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Abstract 
 

Previous work related to eigenvalue analysis in the system dynamics field has primarily focused 
on linking the model structure to the modes of behavior -- i.e. the eigenvalues. While the system 
eigenvalues define the characteristics of the system’s behavior modes (e.g., exponential growth, 
expanding oscillations), these behavior modes are not equally represented in all model variables, 
making it difficult to link the behavior of the behavior mode to the behavior of a particular 
variable. In this study we propose an alternative perspective and explicitly explore the 
significance that each behavior mode has on the system state variables. We achieve this by 
decomposing the behavior of a variable into a sum of the weighted behavior modes in the system 
(represented by the eigenvalues). We argue that focusing on the weights, rather than on the 
eigenvalues, is a more efficient way to develop policy recommendations and compute the 
elasticity of the weights to the gain on any link the model allowing for a more efficient and 
discriminate way to identify policies. A routine to estimate the weights of any linear model and 
compute the elasticity of those weights to model links is developed and made available at 
http://iops.tamu.edu/faculty/roliva/research/sd/. 
 

Keywords: linear model analysis, eigenvalue analysis, leverage points. 
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Introduction 
Previous work related to eigenvalue analysis in system dynamics (e.g., Abdel-Gawad et al. 2005; 

Forrester 1982; Gunerlap 2005; Kampmann 1996; Kampmann and Oliva 2006; Saleh and 

Davidsen 2001a, b) has focused on linking model structure to the system modes of behavior, 

expressed in the eigenvalues of the linearized model. It has proven elusive, however, to use these 

tools for policy design. Major obstacles for the broad adoption of these approaches have been the 

computational intensity required to perform the analysis and the difficulties in interpreting the 

results. While the eigenvalues define the characteristics of the system’s behavior modes (e.g., 

exponential growth, exponential decay, expanding oscillations, dampened oscillations), these 

behavior modes are not equally manifested in the time path of a particular model variable, 

making it difficult to link the eigenvalue analysis to the observed simulated behavior 

(Kampmann and Oliva 2006). 

In this study we propose an alternative perspective to by exploring the significance that each 

behavior mode has on the system state variables. We achieve this by decomposing the behavior 

of a given variable into the weighted sum of the behavior modes in the system (represented by 

the eigenvalues). Though all variables are driven by the same set of eigenvalues, each state 

variable has a different set of weights for these and thus show different behavior patterns. We 

argue that focusing on these weights, rather than on the eigenvalues, is a more efficient way to 

develop policy recommendations.  

This paper is a proof of concept as opposed to a fully implemented and tested algorithm. In the 

following section we explain our basic notation (full mathematical development of the idea is in 

Appendix A) and we then proceed to illustrate the benefits of the analysis with a well-known 
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model. The paper concludes with a summary of next steps necessary to operationalize the 

approach in a way that would be amenable to SD practitioners. 

Decomposing Behavior 
In Appendix A we show how the behavior of any state variable in a linear system can be 

decomposed into several modes of behavior – each characterized by an eigenvalue. (We confine 

ourselves in this paper to linear systems only, leaving consideration of how to analyze nonlinear 

systems for later work.) That is, the time trajectory of state variable i can be expressed as 

 

! 

xi t( ) = wi1m1 t( ) + ...+ wijm j t( ) + ...+ winmn t( ) + ui ; (1) 

where xi(t) is the value of state variable i at time t; wij is a constant term representing the 

significance of mode j to state variable i, i.e. the weight of mode j on variable i; mj(t) is the value 

of the jth mode of behavior at time t; and ui is a constant term. The modes of behavior of a linear 

system are a function of the eigenvalues λ of the Jacobian matrix that characterizes the system 

(Ogata 1990).  

