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Abstract 
Progress towards sustainability demands recognizing nonlinear, time delayed interactions 
that are at the heart of dynamic integrated socio-economic and biophysical systems. 
Sustainability and land change science communities have recognized the need to go 
beyond static and vague depictions of nonlinear feedback processes in the study of these 
integrated systems. But to date, there have been few attempts to move beyond 
conceptualizations to develop operational frameworks that i) are spatially explicit and ii) 
incorporate feedbacks as endogenous structural sources of the observed behavior patterns 
iii) both within and across scales. Land use land cover change (LUCC) is a significant 
component of integrated socio-economic and biophysical systems. We present an 
operational framework that takes its strength from its clear emphasis on nonlinear 
feedback interactions as drivers of LUCC. The framework addresses both local- and 
regional-level processes by employing the complementary use of systems modeling and 
spatially-explicit discrete-choice modeling. We demonstrate the potential of the approach 
on a rapidly urbanizing region, Pearl River Delta (PRD) in South China. Urbanization as 
a significant land change process puts pressure on landscapes in both direct and indirect 
ways through conversion of land to urban uses and increased demands for various natural 
resources, respectively. To this end, we employ our systemic framework and identify the 
most influential feedbacks and linkages impacting the urban land conversion over the 
course of urban and economic growth as experienced in PRD. The integrated framework 
allows tracking both local and regional level dynamics simultaneously. We also discuss 
the potential of systems approaches and use of complementary methods in advancing 
land change science both in theory and in practice.  
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1. Introduction 
Advance in sustainability science requires uncovering those processes of integrated 
socio-economic and biophysical systems that are relevant for the research questions at 
hand. These processes are a culmination of complex, and sometimes simply complicated 
interactions between the components of these systems and require the integration of 
knowledge from diverse natural and social science disciplines (Grimm, Morgan Grove et 
al. 2000; Alberti, Marzluff et al. 2003; Ostrom 2007). The challenge in dealing with 
integrated socio-economic and biophysical systems stems from the fact that typically, in 
such complex systems, the cause and effect are not only simultaneously distant and 
interlocking in both time and space (Forrester 1971; Forrester 1992; Costanza and 
Wainger 1993; Turner, Lambin et al. 2007) but may also be separated across different 
spatio-temporal scales (Turner, Dale et al. 1989; Gibson, Ostrom et al. 2000). Nonlinear 
feedback interactions and time delays are typical characteristics of these systems and 
measuring their impact on dynamics of interest is essential to bringing a deeper 
understanding to how these complex systems work and, more critically, how their 
functioning can be improved; integrative and quantitative approaches that take a systems-
oriented stance have a crucial role to play in untangling these complex interactions 
(Newell, Crumley et al. 2005). As such, mathematical dynamic models can contribute 
immensely to the formation of an integrated perspective critical for sustainability science 
and in particular, land change science. 
 
In land change science, there is indeed a proliferation of numerical simulation models 
(Agarwal, Green et al. 2002; Guhathakurta 2003; Gutman, Janetos et al. 2004; Lischke, 
Bolliger et al. 2007). This not only shows a growing level of interest in land change 
phenomenon but also demonstrates the challenges of dealing with the complex dynamics 
involved. In addition, it confirms that we have a broad range of tools with varying 
theoretical considerations and computational approaches (Verburg and Veldkamp 2005; 
Turner, Lambin et al. 2007). Nevertheless, most modeling studies on the subject still fall 
short of properly addressing the most pressing issues in land change science in particular 
and sustainability science in general: feedback structures across and among social, 
economic, and biophysical components (Verburg, Soepboer et al. 2002; Clarke, Gazulis 
et al. 2007), multiscale interactions (Evans, Ostrom et al. 2002; Lischke, Bolliger et al. 
2007), and simultaneous employment of complementary modeling approaches (Castella 
and Verburg 2007). 
 
We propose an operational integrative framework that dynamically incorporates 
nonlinear feedbacks and linkages between socio-economic and biophysical factors 
operating within and across scales using two well-established modeling paradigms. Thus, 
our framework addresses the three critical issues that have important relevance to land 
change science and sustainability science. We demonstrate the proposed framework by 
analyzing urban growth dynamics with a case study of Pearl River Delta (PRD), South 
China that has been undergoing unprecedented urbanization. Specifically we ask the 
question ‘What are some of the most critical local and regional processes at work in this 
part of the world that cause a parcel of land to become urban?’. We need to understand 
how urbanization as a land use change phenomenon evolves in concert with dominant 
socio-economic, political and biophysical factors so that appropriate high leverage 
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policies can be identified. To this end, we bring together the explanatory power of a 
systems perspective in dealing with socio-economic processes and a spatially-explicit 
representation of the unfolding land use dynamics. Clear and dynamic representation of 
the changing influence of feedback processes between various components and scales of 
the land use system in a spatially-explicit context play a key role in this exercise. 
 
2. Methodology 
2.1. Theoretical base and operational framework 
Theoretically, our conceptual framework falls under the umbrella of the hierarchy theory. 
The hierarchy theory emerged from the works of the general systems theorists and was 
influential in formulation of a general science of complexity (Simon 1962; O'Neill, 
Johnson et al. 1989). According to the hierarchy theory, the elements and their 
interactions at the lower level combine to give rise to elements and processes at the 
higher level in scale. In other words, the “whole” at the higher level is more than the sum 
of the constituent parts at the lower level. This type of hierarchical ordering is typical of 
most complex systems (Anderson 1972; Bar-Yam 1997) where the emergent higher level 
structure constrains the parts at the lower level as much as the parts shape the emergent 
structure. Therefore, the regional-level dynamics can be seen as a culmination of those 
dynamics that operate at levels that are below and above it (Gibson, Ostrom et al. 2000). 
However, it is worth noting that, in our study, we are not interested in how lower-level 
processes give rise to the emergent higher-level structure and vice versa; rather, we are 
interested in the interplays between and amongst the regional-level and the local-level 
factors that cause land use change. Hence, our focus requires two levels of scale which 
allows us to represent and simulate the interactions between regional and local level 
dynamics. 
 
