knowing these, and the fire conditions, and a model of how fires be-
have, a decision maker can compute the number of FFUs required when these units 
reach the fire. Even when using a computational approach, coping with the time con-
stants is clearly not a trivial task. In the experiment described here, however, the par-
ticipants had to use a more intuitive approach, and base their estimates of the time 
constants on what they could actually see, and they could actually see the time con-
stants happen, so to speak, for the movement of the FFUs and their activities were 
shown directly on the computer screen. 
 
Earlier studies have shown that people seem to employ a very general rule for coping 
with the time constants in this kind of task: they respond rapidly and massively, i.e., 
they learn to send as many FFUs to the fire as rapidly as possible once they have 
learned of a fire’s location (e.g., Brehmer, 1989; 1995). Brehmer and Nählinder 
(2004) wanted to learn whether this expressed a general heuristic or a well calibrated 
strategy where the number of units was matched to the future size of the fire. They did 
this by comparing how people responded to fires requiring different numbers of FFUs 
in an experiment using a microworld called NEWFIRE (Løvborg & Brehmer, 1991) 
that simulates forest fire fighting. Their results showed that the subjects did not seem 
to have a well-calibrated strategy for coping with the time constants, but that they 
used a heuristic. Specifically, they, used a heuristic which involved positioning their 
FFUs in such a way that they would not have to distinguish between fires requiring 
encirclement with multiple FFUs and fires requiring direct attack with one FFU; all 
fires could be handled in approximately the same way. Incidentally, this is a heuristic 
used in real fire fighting as well. Many U.S. cities require that fire stations be located 
so that any burning house in the city can be reached within a specified number of 
minutes. When the participants were prevented from using this heuristic by requiring 
them to keep their FFUs at their base until a fire had broken out, their performance 
grew worse, and there was no evidence that they sent the appropriate number of FFUs 
to a fire. In short, they seemed unable to compensate for the time constants, except by 
their heuristic. 
 
Now, coping with dynamic tasks is very much a question of being able to handle the 
feedback delays, and if people cannot handle even the simplest form of delay, time 
constants (these delays can be considered as simple because they can be seen to hap-
pen as the FFUs move to the fire and fight it), except by heuristics, and since other  
kinds of delays that have been studied experimentally have also proved difficult 
(Brehmer, 1995), this leads to the hypothesis that people may cope with feedback 



delays generally by the use of heuristics, if they cope at all. This, in turn, raises the 
question of what other heuristics people are able to use in dynamic tasks as a substi-
tute for handling the delays as such. The heuristic revealed in the Brehmer and Näh-
linder (2004) study, although successful in that experiment, is of course, quite spe-
cific, and if a person is to cope with delays generally he/she will have to rely on more 
general heuristics. 
 
Reason (1990) has described two “primitives” that the human cognitive system uses 
as “fallback positions” when it cannot find the actual rule for a task: similarity match-
ing and frequency gambling. As the name implies, similarity matching means finding 
a task that is similar to the current one and doing what one usually does in that situa-
tion. Frequency gambling involves relying on what one has learned about differences 
in frequency of success for different behaviours in the past and gambling on that 
whatever has been successful in the past will prove useful also in the present situation. 
It is not clear if this means that they would be maximizing, always choosing the alter-
native with the highest frequency, or if they would exhibit probability matching, i.e., 
matching the relative frequency of their decisions to the relative frequency of the 
relevant outcomes in the task. Both kinds of behaviour would be consistent with Rea-
son’s (1990) frequency gambling hypothesis. 
 
The present paper is concerned with the frequency gambling alternative. Our question 
is whether people would use frequency gambling as a heuristic and as an alternative to 
learning the more complex structure required to cope adequately with the time con-
stants in the fire fighting task. That people would choose the former alternative, given 
a chance, is likely according to earlier results by Lindahl (1974). Lindahl showed that 
in a complex problem solving task, the presence of an opportunity for simplification 
in the form of task dimensions that were correlated with the solution would mask the 
more complex general rule for the task Thus, people who could learn to respond on 
the basis of just one dimension of a task would not learn the correct rule for the task 
as well as people who did not have this opportunity and who could only succeed by 
learning a more complex rule. 
 