 
  

! 

m j =
exp Re[" j ]t( )                      if Im[" j ] = 0

exp Re[" j ]t( )sin Im[" j ]t + #( ) otherwise

$ 
% 
& 

' & 
 (2) 

If the eigenvalue does not have an imaginary part the behavior mode is expressed by the first 

equation and is characterized by exponential growth (if the real part of the eigenvalue is positive) 

or decay (if the real part of the eigenvalue is negative). If an eigenvalue has an imaginary part 

different than zero, it means that two eigenvalues are a conjugated pair (with the same real part) 

and together they generate the oscillatory mode represented by the second expression. If the real 

part of the conjugate pair of eigenvalue is positive, it yields to an expanding oscillation mode; if 

it is equal zero, yields to a sustained oscillation mode; and if it is negative, this yields to a 

damped oscillation mode. 
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Decomposing the time trajectory of a state variable into its modes of behavior allows for a useful 

set of diagnosis, not only to understand the sources of the variable behavior, but also to identify 

the degree of interaction between different variables in the system. Furthermore, the significance 

of a behavior mode in a variable’s behavior (wij) can also be used as a way to identify the 

elements of model structure most responsible for the observed behavior. We accomplish this by 

assessing the sensitivity of model weights to changes in the model’s link gains. The gain of the 

link between two variables is defined as the partial derivative of the output variable with respect 

to the input variable (

! 

gab = "a "b) and we define the elasticity of a weight to a gain (or elasticity 

of a weight to a link) as the ratio of the fractional change in the weight to the fractional change in 

the gain, i.e.,  

 

! 

" =
#wij wij

#gab gab
. (3) 

A routine to estimate the weight vector for all state variables in a linear model and compute the 

elasticity of those weights to model links was developed in Mathematica, and is available at: 

http://iops.tamu.edu/faculty/roliva/research/sd/. The routine takes as input a model representation 

created by the Vensim to Mathematica Utility developed by Kampmann and Oliva (2006) (also 

available at http://iops.tamu.edu/faculty/roliva/research/sd/) so any linear model represented in 

Vensim can be immediately analyzed. The routine first decomposes the behavior of the states 

variables by calculating the system’s eigenvalues 

! 

" j and the weights 

! 

wij  of the eigenvalues in 

each state variable’s behavior. Plots of the decomposed behavior of the base case are 

automatically generated. Then, for each link in the model, the routine modifies the gain of the 

link 

! 

gab
* = 1+ "( )gab  and recalculates eigenvalues 

! 

" j

*  and weights 

! 

wij

* . The elasticity of the 

weights to the link gains is estimating by comparing the new calculated values to the base case as 
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per equation 3, where 

! 

"wij = wij

*
# wij  and 

! 

"gab = gab
*
# gab . In the next session we illustrate the 

use of this analysis with a simplified version of a well-known system dynamics model. We first 

decompose the behavior of the state variables, interpret the significance of the results, and then 

illustrate how an evaluation of the weight elasticity to link gains could be used for policy 

analysis. All output shown was obtained directly from the developed routines. 

Example 
To illustrate the above concepts, we apply them to a simple linear model; a simplified version of 

the labor-inventory model described in chapter 19, in Sterman (2000). Sterman uses this model 

to make the argument that are interactions between inventory management policies and labor 

adjustments cause a dampened oscillation with frequency and amplitude similar to the business 

cycle. The stock and flow diagram of the simplified linear model is portrayed in Figure 1 and 

model equations are listed in Appendix B. A copy of the model file, and its translation into 

Mathematica to be processed by the developed routines is available at 

http://iops.tamu.edu/faculty/roliva/research/sd/. 
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Figure 1. Stock & flow diagram of the model 

The model consists of two sectors, the production and inventory sector, coupled through the 

variables desired production and labor. Labor explicitly controls production in the model. The 

model contains four state variables: 1) inventory, 2) labor, 3) vacancies, and 4) work in process 

inventory (WIP). The behavior of these state variables is illustrated in Figure 2. 

  

 
Figure 2. State variable behavior 
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Behavior Decomposition Weights (BDW) 
As outlined in Appendix A, it is possible to decompose the behavior of each state variable into 

three modes of behaviors: two exponential decay modes and a damped oscillation mode, 

presented in Table 1. The decomposition and the associated weights are presented in Table 2. 

The table also shows the weights normalized by the constant term as well as the phase lag 

expressed in degrees. 