We present a hybrid spatially explicit framework of urban land-use change dynamics 
with foundations in economic and statistical discrete-choice models of land-use change 
(Geoghegan, Pritchard et al. 1998). It is a hybrid because it combines two different 
modeling paradigms in a single framework: a system dynamics module that represents 
socio-economic processes of urbanization at the regional level and a logistic regression 
module that predicts land use conversion for two categories (urban vs. non-urban) at the 
local level (Landis and Reilly 2003). The interactions of demographic, economic, and 
technological dynamics at the higher level create demand for land. The demand for land 
together with local level factors such as topography and proximity to major highways 
influence spatial patterning of urban growth and ultimately the amount of land remaining 
for development at a location (Figure 1). The two modules interact and, more 
importantly, constrain each other as land demand, population, and economic productivity 
are imposed over the local-level dynamics while land availability influences the regional-
level socio-economic dynamics.  
 
There are examples, in land change science literature, of multiscale land change models 
that use complementary modeling approaches (Engelen, White et al. 1995; White and 
Engelen 2000; Wang and Zhang 2001; Soares, Alencar et al. 2004; Overmars and 
Verburg 2006; Castella and Verburg 2007; Manson and Evans 2007; Verburg, Eickhout 
et al. 2008). However, our framework differs significantly from these studies in its 
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theoretical foundations (e.g. non-equilibrium economic dynamics vs. input-output model, 
logistic regression grounded in urban economic theory vs. empirically derived rule-based 
CA), in its emphasis on nonlinearities and time delays, and lastly in its explicit focus on 
feedback structures as endogenous drivers of system dynamics. Considering that the 
purpose of the model is to understand the most influential regional- and local-level 
factors and mechanisms behind the rapid urban growth encompassing a considerably 
large area in the context of a developing country, our approach has modest data 
requirements compared to other approaches such as agent-based modeling. 
 
2.2. Model building and validation 
While the overall framework of our proposed methodology rests on hierarchy theory its 
various components draws upon different substantial theoretical foundations. Our effort 
aims to represent the drivers of urban land cover conversion at appropriate and 
interacting spatial scales: at the regional level we employ a socio-economic systems 
model relating truly regional phenomena such as GDP and demographics while at the site 
level we use a reduced-form profit-maximizing statistical approach to capture 
development level drivers such as highway access and topography. 
 
2.2.1. System model. At the regional-level, a system dynamics model captures 
fundamental regional dynamics such as growth in population and economy. This model is 
comprised of six submodels each representing a particular county. Each submodel has 
three sectors each representing demographic, laborforce, and economic dynamics. We 
use an ecological economics framework to represent the economic structure at the 
regional level. This representation regards human, built, and natural capital as 
endogenous and accounts for the feedback processes among social and economic factors 
as well as the region’s land resource base (Figure 1; Table 2). The formulations of 
population dynamics are drawn from empirical findings and theoretical considerations on 
demographics and migration (Güneralp and Seto 2008). We also account for PRD’s 
relative economic position within the national and global economy through an exogenous 
‘‘comparative advantage’’ variable that is assumed to decrease over time. Several 
decision-making processes are also explicitly represented in the model. The primary 
assumptions of the model, the structure of the submodels, the data used, and the 
validation of the model are described in detail in the supporting document and elsewhere 
(Güneralp and Seto 2008).  
 
There are a number of ways to understand why a model behaves as it does all of which 
require modeler intuition in addition to formal procedures. In system dynamics models, 
there are traditional well-developed procedures such as trial-and-error simulations, 
involving changing parameter values or turning on and off certain links and feedback 
loops, and model reduction (Homer 1996; Saysel and Barlas 2006); there are also more 
sophisticated analyses of dominant loop structures (Güneralp 2006; Kampmann and 
Oliva 2008). The latter group of tests, while promising, is currently not mature enough 
and has limited applicability to models with a few state variables. Consequently, we 
relied on traditional procedures in our analysis of the most influential structures in our 
model. 
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2.2.2. Spatial logit model. The elaboration of local-level dynamics is based on statistical 
decision-theory and urban economics. We construct a discrete-choice model of land use 
conversion driven by factors likely to influence the spatial configuration of development 
at this scale. The logistic regression model used in this study is a descendant of the 
California Urban Futures modeling tradition at UC Berkeley’s Institute of Urban and 
Regional Development (Landis and Zhang 1998). Consequently, the model predicts land 
use conversion using a binary urbanization dependent variable rooted in the 
maximization of a land developer’s profit through the selection of locations with 
particular combination of accessibility, land purchase and development costs, and 
amenities (Landis and Reilly 2003). Fragkias and Seto (2007) demonstrate the usefulness 
of this type of approach in “data-sparse” locations in the developing world. While 
incorporating a range of drivers likely to influence local level site selection, this model 
also includes three variables from the upper level model in order to represent the strength 
and nature of the demand for land within a given county as driven by the macro-scale 
regional economy. This component is calibrated in SAS using a logistic regression model 
for the time period 1999–2005. The unit of analysis is an arbitrary hectare pixel on the 
landscape that captures the dependent variable and vector of independent variables. The 
dependent variable is an indicator variable representing the conversion of the dominant 
landcover of that pixel from any non-urban cover to urban cover. The urbanization 
variable is derived by upscaling classified Landsat imagery from the years 1999 and 2005 
and marking urban conversion events as 1 and other sites as 0. The classifications have 
been performed by Alexandre Boucher and Karen Seto using an innovative method that 
incorporates both temporal and spatial context into the assignment of a given pixel to a 
class (Boucher, Seto et al. 2006). 
 