Frequency is a candidate for such a simplification. Hasher and Sachs (1984) have 
shown that learning frequencies is automatic. In tasks where there are differences in 
frequency with which different behaviours are required, these differences are likely to 
be picked up, and could then be used as a basis for frequency gambling in Reason’s 
(1990) sense. Incidentally, real fire fighting is a task where there are frequency differ-
ences. The first author has heard fire chiefs remark that most fires are alike, and that 
they therefore know what to do about them without thinking much about it. Some 
have also remarked that the rest (in some cases given as about 5%) are very difficult 
indeed.  
 
If the decisions required by a dynamic task differ in frequency, so that some decisions 
are successful more often than others, this may serve as a basis for learning how to 
handle these tasks. Since frequency coding is automatic and thus learned outside con-
sciousness, mastery of a dynamic task based on such learning might well be the basis 
of what is usually called intuition (see also Hogarth, 2001, for a discussion of fre-
quency learning as a basis for intuition). 
 



The purposes of the present study was to investigate whether people would learn fre-
quency differences and rely on frequency gambling as a basis for their decisions in a 
dynamic task rather than learning the actual time constants. Specifically, the task was 
forest fire fighting as represented in a computer simulation called NEWFIRE 
(Løvborg & Brehmer, 1991, NEWFIRE is described in detail below). Subjects extin-
guished a series of fires, some requiring just one fire fighting unit (FFU) and some 
requiring two FFUs with a marked difference in frequency (80% vs. 20%, or vice 
versa). They were then tested on a new set of fires of the same kind to assess whether 
they would discriminate between the two kinds of fires or just respond on the basis of 
the differences in frequencies in the learning set. 
 

Method 
 
Participants 
 
Forty-six undergraduate students from the University of Uppsala were paid 100 sek 
(about USD 12) to participate.  There were 24 women and 22 men and their average 
age was 24.3 years. 
 
Microworld 
 
The experiment used NEWFIRE (Løvborg & Brehmer, 1991). The NEWFIRE con-
cept is illustrated in Figure 1. NEWFIRE requires the participant to assume the role of 
a fire chief charged with the task of fighting forest fires. He/she receives information 
about a fire from a spotter plane and on the basis of this information, he/she sends out 
the FFUs. These then report back to him/her about the their location and activities, 
and he/she then uses this information and further information from the spotter plane to 
issue new commands to the FFUs and the process goes on until the fire(s) has been 
extinguished. Figure 1 shows the general concept, and Figure 2 the user interface. As 
can be seen from this description, the task facing the participant has all the character-
istics of a dynamic decision task as defined by Brehmer & Allard (1991): 
 

• It requires a series of decisions  
• These decisions are not independent (sending the FFUs to one location pre-

cludes or at least delays using them elsewhere) 
• The state of the task changes both autonomously (due to the strength and di-

rection of the prevailing wind, the character of the forest, and so on) and as a 
result of the decision maker’s actions (i.e., where he/she send the FFUs) 

• Decisions must be made in real time, i.e., when the developments in the fire 
requires action, rather than when the decision maker feels good and ready to 
make them 

 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.The NEWFIRE concept 
 
(For a general discussion of dynamic decision making and the use of microworlds to 
study it, see Brehmer, 2005; Brehmer & Dörner, 1993).  
 
In NEWFIRE, the participant sees a map depicting a forest (see Figure 2). In this ex-
periment, the forest was homogenous and there were no villages or other objects to 
protect. The only task was to put out the fire as quickly as possible, using as few 
FFUs as feasible. Forest was represented by an 18x18 grid with green cells.  The start 
of a fire was signalled by a tone and the cell where the fire started turned red. The fire 
then spread in the direction of the prevailing wind and with a speed proportional to 
the strength of the wind according to a general fire model for forest fire propagation. 
The cells in which FFUs were located were coloured blue. The participant could di-
rect the FFUs to new locations by pointing to a FFU, clicking, pointing to the new 
location, and then clicking on it. The unit then started to move at the next update of 
the system. To the right of the map, there was an indicator showing the strength and 
direction of the prevailing wind, and below this indicator a message panel where mes-
sages about the activities and location of each FFU could be seen. Below the message 
panel was a panel that displayed the last command given to each unit, i.e., the location 
to which it has been ordered to go. If there was fire in a cell when the FFU arrived, or 
if fire spread to a cell where a FFU was positioned, it started fighting the fire auto-
matically but only after a delay of one time unit. The time required to extinguish the 
fire in a cell is a parameter in the program, as is the speed at which the FFUs move. 
NEWFIRE is a clock driven simulation. The update rate for the screen picture is a 
parameter in the program.  
 