Mode no. i Unit l1 l2 l3 
Real part Re{l} 1/week -0.353 -0.138 -0.009 

Imaginary part Im{ l} 1/week 0 0 0.098 
Exp. adj. time t weeks 2.83 7.25 105.7 

Oscillation period T weeks - - 63.6 
Table 1. Behavior modes λ and the corresponding exponential adjustment times  

τ = |1/Re{λ}| and periods of oscillation T = 2π/Im{λ}, respectively. 

The first two modes are exponential adjustments that die out relatively quickly (a few weeks), 

while the third mode is a damped oscillation with a period of 63 that which takes much longer to 

die out (106 weeks).  

Variable ( )tx  Inv Labor Vac WIP 
Constant u 40,000 1,000 80 80,000 
Weight w1 -122.22 -7.87 21.61 345.24 
Weight w2 14,432 20.72 -21.22 -15,934 
Weight w3 7,384.1 -89.09 70.40 -5,861.3 
Phase q 3.76 0.15 1.42 0.85 

w1/u -0.003 -0.007 0.270 0.004 
w2/u 0.361 0.021 -0.265 -0.199 
w3/u 0.185 -0.089 0.880 -0.073 

Table 2. Behavior decomposition weights for the four state variables 

! 

x t( ) = u + w1 exp "1t( ) + w2 exp "2t( ) + w3 sin Im "3( )t + #( ) 

The decomposition of the behavior of the state variables can be observed in Figure 3. In each 

panel of Figure 3, the four components of behavior (three behavior modes plus the steady-state 

constant) are been plotted with a thin line and the overall behavior of the variable –the addition 

of the four components– with a broader line. With the exception of vacancies, the component 

from behavior mode 1 is hardly visible in these plots. By scaling the decomposition equations by 
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the steady-state constant we can assess the relative low impact of behavior mode 1 on the other 

three variables, cf. Table 2.  

 

 
Figure 3. State variable behavior decomposition 

From the scaled weights and the corresponding plots in Figure 3, it is relatively easy to perform a 

set of diagnostics. First, modes one and two represent rapid adjustments at the beginning of the 

simulation. Note that those two modes have little or no impact on those variables that started the 

simulation close to their steady-state value, e.g. labor. Relatively quickly, these modes die out 

and the variable behavior is controlled by the damped oscillation of mode three. Second, all 

variables are oscillating with the same frequency, corresponding to mode 3, i.e., with a period of 

around 63 weeks, but with significant lags between them; θi values (measured in radians) range 

from 0.15 to 3.76, representing a 206° phase lag between inventory and labor.  

Focusing on inventory, for example, we can see that w12 (the weight of the second eigenvalue on 

Inventory) is much larger than the other two weights on inventory, and analysis of Figure 3 



 9 

reveals that while significant, the second behavior mode is only active during the first 25 

simulation periods. After period 25, the whole behavior of the inventory variable is controlled by 

the third behavior mode.  

BDW Elasticity to Links 
In this example, it might be of interest to study both the second and third modes of behavior. By 

focusing on the weights of the behavior modes for the variable of interest – rather than the 

eigenvalues – we can identify leverage points to increase or decrease the influence of a behavior 

mode in he variable. Table 3 lists the elasticities of weights into the Inventory (Inv) stock (w1, w2 

and w3) to the model’s link gains–in this case sorted by the absolute value of the elasticity of w2. 

The table does not report elasticities to links from constants to auxiliary variables since 

constants, being system parameters, might be used in more than one model equation. In this case, 

the analysis should focus on the sensitivity of the weights to those constants or parameter. We 

discuss this strategy in a separate section. 

From Table 3, the highest leverage point for weight w2 is the link from 

Work_In_Process_Inventory to Production_Rate. An increase of the gain of this link (by 

reducing the length of the manufacturing cycle time; Production_Rate = WIP/Manf_cycle_time) 

would significantly decrease w2 reducing the effect of the second mode on the behavior of 

inventory. Reducing the manufacturing cycle time would make the production rate faster and 

make it more difficult for WIP to increase and inventory to decrease, to their steady state values.  