Finally, we ensured that the linked model is a valid representation of the regional urban 
growth dynamics based on socio-economic data and spatial urban/non-urban maps. We 
pass numeric results from the systems model to the statistical model and back for each 
time step. This step in the future can be automatized by using Python script in ArcGIS 
(ESRI, 2008). The spatial logit model incorporates information on the growth of 
population, industrial capital, and service-sector capital by county. There we calculate 
probability of urbanization during that time step using the statistical equation generated in 
SAS. We assign the expected amount of growth for each county at a density determined 
by a simple linear trend model based on past urban intensity and the amount of land 
remaining in the vicinity. The amount of land remaining is then calculated and returned 
to the systems model where it influences that the rates of change of capital in each 
economic sector through investment as well as the density in the next time step. The 
interactions between neighboring counties also unfold at both regional- and local-levels. 
Local-level interaction is facilitated through the configuration of urban land and road 
network that influence where the next conversion to urban land will be together with the 
demand from economic activities and demographic changes within each county. On the 
other hand, regional-level interaction is through spillover effects of relative economic 
vitality in neighboring counties represented by the comparative GDP levels between 
them. It should be noted that these interactions mediate the influence of inter-level 
interactions within each county, with the influence of fraction of urban land acting as a 
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proxy for the non-linear influence of land prices, ease of finding suitable land parcels, 
and related factors on investment flows to existing capital. 
 
3. Urbanization as a land change process: A case study of Pearl River Delta, South 
China 
The process of urbanization puts pressure on landscapes indirectly through increased 
demands for various natural resources and changing dietary preferences (Bohle 1994; 
Foley, DeFries et al. 2005; Grimm, Faeth et al. 2008). For example, by one account, 
urban areas are responsible for 76 % of wood used for industrial purposes and 60 % of 
residential water use although it is widely believed that they cover less than 3 % of 
Earth’s land surface (Brown 2001). Nevertheless, direct conversion of land to urban uses 
poses its own particular challenges for the land change and sustainability science 
communities.  The conversion of vegetated surfaces to urban areas results in loss of 
fertile agricultural land (Xie, Mei et al. 2005; Chen 2007) and modifies the exchange of 
heat, water, trace gases, aerosols, and momentum between the land surface and 
atmosphere (Arnold and Gibbons 1996; Crutzen 2004) leading to the ‘‘urban heat island 
effect’’, a situation characterized by elevated daytime and nighttime temperatures in and 
near urban areas (Oke 1974; Arnfield 2003) and reduced rainfall in some regions 
(Kaufmann, Seto et al. 2007).  
 
The growing literature on land-use land cover models focuses almost exclusively on 
forested or arid landscapes (Gutman, Janetos et al. 2004); there are relatively few models 
that specifically focus on urban LUCC (Landis and Reilly 2003; Elvidge, Sutton et al. 
2004; Clarke, Gazulis et al. 2007). More importantly, of the urban growth studies, even 
fewer focus on developing countries (Seto and Kaufmann 2003) in spite of the fact that 
the great majority of urban growth over the next fifty years will likely take place in the 
developing countries of Asia and Africa (UN 2006). These trends are likely to lead to 
phenomenal land use changes in those countries. From a sustainability standpoint, these 
anticipated changes will lead to loss of fertile agricultural lands, and will affect the local 
climate in urban areas potentially with adverse affects on the health of the billions of 
urban inhabitants. Ineffectively planned and regulated urban growth is doomed to be 
inefficient in terms of land use patterns with additional problems for the quality of life of 
urban residents. The same mechanisms leading to urban land conversion will also cause 
material demand originating from urban areas to grow putting more pressure on 
nonrenewable natural resources with destructive influences on places away from these 
demand centers. It is, therefore, crucial to understand the synergies involved in local-
level land use changes and regional-level aggregate socio-economic transitions of newly 
emerging urban centers in developing countries. 
 
Pearl River Delta (PRD), in China’s Guangdong Province, is a particularly suitable 
region to demonstrate our approach to analyzing the dynamics of urban growth (Figure 
S1). PRD have experienced extraordinarily dramatic changes in terms of rapid population 
and economic growth since the initiation of economic reforms in late 1970s (Shen 2002). 
These changes have been accompanied by high rates and magnitudes of urbanization and 
increases in the material welfare of its residents as reflected by rising per capita income 
(Seto 2002; Güneralp and Seto 2008). As a functionally integrated urban agglomeration 
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the core of the PRD is assumed to compose of six county groups surrounding the Pearl 
River Estuary (Table 1). These counties collectively represent virtually all the 
demographic and economic activity in the region. Each group, henceforth referred to as 
‘county’ for brevity, is represented as a separate submodel. These six interacting 
submodels thus represent the regional-level dynamics. The timeframe of the study 
extends from year 1988 to 2015. 
 
4. Results and Discussion 
The urban expansion from 1999 to 2005 as determined from the processing of satellite 
imagery is given in Figure 4 (see Materials and Methods). During this period, the 
manufacturing sector’s GDP share increases in all counties except Guangzhou and 
Foshan (historical urban agglomerations with already well-established manufacturing 
sectors) under the influence of a number of reinforcing (positive) feedback mechanisms 
(Figure 2). In these counties, economies of agglomeration continue to encourage further 
urban growth and industrial expansion (R1 in Figure 2). The economic growth and the 
increase in the population through migration stimulate each other through the reinforcing 
feedback loops (R2) and (R3) (Figure 2; Figure 3c). On the other hand, the increasing 
material welfare (already the highest in the region) keeps the tertiary sector strong 
through the feedback loop (R4) (Figure 3d). Consequently, although both sectors’ 
contributions to GDP increase, the tertiary sector’s GDP share decreases for most of our 
analysis period (Figure 3a-b). It is worth noting that, throughout the region, the counties 
see their secondary or tertiary sector shares rising at the expense of their primary sector 
(Figure 3a-b). The feedback loops (R2) and (R3) play a significant role in the economic 
and population growth of these counties (Figure 2). 
 
For other parts of the region, their existing economic structure and population levels 
condition the influence of a different set of feedback mechanisms (Figure 2). The 
transitioning of the economy from one dominant sector to another characterizes the 
dynamics in these counties. For instance, the tertiary sector in Guangzhou and Foshan 
expand mostly at the expense of their already established secondary sectors (Figure 3a-b). 
In these counties, as well as in Shenzhen, a rising GDP per capita (as a proxy for 
residents’ affluence) translates into increasing demand for tertiary sector goods and 
services (Figure 3d). As a result, there is additional investment in this sector and the 
feedback loop (R4) in time drives the GDP further up (Figure 2). Meanwhile, the tertiary 
sector becomes the main source of labor demand resulting in the shift of influence from 
the loop (R2) to another (R3). 
 