 
 
 

Figure 2. The NEWFIRE interface 
 
In this experiment, NEWFIRE was used in a new way. Rather than having the partici-
pants fight every fire until it was extinguished (or until they lost control and the whole 
forest was destroyed), we studied only the initial commands to each fire. This was 
because the initial commands very much determine the rest of the fire fighting proc-
ess. If these first commands are correct, and the appropriate number of FFUs is sent to 
the appropriate locations, no more needs to be done by the participant; the fire will be 
extinguished without further work. If they are not correct, there is usually a long proc-
ess where the participant tries to achieve control. The initial commands are thus the 
particularly diagnostic of the extent to which a person has learned to compensate for 
the time constants of the task.  
 
Fire scenarios 
 
Two kinds of scenarios were constructed by positioning the FFUs and choosing a 
starting location for the fire: scenarios in which the fire could be extinguished by 
sending just one (but the appropriate one, of course) FFU to the fire, and scenarios 
that required two FFUs to extinguish the fire because it would have spread to two 
cells as the FFUs moved into position. The number of FFUs required was determined 
by the time constants: for the 1-FFU scenarios, the FFUs were located in relation to 
the fire in such a way that it was possible to send one of them directly to the fire and 
have it extinguish the fire in the burning cell before it would spread to the neighbour-
ing cells. In the 2-FFU scenarios, this was not possible. The participant had to send 
out two FFUs so as to cover the two cells that would be burning when the FFUs ar-
rived.  The participants were informed that there were only these two kinds of fire 
scenarios, and that their task was to learn to distinguish between them and send out 
the appropriate number of FFUs to the appropriate location(s) as quickly as possible. 
As soon as the participants had sent out their FFUs, the scenario was terminated, the 



program computed what the correct response should be and feedback was given in the 
form of the word “good” being displayed on the screen if the participant’s decision 
conformed to the optimal decision as computed by the program. The participant could 
then choose to see the program actually play the scenario. If their decision was wrong, 
they were required to do so before they were allowed to go on to the next fire. 
  
Design 
 
The experiment was conducted in two stages: a learning stage and a test stage. In the 
learning stage, the participants made decisions for 60 fires with the opportunity for 
feedback, in the test stage, they responded to 30 fires without any opportunity for 
feedback. There were two experimental conditions, and they differed only with re-
spect to the relative frequency of 1-FFU and 2-FFU scenarios in the learning stage: In 
the 80-20 condition, there were 80% 1-FFU scenarios and 20% 2-FFU scenarios, in 
the 20-80 condition, there were 20% 1-FFU scenarios and 80% 2-FFU scenarios. In 
the test stage, there was an equal number of 1-FFU scenarios and 2-FFU scenarios. 
 
Procedure 
 
Mouse practice session 
 
In this experiment, it is critical that the participants are able to respond quickly and 
accurately when using the mouse. The experiment therefore started with a mouse 
practice session. An 18x18 matrix similar to the map in NEWFIRE was presented. 
Blue fire fighting units would appear in randomly chosen cells of the matrix with a 
new FFU being presented every 3 seconds until 99 units have been presented. The 
participant’s task was to point and click on each FFU as it appeared and move it to a 
designated area with 10x10 cells to the right of the matrix (see Brehmer & Løvborg, 
1992 for further description of this facility in NEWFIRE). The 10x10 matrix could be 
filled in an arbitrary order. 
 
Learning stage 
. 
As noted above, there were two kinds of scenarios in the learning stage: scenarios 
where the fire could be extinguished with one FFU and scenarios which required two 
FFUs. In all scenarios, eight FFUs were located in different randomly chosen cells of 
the 18x18 map, but in such a way that the fire, when it appeared, could be extin-
guished by either one or two of the FFUs. The scenarios differed with respect to the 
strength (between 1 m/sec and 20 m/sec) and direction (North, East, South, West) of 
the prevailing wind. The participant’s task was to decide which FFU or FFUs to send 
to the fire, and to click on the respective units and their destinations. The program 
only allowed them to send out a maximum of two FFUs in each scenario. The NEW-
FIRE program then calculated the optimal deployment of FFUs on the assumption 
that each mouse command required 2.5 sec and provided feedback to the participant 
in the form of the message “good” if he/she had selected the optimal combination of 
FFUs and destinations. If the message was not “good”, the subject had to click on the 
word “demonstrate” and the optimal solution, i.e., which one/two FFU(s) should have 
been positioned where was displayed and the scenario was played out. The learning 
stage consisted of 60 trials consisting of either 20% 1-FFU scenarios and 80% 2-FFU 
scenarios, or vice versa, but before starting the 60 trial learning session, the partici-



pants were given two supervised practice trials. The learning stage required about 35 
min. 
 