The interpretation of positive elasticities is similar. (A positive elasticity indicates that an 

increase in the numerical value of the link gain increases the numerical value of the weight, 

hence making it more prominent in the behavior regardless of its sign.) For example, an increase 

in the gain of the link from Work_In_Process_Inventory to Adjustment_For_WIP (fourth row) 
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would significantly increase w2; hence making the second mode of behavior more salient in the 

behavior of the inventory. The gain of this link can be increased by reducing the value of the 

WIP_adjustment_time constant in the model (Adjustement_For_WIP=(Desired_WIP-

WIP)/WIP_adjustment_time). A reduction of the WIP_adjustment_time from its initial value of 

6 weeks would mean that the model would be more aggressive in closing gaps to desired 

inventory and would allow for the  

Input Variable Output Variable w1 w2 w3 
WorkinprocessInv ProdRate 0.063 -4.316 -0.305 
DesiredWIP AdjustmentWIP -22.724 -3.162 7.253 
DesiredProd DesiredWIP -22.724 -3.162 7.253 
WorkinprocessInv AdjustmentWIP 16.407 3.147 -7.192 
ShipmentRate Inv 11.452 3.088 -1.982 
ProdRate Inv -5.743 -2.934 3.255 
DesiredProdStartRate DesiredLabor -23.327 -2.391 5.498 
DesiredLabor AdjustForLabor -23.327 -2.391 5.498 
DesiredProd DesiredProdStartRate -17.042 -2.372 5.441 
Labor AdjustForLabor 21.347 2.052 -5.721 
DesiredInvCoverage DesiredInv -16.173 -1.705 4.559 
DesiredInv ProdAdjustfromInv -16.173 -1.705 4.559 
ProdStartRate WorkinprocessInv -8.212 1.525 2.497 
Labor ProdStartRate -8.212 1.525 2.497 
ProdRate WorkinprocessInv 5.802 -1.382 -3.470 
Inv ProdAdjustfromInv 24.946 1.279 -5.530 
DesiredVac AdjustForVac -4.042 -0.488 0.581 
DesiredHiringRate DesiredVac -4.042 -0.488 0.581 
HiringRate Labor 0.913 -0.444 0.864 
Vac AdjustForVac 1.042 0.425 -0.505 
ProdAdjustfromInv DesiredProd 8.766 -0.423 -0.976 
QuitRate DesiredHiringRate -4.052 -0.390 1.087 
AdjustForLabor DesiredHiringRate -2.011 -0.342 -0.214 
VacCreationRate Vac -5.002 -0.305 0.368 
DesiredHiringRate VacCreationRate -2.021 -0.244 0.291 
QuitRate Labor 0.266 0.243 -1.074 
Vac HiringRate 1.437 -0.231 0.613 
VacClosureRate Vac 0.523 0.213 -0.252 
HiringRate VacClosureRate 0.523 0.213 -0.252 
Labor QuitRate -3.786 -0.147 0.013 
AdjustForVac VacCreationRate -2.987 -0.062 0.077 
AdjustmentWIP DesiredProdStartRate -6.294 -0.020 0.060 

Table 3. Weight elasticities to links associated with Inventory stock – sorted by w2 

WIP stock to reach its steady-state value much faster. Note that while the inventory adjustment 

time (the parameter governing the gain on links into Prod_Adjust_form_Inv, rows 12 and 16 in 

Table 3) is twice as long as the WIP adjustment time, the gap between initial inventory and its 

steady-state value is much smaller than the gap between the initial WIP and its steady state 

value. The analysis of weight elasticity to links, assuming that individual links can be 
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independently adjusted, identifies this larger gap and points to WIP_adjustment_time as having 

bigger leverage on the weight of the second mode of behavior on inventory. In the next section 

we provide an analysis of weight elasticity to parameters that provides a more realistic 

identification of leverage points.  