Due to differences in relative locations and histories of the counties, the feedback 
mechanisms that are at work and their strength differ by county. In addition, interactions 
between neighboring counties also have an influence on dynamics. For instance, 
economic growth in Dongguan and Zhongshan is partly due to the spillover effects from 
Shenzhen and Foshan, respectively. Likewise the meager economic activity in Zengcheng 
is influenced by its neighbors, Dongguan and Guangzhou. Thus, although regulated by 
the decrease in relative competitiveness of the region, as the counties in the region are 
progressively integrated to the global economy more migrants and investment is drawn to 
and diffuse within the region, increasing the population and gross regional product (GRP) 
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for the whole region. Our model also suggests that the agglomerative forces are largely 
strong in the region in driving urban and economic growth during the study period while 
the regulating influence of developable land scarcity is not experienced yet. The assumed 
decrease in the region’s comparative advantage in China also influences the region’s 
dynamics. 
 
Because it is lacking many of theoretically-suggested variables in understanding urban 
expansion, the lower level logistic regression model demonstrates only a modest degree 
of statistical fit with the observed data. The representation of a broader array of drivers is 
desirable but often impractical in sparse data settings (Fragkias and Seto 2007). The 
relationships between the drivers and the probability of pixel conversion to urban land 
cover are mostly in the expected direction and are all statistically significant. Table 2 
presents the coefficients as odds ratios meaning they represent the change in probability 
of an urbanization event with one interval of change in that independent variable (the 
intervals are indicated in parentheses and are one if not shown). 
 
The first three variables in Table 2 represent the population, industrial capital, and 
service-sector capital in each county, respectively. These variables connect the lower 
level model to our representation of the regional economy. An additional 100 persons 
added per km2 of a given county, increases the probability that any cell within that county 
will urbanize during the period by 3.7%, ceteris paribus. An additional million RMB of 
capital investmest in the second sector per km2 of county area during the period meant 
that a given cell within that county was 1.2% more likely to develop. An additional 
million of capital investment in the less land intensive third sector resulted in a given 
pixel being 98.4% as likely to develop. Regional accessibility, which plays a significant 
role in the counties’ socio-economic dynamics, also has a consistent influence on the 
spatial configuration of urban land conversion. An additional 10 kilometers of distance 
from Guangzhou (the region’s most important historical Central Business District) sees a 
pixel only 97% as likely to undergo urban development. For each additional 10-kilometer 
distance from the closest major highway, the chance of urbanization is around ¾ as 
much. Access to existing urban land cover within one kilometer decreased the likelihood 
of development with an additional percentage of land within a kilometer being under 
urban cover translating into a slight drop in land conversion likelihood. Extensive testing 
also revealed the Zhongshan county consistently saw more land conversion than it ought 
to have based on the general characteristics of its landscape. This situation probably 
relates to the county’s strong political interest in urban renewal and was controlled for a 
dummy variable that indicated that a Zhongshan pixel is 63.1% more likely to urbanize, 
all else equal. 
 
The physical characteristics of a pixel in the start year also have a generally predictable 
impact on urbanization probability. If a location was in agricultural use its probability of 
conversion to urban land was 2.7 times more likely than if it was natural vegetation 
indicating that urban uses are offering much higher returns than agricultural ones. 
Surprisingly, water is almost 50% more likely to develop than land, all else equal. This 
reflects the intensity of the economic growth in the region, an abundance of water in 
highly desirable locations, and a lack of environmental regulation. Even with all the 
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observed flattening of hills in PRD, an additional 5% of slope on the land makes that 
location only 97.3% as likely to see urbanization. Even more influential is topography, 
with an additional 5% of average slope within one-kilometer of a site leaving it is only 
82.9% as likely to develop. Finally, for every ten kilometers further east a pixel is 1.1% 
more likely to develop and for every ten kilometers further north a pixel is only 91% as 
likely to see urbanization. These purely geographic variables aim to control for first order 
spatial autocorrelation.  
 
Once calibrated, we ran the model in its most basic variant to construct a baseline 
prediction of urban expansion in 2-year steps until the year 2015. At the end of each 
prediction, the amount of land remaining in each county is calculated and passed back to 
the upper-level model. Figure 3 and Figure 5 show, respectively, the predicted regional-
level dynamics and the spread of urbanization for the years 2005, 2007, 2009, 2011, 
2013, and 2015. This simple extension into the future demonstrates the model’s general 
usefulness and tractability; future work will explore multiple simulations generated by 
adjusting the nature of fundamental relationships within the systems model or by 
simulating policy such as the conservation of agricultural land within the lower-level 
model. 
 
Our analysis is critical in interlinking the rate and pattern of urban growth on the 
landscape over a relatively broad spatial extent to both local-level factors such as 
accessibility and topography and to regional-level processes such as macroeconomic 
forces and population dynamics. Our understanding of the interaction of socio-economic 
processes and land use change will remain limited as long as we continue to rely on 
approaches that are poor in dealing with disequilibrium dynamics and that do not 
effectively address nonlinear, time-delayed feedback structures (Fiddaman 2002; Liu, 
Dietz et al. 2007). As in the study of land change dynamics in rural locales, studying 
socio-economic and biophysical interactions in urban settings requires the integration of 
theories and methods from both natural and social sciences (Gibson, Ostrom et al. 2000; 
Alberti, Marzluff et al. 2003; Grimm, Faeth et al. 2008). Contrary to the conventional 
thought, urban areas are integral parts of the Earth system by way of their interactions 
with the ecosystems within which they are embedded. As such, they should be viewed as 
complex, dynamic, and adaptive systems in which society and ecosystems coalesce at a 
continuum of scales (Folke and Rockström ; Grimm, Morgan Grove et al. 2000). 
 