Test stage 
 
The test stage was the same in both conditions. In this stage, participants were given 
30 trials, 15 1-FFU scenarios and 15 2-FFU scenarios, but in this stage, the partici-
pants were given no information about whether their decisions had been optimal or 
not, and they did not have the opportunity to view the optimal solution. This stage 
required about 15 min. 
 

Results 
 
Learning stage 
 
There was no significant blocks effect when response frequencies were analysed in 
terms of six blocks of 10 trials each. This suggests, that learning was very rapid, or 
that there was no learning at all and that the participants simply responded in the same 
manner throughout the learning stage. Since there was no significant blocks effect, 
data were pooled over blocks for the subsequent analysis 
 
Table 1 shows the conditional probabilities for 1-FFU and 2-FFU decisions for sce-
narios requiring 1-FFU and 2-FFU decisions respectively for the two learning condi-
tions.  
 
Table 1. Learning stage conditional probabilities for the two learning conditions. 
 
 
               
80% 2-FFU, 20% 1-FFU condition 
FFU used/FFU required p (FFU 

used/FFU 
required) 
Actual 
results 

p (FFU 
used/FFU 
required) 
if partipants 
had learned 
time constants 

p (FFU 
used/FFU 
required) 
if participants 
rely on fre-
quency gam-
bling by 
matching 

p (FFU 
used/FFU 
required) 
if participants 
rely on fre-
quency gam-
bling by 
maximizing 

     
2-2 0.92 1.00 0.80 1.00 
2-1 0.55 0.00 0,80 0.00 
1-2 0.08 0.00 0.20 0.00 
1-1 0.43 1.00 0.20 0.00 
 
 
 
 
 
 
 



80% 1-FFU, 20% 2-FFU condition 
 
FFU used/FFU re-
quired 

p (FFU 
used/FFU 
required) 
Actual results 

p (FFU 
used/FFU 
required) 
if partipants 
had learned 
time constants 

p (FFU 
used/FFU 
required) 
if participants 
rely on fre-
quency gam-
bling by 
matching 

p (FFU 
used/FFU 
required) 
if participants 
rely on fre-
quency gam-
bling by 
maximizing 

     
1-1 0.83 1.00 0.80 1.00 
1-2 0.42 0.00 0.80 1.00 
2-1 0.17 0.00 0.20 0.00 
2-2 0.58 1.00 0.20 0.00 
 
If the participants had learned to compensate perfectly for the time constants, they 
should have responded with the high frequency decision when it was required and the 
low frequency decision when it was required, and there should have been no high 
frequency decisions when low frequency decisions were required and no low fre-
quency decisions when a high frequency decision were required, as shown in the third 
column in Table 1. The actual distribution of decisions clearly does not conform to 
this pattern in either condition. Nor does it conform to the pattern expected if the par-
ticipants had frequency gambled by maximizing, i.e., always selecting the high fre-
quency decision. In this case, they would always have responded with the high fre-
quency decision, so that the probability of that decision would have been 1.00 for both 
scenarios requiring the high frequency decision and the low frequency decision, and 
0.00 for the low frequency decision for both those scenarios that required that deci-
sion and those requiring a high frequency decision. Instead, there is a marked differ-
ence between the high and low frequency scenarios. For the former, the pattern of 
decisions is close to what would have been expected if the participants had made their 
decisions on the basis of frequency gambling by means of frequency matching. For 
the low frequency scenarios, on the other hand, the pattern of decisions resembles 
what would be expected on the basis of random responding, the conditional probabili-
ties for both decisions are close to 0.50. However, no strong conclusions can be drawn 
from the results from the learning stage since the decision pattern is still being learned 
from feedback in this stage. For more definitive conclusions, we must turn to the test 
stage, where the participants were tested without feedback and where we have less 
reason to expect that they are changing their decision rules.  
 
Test stage 
 
Table 2 shows the overall decision probabilities for 1-FFU and 2-FFU decisions in the 
two learning conditions. 
 