We note that the influence of both the magnitude and spatial configuration of relevant 
factors may need to be taken into consideration in land change studies (Verburg et al. 
2002). For instance, as the focus of our study, urban land manifests itself both as a 
magnitude (i.e. total urban land in a county) in the higher-level with an influence on 
economic dynamics, but also as an indicator of location of change in the spatially-explicit 
representation of landcover change. Population and its spatially explicit counterpart 
population density play a similar role. Consequently, while the amount of land available 
for development matters for the further growth and changing sectoral composition of the 
economy in a county, the spatial configuration of existing urban land determines partly 
where the next set of urban land conversions will occur. All the while, there is organic 
link between the local and regional-level dynamics through urban land and population in 
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the sense that the nature of interactions between the two levels includes the 
transformation of the same entity (e.g. in our study, urban land and population) in a 
higher and lower level of aggregation. 
 
The proposed framework also has significant implications in terms of policy analysis 
because of its potential for experimenting with different policy options that would 
simultaneously affect both regional and landscape levels. Hence, one can experiment 
with different assumptions and policy formulations (such as giving priority to certain 
counties within the region over others) to understand the feedback processes and linkages 
through which these changes impact both the regional-level dynamics and the landscape 
in terms of most likely patterns of urban expansion. On the other hand, one could 
experiment with different land use policies (such as construction of additional roads) at 
landscape level and analyze their impacts not only spatially but also in terms of their 
reflection on regional-level socio-economic dynamics. 
 
We question the persistent use of the term ‘driver’ to denote certain factors supposedly 
causing land-use change. The emphasis on certain factors as the drivers of land-use 
change breeds twin dangers of giving a false conceptual dichotomy between the so-called 
drivers and their resulting effects on the landscape and reflecting a static picture of the 
interactions between factors of interest that are actually dynamic and thus subject to 
continuous change. Hence, the term ‘driver’ potentially undermines establishing a more 
realistic appreciation of dynamic interactions between all factors of interest. The critical 
role of these interactions in understanding land change dynamics has been acknowledged 
repeatedly in the literature (Low, Costanza et al. 1999; Lambin 2005; Verburg 2006). 
Therefore, it may be more apt to speak of a temporarily surging influence of certain 
factors in relation to the others over the course of land change dynamics. For instance, 
though not yet experienced at any significant scale, our baseline simulation suggest that 
the reduced availability of suitable land (coupled with other factors) will eventually slow 
down the very high levels of growth in the so-called “driving forces” such as investment 
and migration which will be increasingly directed to other locations as witnessed in 
Shenzhen and Dongguan. Although investment, especially in the secondary sector, is 
primarily responsible for land use conversion in the initial decades of economic 
vitalization (Figure 2), later on land use availability becomes the determining factor in the 
further growth of the economy especially through its impact on the more land-intensive 
secondary sector (Figure 2). This not only results in a change in the composition of the 
economy in a particular county but may also be partly responsible of the kick-off of 
economy in the neighboring counties. In fact, it is because of the presence of dynamic 
feedback mechanisms, nonlinearities, and delays between various components of a 
system that abrupt or gradual shifts may occur over time: any component in such a 
system may become more influential over time on overall system behavior and thus on 
the behavior of other components making it difficult to sort out the impacts from the 
‘driver’s (Mather, Needle et al. 1998; Bossel 1999; Verburg 2006; Liu, Dietz et al. 2007). 
 
Sustainability science community has recognized that nonlinear feedbacks –both 
reinforcing and regulating– matter for most of the dynamic problems around us from 
epidemics to the persistence of poverty to urban sprawl. Thus, it is only natural that 
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feedback interactions must be accounted for in models that claim to reflect relevant 
aspects of reality. Yet, it is sometimes claimed that incorporation of feedbacks lead to 
numerical instability in models (Turner, Lambin et al. 2007). This is, for the most part, 
due to the incapability of the particular modeling methods employed such as econometric 
tools which are known to be poor in handling feedback interactions and hence nonlinear 
disequilibrium dynamics (Costanza and Wainger 1993; Sterman 2000; Sterman 2002). 
For instance, while indispensable in teasing out some of the more important relationships 
between socio-economic and environmental factors in question statistical tools such as 
regression analysis inherently discounts the presence of fundamental interactions that are 
known to exist (Sterman 2000; Seto and Kaufmann 2003; Verburg 2006). The proper 
treatment of feedback mechanisms of real life requires an appreciation of the 
accumulation processes thus the presence of stock-flow dichotomy between variables of 
interest (Sterman 2000; Sterman 2002). 
 
The fact that the dynamics of interest often play out at different scales of analysis poses 
particular challenges to understanding integrated land systems (Meentemeyer 1989; 
Turner, Lambin et al. 2007). In this respect, the specific research questions one tackles 
ideally determine the modeling approach that would prove most fruitful in generating 
insights into the dynamic nature of the problem at hand (Rindfuss, Walsh et al. 2004). 
Bottom-up approaches such as agent-based models tend to emphasize local entities (e.g. 
households, farmers etc.) and their interactions, which is feasible and most insightful 
when the focus is on understanding how the local-level interactions give rise to the 
‘emergent’ structure at higher spatio-temporal levels over time and when applied on 
small spatial scales (Parker, Manson et al. 2003; Grimm, Revilla et al. 2005; Epstein 
2007; Manson 2007). If the focus is on the role of higher-level socio-economic processes 
that interact with local land use dynamics an exclusively bottom-up approach might not 
be warranted (Rindfuss, Walsh et al. 2004; Moran and Ostrom 2005). In those cases, less 
disaggregated system-wide representation of the integrated socio-economic and 
biophysical interactions that adequately emphasizes the processes that matter for the 
research question at hand is a more economical and perhaps more insightful way to 
understand the underlying dynamics and develop strategic and effective policy options 
(Richardson 1999; Gibson, Ostrom et al. 2000; Fiddaman 2002; Waggoner and Ausubel 
2002; Güneralp and Barlas 2003; Stave 2003; Newell, Crumley et al. 2005; Güneralp and 
Seto 2008; Levine, Hughes et al. 2008).  
 
5. Conclusion 
Our framework allows for an analysis of the unfolding of feedback dynamics and their 
combined impact on the landscape over time and complements more established 
approaches in land change science. The system model component of the framework 
proposed here can also be regarded as a regional model in and of itself; nevertheless, its 
coupling with a spatially-explicit statistical model allows to address changes in the 
landscape influenced by these higher-level processes. While there are examples of land 
use models where interscale interactions are involved (Engelen, White et al. 1995; White 
and Engelen 2000; Wang and Zhang 2001; Overmars and Verburg 2006; Castella, Kam 
et al. 2007; Lischke, Bolliger et al. 2007; Manson and Evans 2007) this is the first time 
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such a dynamic coupling framework is realized with an explicit attention to nonlinearities 
and influential feedback dynamics in the system in a land change model. 
 
Our analysis of a rapidly urbanizing region in China links the rate and pattern of urban 
growth on relatively large landscape to both local-level factors such as accessibility and 
topography and to regional-level processes including macroeconomic forces and 
population dynamics. Our approach allows for appreciating the heterogeneity of urban 
growth dynamics within the region at both regional and local levels. Such dynamic 
coupling between levels of analysis is a crucial aspect for reaching a better appreciation 
and understanding of scale relationships in complex socio-economic and biophysical 
systems.  
 
Feedback structures are at heart of interactions between socio-economic and biophysical 
systems. Theoretically sound and comprehensible representation of these feedbacks is a 
prerequisite to formulation of a robust land use science theory. Such formulation will, in 
turn, open the way for the addressing of deeper level theoretical questions on the 
interactions of socio-economic and biophysical systems including LUCC dynamics. The 
framework we present is a significant step toward spatially explicit models that focus on 
multiscale nonlinear feedback-driven dynamics as well as decision-making processes 
across and within relevant levels of interest. 
 
References 
Agarwal, C., G. Green, et al. (2002). A Review and Assessment of Land-Use Change 

Models: Dynamics of Space, Time, and Human Choice. Gen Tech Rep NE-297. 
Burlington, VT, US Dept Agric, Forest Service, Northeastern Research Station. 

Alberti, M., J. M. Marzluff, et al. (2003). "Integrating humans into ecology: 
Opportunities and challenges for studying urban ecosystems." BioScience 53(12): 
1169-1179. 

Anderson, P. W. (1972). "More Is Different." Science 177(4047): 393-396. 
Arnfield, A. J. (2003). "Two decades of urban climate research: a review of turbulence, 

exchanges of energy and water, and the urban heat island." International Journal 
of Climatology 23(1): 1-26. 

Arnold, C. L. J. and J. C. Gibbons (1996). "Impervious surface coverage: the emergence 
of a key environmental indicator." Journal of the American Planning Association 
62(2): 243-258. 

Bar-Yam, Y. (1997). Dynamics Of Complex Systems. Boulder, CO, Westview Press. 
Bohle, H.-G. (1994). "Metropolitan food systems in developing countries: The 

perspective of “Urban Metabolism”." GeoJournal 34(3): 245-251. 
Bossel, H. (1999). Indicators for Sustainable Development: Theory, Method, 

Applications. Winnipeg, International Institute for Sustainable Development 
(IISD). 

Boucher, A., K. C. Seto, et al. (2006). "A novel method for mapping land cover changes: 
incorporating time and space with geostatistics." IEEE Transactions on 
Geoscience and Remote Sensing 44(11): 3427-3435. 

Brown, L. R. (2001). Eco-Economy: Building on Economy for the Earth. New York, 
Norton. 



DRAFT 

14 
DRAFT 

Castella, J. C., S. P. Kam, et al. (2007). "Combining top-down and, bottom-up modelling 
approaches of land use/cover change to support public policies: Application to 
sustainable management of natural resources in northern Vietnam." Land Use 
Policy 24(3): 531-545. 

Castella, J. C. and P. H. Verburg (2007). "Combination of process-oriented and pattern-
oriented models of land-use change in a mountain area of Vietnam." Ecological 
Modelling 202(3-4): 410-420. 

Chen, J. (2007). "Rapid urbanization in China: A real challenge to soil protection and 
food security." Catena 69(1): 1-15. 

Clarke, K., N. Gazulis, et al. (2007). A decade of SLEUTHing: Lessons learned from 
applications of a cellular automaton land use change model. Classics from IJGIS. 
Twenty Years of the International Journal of Geographical Information Systems 
and Science. P. Fisher. Boca Raton, FL, Taylor and Francis, CRC: 413-425. 

Costanza, R. and L. Wainger (1993). "Modeling complex ecological economic systems." 
Bioscience 43(8): 545. 

Crutzen, P. J. (2004). "New Directions: The growing urban heat and pollution "island" 
effect - impact on chemistry and climate." Atmospheric Environment 38(21): 
3539-3540. 

Elvidge, C. D., P. C. Sutton, et al. (2004). Urbanization. G. Gutman, A. C. Janetos, C. O. 
Justiceet al. Dordrecht, Kluwer Academic Publishers. 

Engelen, G., R. White, et al. (1995). "Using cellular automata for integrated modelling of 
socio-environmental systems." Environmental Monitoring and Assessment 34(2): 
203-214. 

Epstein, J. (2007). Generative Social Science: Studies in Agent-Based Computational 
Modeling. Princeton, NJ, Princeton University Press. 

Evans, T. P., E. Ostrom, et al. (2002). "Scaling Issues With Social Data in Integrated 
Assessment Modeling." Integrated Assessment 3(2): 135 - 150. 

Fiddaman, T. (2002). "Exploring policy options with a behavioral climate-economy 
model." System Dynamics Review 18(2): 243-267. 

Foley, J. A., R. DeFries, et al. (2005). "Global consequences of land use." Science 
309(5734): 570-574. 

Folke, C. and J. Rockström "Turbulent times." Global Environmental Change In Press, 
Corrected Proof. 

Forrester, J. W. (1971). "Counterintuitive behavior of social systems." Technology 
Review 73(3): 52-68. 

Forrester, J. W. (1992). "Policies, decisions and information sources for modeling." 
European Journal of Operational Research 59(1): 42-63. 

Fragkias, M. and K. C. Seto (2007). "Modeling urban growth in data-sparse 
environments: a new approach." Environment and Planning B 34: 858-883. 

Geoghegan, J., L. J. Pritchard, et al. (1998). 'Socializing the pixel' and 'pixelizing the 
social' in land-use/cover change. People and Pixels. E. F. M. D. Liverman, R. R. 
Rindfuss, P. C. Stern. Washington, DC, National Research Council: 51-69. 