 
 
Table 2. Overall probabilities of 1-FFU and 2-FFU decisions in the two learning con- 
              ditions 
 



Condition p(2-FFU decisions) p(1-FFU decisions) 
   

80% 2-FFU, 20% 1-FFU 0.73 0.27 
80% 1-FFU, 20% 2-FFU 0.44 0.56 

 
As the reader will recall, the percentage of scenarios requiring one and two FFUs was 
the same in both conditions, i.e., 50%. Therefore, if the participants had learned the 
time constants, we would have expected 50% 1-FFU decisions and 50% 2-FFU deci-
sions in both conditions. As the table shows, the results do not support this interpreta-
tion, and they are different for the two conditions. For the 80% 1.FFU, 20% 2-FFU 
condition, the results come close to the 50% 1-FFU, 50% 2-FFU decisions, but for the 
80% 2-FFU, 20% 1-FFU condition, the results agree with what would have been ex-
pected if the participants had used a frequency matching strategy. One possible expla-
nation for this would be that the participants learned different things in the two condi-
tions. There is, however, an alternative explanation. Looking at the table, we note that 
both conditions are alike in that there are too many 2-FFU conditions, compared to 
what would have been expected, albeit on different grounds in the two conditions. In 
the 80% 2-FFU, 20% 1-FFU condition there are too many 2-FFU decisions compared 
to what would have been expected if the participants had learned the time constants, 
suggesting frequency matching. In the 80% 1-FFU, 20% 2-FFU condition, there are 
too many 2-FFU decisions compared to what would be expected if the participants 
were frequency matching, suggesting that they learned the time constants. A possible 
explanation for this apparent difference is that the participants in both conditions 
failed to learn, but used a different heuristic, which we may call “better safe than 
sorry”. There is an important difference between making an error in for the two kinds 
of fire scenarios. i.e., making a 1-FFU decision when a 2-FFU decision is required, 
and making a 2-FFU decision when a 1-FFU decision is required. In the former case, 
the participant will loose control over the fire. In the latter case, the fire will be extin-
guished, albeit at a higher cost, i.e., by using more FFUs than required.  
 
Table 3 shows conditional probability of 1-FFU and 2-FFU decisions for scenarios 
requiring 1-FFU and 2-FFUs for the two learning conditions in the test stage.  
 
Table 3. Test stage conditional probabilities for 1-FFU and 2-FFU decisions  for sce-
narios requiring 1-FFU and 2-FFUs for the two experimental conditions together with 
the probabilities that would have been expected if the participants would have learned 
the time constants, if they had frequency gambled by matching and maximizing.  
 
80% 2-FFU, 20% 1-FFU condition 
FFU used/FFU required p (FFU 

used/FFU 
required) 
Actual 
results 

p (FFU 
used/FFU 
required) 
if partipants 
had learned 
time constants 

p (FFU 
used/FFU 
required) 
if participants 
rely on fre-
quency gam-
bling by 
matching 

p (FFU 
used/FFU 
required) 
if participants 
rely on fre-
quency gam-
bling by 
maximizing 

     
2-2 0.92 1.00 0.80 1.00 
2-1 0.49 0.00 0,80 1.00 



1-2 0.08 0.00 0.20 0.00 
1-1 0.51 1.00 0.20 0.00 
 
 
80% 1-FFU, 20% 2-FFU condition 
 
FFU used/FFU required p (FFU 

used/FFU 
required) 
Actual 
results 

p (FFU 
used/FFU 
required) 
if partipants 
had learned 
time constants 

p (FFU 
used/FFU 
required) 
if participants 
rely on fre-
quency gam-
bling by 
matching 

p (FFU 
used/FFU 
required) 
if participants 
rely on fre-
quency gam-
bling by 
maximizing 

     
1-1 0.84 1.00 0.80 1.00 
1-2 0.27 0.00 0.80 1.00 
2-1 0.16 0.00 0.20 0.00 
2-2 0.73 1.00 0.20 0.00 
 
 
The results for the test stage are similar to those for the learning stage. Thus, there is a 
marked difference between the high and low frequency scenarios. For the high fre-
quency scenarios, the response pattern is close to what would be expected on the basis 
of frequency gambling by means of frequency matching, and for the low frequency 
scenarios, the pattern looks more like random responding. Further analysis shows, 
however, that for the latter scenarios, there is a tendency to make more 2-FFU deci-
sions than 1-FFU decisions in both conditions. The mean conditional probability of 2-
FFU decisions for the low frequency scenarios is 0.49 for the 80% 2-FFU, 20% 1-
FFU while for the 80% 2.FFU, 20% 1-FFU condition, it is 0,74. This suggests that 
there is more to the decision making than just relying on frequency for the low fre-
quency scenarios. Specifically, the results suggest that when in doubt, the participants 
send two rather than one FFU, as discussed above.  
 