Gibson, C. C., E. Ostrom, et al. (2000). "The concept of scale and the human dimensions 
of global change: a survey." Ecological Economics 32(2): 217-239. 

Grimm, N. B., S. H. Faeth, et al. (2008). "Global change and the ecology of cities." 
Science 319(5864): 756-760. 



DRAFT 

15 
DRAFT 

Grimm, N. B., S. H. Faeth, et al. (2008). "Global change and the ecology of cities." 
Science 319(5864): 756-760. 

Grimm, N. B., J. Morgan Grove, et al. (2000). "Integrated Approaches to Long-Term 
Studies of Urban Ecological Systems." BioScience 50(7): 571-584. 

Grimm, V., E. Revilla, et al. (2005). "Pattern-oriented modeling of agent-based complex 
systems: lessons from ecology." Science 310: 987-991. 

Guhathakurta, S. e. (2003). Integrated Land Use and Environmental Models. Springer, 
Berlin. Berlin, Springer. 

Güneralp, B. (2006). "Towards coherent loop dominance analysis: progress in eigenvalue 
elasticity analysis." System Dynamics Review 22(3): 263-289. 

Güneralp, B. and Y. Barlas (2003). "Dynamic modelling of a shallow freshwater lake for 
ecological and economic sustainability." Ecological Modelling 167(1-2): 115-138. 

Güneralp, B. and K. C. Seto (2008). "Environmental impacts of urban growth from an 
integrated dynamic perspective: A case study of Shenzhen, South China." Global 
Environmental Change 18: 720-735. 

Gutman, G., A. C. Janetos, et al. (2004). Land Change Science. Dordreacht, Kluwer 
Academic Publishers. 

Homer, J. B. (1996). "Why we iterate: scientific modeling in theory and practice." 
System Dynamics Review 12(1): 1-19. 

Kampmann, C. E. and R. Oliva (2008). "Structural dominance analysis and theory 
building in system dynamics." Systems Research and Behavioral Science 25(4): 
505-519. 

Kaufmann, R. K., K. C. Seto, et al. (2007). "Climate response to rapid urban growth: 
Evidence of a human-induced precipitation deficit." Journal of Climate 20(10): 
2299-2306. 

Lambin, E. (2005). "Conditions for sustainability of human–environment systems: 
Information, motivation, and capacity. Editorial." Global Environmental Change 
15: 177-180. 

Landis, J. and M. Reilly (2003). How We Will Grow: Baseline Predictions of 
California’s Urban Footprint Through the Year 2100. Integrated Land Use and 
Environmental Models. S. Guhathakurta. Berlin, Springer: 55-98. 

Landis, J. and M. Zhang (1998). "The second generation of the California urban futures 
model. Part 1: Model logic and theory." Environment and Planning B-Planning & 
Design 25(5): 657-666. 

Levine, R. S., M. T. Hughes, et al. (2008). "Generating sustainable towns from Chinese 
villages: A system modeling approach." Journal of Environmental Management 
87(2): 305-316. 

Lischke, H., J. Bolliger, et al. (2007). Dynamic spatio-temporal landscape models. A 
Changing World: Challenges for Landscape Research. W. O. Kienast F., Ghosh S. 
Dordrecht, The Netherlands, Springer. 8. 

Liu, J., T. Dietz, et al. (2007). "Coupled human and natural systems." Ambio 36(8): 639-
649. 

Low, B., R. Costanza, et al. (1999). "Human-ecosystem interactions: a dynamic 
integrated model." Ecological Economics 31(2): 227-242. 

Manson, S. M. (2007). "Challenges in evaluating models of geographic complexity." 
Environment and Planning B: Planning and Design 34(2): 245-260. 



DRAFT 

16 
DRAFT 

Manson, S. M. and T. Evans (2007). "Agent-based modeling of deforestation in southern 
YucatÃ¡n, Mexico, and reforestation in the Midwest United States." Proceedings 
of the National Academy of Sciences 104(52): 20678-20683. 

Mather, A. S., C. L. Needle, et al. (1998). "The human drivers of global land cover 
change: the case of forests." Hydrological Processes 12(13-14): 1983-1994. 

Meentemeyer, V. (1989). "Geographical perspectives of space, time, and scale." 
Landscape Ecology 3(3): 163-173. 

Moran, E. and E. e. Ostrom (2005). Seeing the Forest and the Trees: Human-
Environment Interactions in Forest Ecosystems. Cambridge, MA, The MIT Press. 

Newell, B., C. L. Crumley, et al. (2005). "A conceptual template for integrative human-
environment research." Global Environmental Change Part A 15(4): 299-307. 

O'Neill, R. V., A. R. Johnson, et al. (1989). "A hierarchical framework for the analysis of 
scale." Landscape Ecology 3(3): 193-205. 

Oke, T. R. (1974). Review of urban climatology 1968-1973. Geneva. 
Ostrom, E. (2007). "A diagnostic approach for going beyond panaceas." Proceedings of 

the National Academy of Sciences 104(39): 15181-15187. 
Overmars, K. P. and P. H. Verburg (2006). "Multilevel modelling of land use from field 

to village level in the Philippines." Agricultural Systems 89(2-3): 435-456. 
Parker, D. C., S. M. Manson, et al. (2003). "Multi-Agent Systems for the Simulation of 

Land-Use and Land-Cover Change: A Review." Annals of the Association of 
American Geographers 93(2): 314-337. 

Richardson, G. (1999). Feedback Thought in Social Science and Systems Theory. 
Waltham, MA, Pegasus Communications, Inc. 

Rindfuss, R. R., S. J. Walsh, et al. (2004). "Developing a science of land change: 
Challenges and methodological issues." Proceedings of the National Academy of 
Sciences of the United States of America 101(39): 13976-13981. 

Saysel, A. K. and Y. Barlas (2006). "Model simplification and validation with indirect 
structure validity tests." System Dynamics Review 22(3): 241-262. 

Seto, K. C. and R. K. Kaufmann (2003). "Modeling the Drivers of Urban Land Use 
Change in the Pearl River Delta, China: Integrating Remote Sensing with 
Socioeconomic Data." Land Economics 79(1): 106-121. 

Seto, K. C., Woodcock, C.E., Song, C., Huang, X., Lu, J., Kaufmann, R.K. (2002). 
"Monitoring land-use change in the Pearl River Delta using Landsat TM." 
International Journal of Remote Sensing 23(10): 1985-2004. 

Shen, J. (2002). "Urban and regional development in post-reform China: the case of 
Zhujiang Delta." Progress in Planning 57: 91-140. 

Simon, H. A. (1962). "The architecture of complexity." Proceedings of the American 
Philosophical Society 106(6): 467-482. 

Soares, B., A. Alencar, et al. (2004). "Simulating the response of land-cover changes to 
road paving and governance along a major Amazon highway: the Santarem-
Cuiaba corridor." Global Change Biology 10(5): 745-764. 

Stave, K. A. (2003). "A system dynamics model to facilitate public understanding of 
water management options in Las Vegas, Nevada." Journal of Environmental 
Management 67: 303-313. 

Sterman, J. D. (2000). Business Dynamics: Systems Thinking and Modeling for a 
Complex World. Boston, MA, Irwin/McGraw-Hill. 



DRAFT 

17 
DRAFT 

Sterman, J. D. (2002). "All models are wrong: reflections on becoming a systems 
scientist." System Dynamics Review 18(4): 501-531. 

Turner, B. L., II, E. F. Lambin, et al. (2007). "Land Change Science Special Feature: The 
emergence of land change science for global environmental change and 
sustainability." Proceedings of the National Academy of Sciences 104(52): 
20666-20671. 

Turner, M. G., V. H. Dale, et al. (1989). "Predicting across scales: Theory development 
and testing." Landscape Ecology 3(3): 245-252. 

UN (2006). World Urbanization Prospects: The 2005 Revision. New York, United 
Nations Department of Economic and Social Affairs/Population Division, New 
York. 

Verburg, P., B. Eickhout, et al. (2008). "A multi-scale, multi-model approach for 
analyzing the future dynamics of European land use." The Annals of Regional 
Science 42(1): 57-77. 

Verburg, P. H. (2006). "Simulating feedbacks in land use and land cover change models." 
Landscape Ecology 21(8): 1171-1183. 

Verburg, P. H., W. Soepboer, et al. (2002). "Modeling the spatial dynamics of regional 
land use: the CLUE-S model." Environmental Management 30(3): 391-405. 

Verburg, P. H. and A. Veldkamp (2005). "Introduction to the special issue on spatial 
modeling to explore land use dynamics." International Journal of Geographical 
Information Science 19(2): 99 - 102. 

Waggoner, P. E. and J. H. Ausubel (2002). "A framework for sustainability science: A 
renovated IPAT identity." Proceedings of the National Academy of Sciences of 
the United States of America 99(12): 7860-7865. 

Wang, Y. Q. and X. S. Zhang (2001). "A dynamic modeling approach to simulating 
socioeconomic effects on landscape changes." Ecological Modelling 140(1-2): 
141-162. 

White, R. and G. Engelen (2000). "High-resolution integrated modelling of the spatial 
dynamics of urban and regional systems." Computers, Environment and Urban 
Systems 24(5): 383-400. 

Xie, Y., Y. Mei, et al. (2005). "Socio-economic driving forces of arable land conversion: 
A case study of Wuxian City, China." Global Environmental Change Part A 
15(3): 238-252. 

 
 



DRAFT 

18 
DRAFT 

Figures 

Figure 1. Conceptual representation of the framework. 

Figure 2. The most influential feedback loops creating the observed behavior patterns in 

the counties. Boxes represent main components (i.e., accumulations). The variables that 

are passed between the lower and higher level models are represented in italics. See text 

for explanation on the most influential feedback dynamics. 

Figure 3. Patterns of growth in each modeled county for (a-b) GDP shares of secondary 

and tertiary sectors, respectively, (c) population, and (d) GDP per capita. 

Figure 4. Historical urban expansion (1999-2005). 

Figure 5. Predicted urban expansion (2005-2015). 
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Figure 1. Conceptual representation of the framework. 
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Figure 2. The most influential feedback loops creating the observed behavior patterns in 

the counties. Boxes represent main components (i.e., accumulations). The variables that 

are passed between the lower and higher level models are represented in italics. See text 

for explanation on the most influential feedback dynamics.
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Figure 3. Patterns of growth in each modeled county for (a-b) GDP shares of secondary and 

tertiary sectors, respectively, (c) population, and (d) GDP per capita. 
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Figure 4. Historical urban expansion (1999-2005). 
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Figure 5. Predicted urban expansion (2005-2015). 
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Table 1. Groupings of administrative entities representing each subregion. 

Grouping Composed of 

Shenzhen Shenzhen 

Dongguan Dongguan 

Zengcheng Zengcheng 

Guangzhou 
Guangzhou, Huadu, Panyu –including 

recently formed Nansha 

Foshan Foshan, Shunde, Nanhai 

Zhongshan Zhongshan 
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Table 2. Odds ratios of local urbanization drivers, 1999–2005. 

Odds Ratio 

Variable (change interval) 

 1999-2005 

popch (100/km2) 1.037 

capsecch (million Yuan/km2) 1.012 

capterch (million Yuan/km2) 0.984 

gzdis (10 km) 0.97 

majrddis (10 km) 0.782 

urbneigh (25%) 0.878 

water 1.480 

ag 2.744 

slope (5%) 0.973 

topography (5%) 0.829 

zsdum 1.631 

x (10 km) 1.011 

y (10 km) 

 

0.905 
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Table 3. Sectors of the system dynamics model. 

Sectoral Grouping Sector Name  

Population  Demographic  

Submodels 
Labor force  

Primary Sector 
(Farming, forestry, animal 

husbandry, fishing) 

Secondary Sector 
(Manufacturing, construction, 

mining and quarrying) 

Economic  

Submodels 

Tertiary Sector 
(Commerce, banking, tourism, 

entertainment, real estate trade) 

  

 