Discussion 
 
The results of the present experiment agree with those of earlier experiments in show-
ing that participants do not compensate very well for the time constants, even after 
considerable practice (compared to the amounts of practice we can expect in the real 
world). If the participants had learned this, we would not have observed the marked 
difference between the high and the low frequency scenarios: the same time constants 
apply to both.  
 
However, the participants obviously discriminate between the high and low frequency 
scenarios in both learning conditions, and this implies some learning of the time con-
stants, even though it is far from perfect. Indeed, the participants learned to cope rea-
sonably well with the high frequency scenarios. For these scenarios, they seem to 
match the relative frequency of their 1-FFU and 2-FFU decisions to the relative fre-
quency of 1-FFU and 2-FFU scenarios. For the low frequency scenarios, there is no 
evidence of frequency gambling, even though these scenarios are the best candidates 



for this, since there was less practice for these kinds of scenarios and thus less oppor-
tunity to learn. Instead, the decision making appears to be random at a first look. 
Closer study suggests, however, that the decisions for these scenarios rely on a princi-
ple of caution, in that the participants respond with a 2-FFU decision rather than 1-
FFU decision. This is true, to some extent also for the high frequency scenarios. Even 
for these scenarios, there is a high frequency of 2-FFU decisions (0.92 in the condi-
tion where there had been 80% scenarios requiring 2-FFUs in the learning stage, and 
0.16 in the condition where there had been 20% 1-FFU in the learning stage. For the 
latter condition, there is also a much higher probability of the low frequency decision 
(0.74 2-FFU decisions for the scenarios requiring 2 FFUs than for the condition where 
there had been 80% 2-FFU scenarios, where the probability of the low frequency 1-
FFU decision for the low frequency 1-FFU scenarios was  0.51). As noted above, a 2-
FFU decision is, of course, safer, because whereas the fire in a 1-FFU scenario can 
always be extinguished with two FFUs, that in a 2-FFU scenario cannot be extin-
guished with one FFU. This may be seen as example of the heuristic we had observed 
in earlier studies (Brehmer, 1989; 1995), i.e., that of rapid or massive responding, i.e., 
sending out as many FFUs as possible to a fire as rapidly as possible, which is, of 
course, exactly what responding on the basis of a “better safe than sorry” heuristic 
would lead to.  
 
This study failed to support the hypothesis that the participants would use frequency 
gambling, but this does not mean that they would never use this heuristic. One reason 
may be that the participants actually did learn to distinguish between the two kinds of 
scenarios, i.e., they learn to compensate for the time constants to some extent, espe-
cially for the high frequency scenarios. In addition, there was an obvious (to the par-
ticipants) alternative to the frequency heuristic: the “better safe than sorry” heuristic. 
Together, the albeit imperfect learning of the time constants and the “better safe than 
sorry” heuristic, the participants actually succeeded reasonably well and actually 
managed to extinguish most fires, albeit at a higher cost than necessary. When there is 
no such alternative, or when the time constants are more difficult to learn than they 
appear to have been in the present scenarios, frequency may well be an alternative. It 
is an important task for future studies to find the conditions under which a frequency 
heuristic may operate, as well as the conditions under which participants resort to the 
other “cognitive primitive” described by Reason (1990), i.e., “similarity matching”.  
 
Although we did not find the frequency gambling heuristic we had expected, the re-
sults of this study, as well as those of Brehmer and Nählinder (2004) nevertheless 
suggest that the hypothesis that people cope with time constants by means of heuris-
tics may have considerable explanatory value. However, the heuristic in operation 
here is a “better safe than sorry” heuristic”. As the heuristic found by Brehmer and 
Nählinder (2004), it works quite well in that gets the job done, although not at mini-
mum cost.  But then optimal responding may be of greater concern to decision theo-
rists than it is to people in general, and may provide a useful guide to understanding 
what people actually do in dynamic tasks. 
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