Further scrutiny of the table also points to the unique leverage points for each weight. Through 

cross comparisons of the elasticity tables it is possible to identify those links that have the 

highest leverage to the weight of interest, but that that have relative low influence on the weights 

of other modes on other state variables. Consider, for example, the Work_In_Process_Inventory 

to Production_Rate link, the relatively low elasticity of the w1 and w3 weight to that link suggest 

that the link is particularly effective in solely affecting the effect of the second behavior mode on 

Inventory. 

To facilitate this analysis, Table 4 lists the same results as Table 3 but now sorted by the absolute 

value of the elasticity of w3. From table 4, we can see that an increase in the gain of the link from 

Desired_Production to Desired_WIP (second row) would significantly increase w3; hence 

making the third mode of behavior more salient. By increasing the manufacturing cycle time 

(Desired_WIP = Desired_production*Manf_cycle_time) one strengthens the multiplier effect 

that desired WIP coverage has, thus further amplifying the desired production rate and increasing 

the amplitude of the model’s oscillating mode—the Bullwhip effect experienced in the Beer 

Distribution Game.  
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Input Variable Output Variable w1 w2 w3 
DesiredWIP AdjustmentWIP -22.724 -3.162 7.253 
DesiredProd DesiredWIP -22.724 -3.162 7.253 
WorkinprocessInv AdjustmentWIP 16.407 3.147 -7.192 
Labor AdjustForLabor 21.347 2.052 -5.721 
Inv ProdAdjustfromInv 24.946 1.279 -5.530 
DesiredProdStartRate DesiredLabor -23.327 -2.391 5.498 
DesiredLabor AdjustForLabor -23.327 -2.391 5.498 
DesiredProd DesiredProdStartRate -17.042 -2.372 5.441 
DesiredInvCoverage DesiredInv -16.173 -1.705 4.559 
DesiredInv ProdAdjustfromInv -16.173 -1.705 4.559 
ProdRate WorkinprocessInv 5.802 -1.382 -3.470 
ProdRate Inv -5.743 -2.934 3.255 
ProdStartRate WorkinprocessInv -8.212 1.525 2.497 
Labor ProdStartRate -8.212 1.525 2.497 
ShipmentRate Inv 11.452 3.088 -1.982 
QuitRate DesiredHiringRate -4.052 -0.390 1.087 
QuitRate Labor 0.266 0.243 -1.074 
ProdAdjustfromInv DesiredProd 8.766 -0.423 -0.976 
HiringRate Labor 0.913 -0.444 0.864 
Vac HiringRate 1.437 -0.231 0.613 
DesiredVac AdjustForVac -4.042 -0.488 0.581 
DesiredHiringRate DesiredVac -4.042 -0.488 0.581 
Vac AdjustForVac 1.042 0.425 -0.505 
VacCreationRate Vac -5.002 -0.305 0.368 
WorkinprocessInv ProdRate 0.063 -4.316 -0.305 
DesiredHiringRate VacCreationRate -2.021 -0.244 0.291 
VacClosureRate Vac 0.523 0.213 -0.252 
HiringRate VacClosureRate 0.523 0.213 -0.252 
AdjustForLabor DesiredHiringRate -2.011 -0.342 -0.214 
AdjustForVac VacCreationRate -2.987 -0.062 0.077 
AdjustmentWIP DesiredProdStartRate -6.294 -0.020 0.063 
Labor QuitRate -3.786 -0.147 0.010 

Table 4: Weight elasticities to links associated with Inventory stock – sorted by w3 

BDW Elasticity to Parameters 
An alternative exploration of the policy design space is achieved assessing the weight elasticity 

to model parameters. While changes to model parameters might not have the ability to identify a 

unique leverage points for a particular weight on a stock as the link elasticities do, parameters 

reflect policies and various "physical" realities in the system and as such represent more intuitive 

intervention points. Furthermore, assessing weight elasticities to parameter changes allows for a 

more realistic assessment of the policy design space since in most instances changes to link gains 

would be implemented through parameter changes, and parameters might impact several links 

simultaneously. Our algorithms also support the calculation of weight elasticity to parameters 

and these can be reported either by mode (assessing the impact across different stocks) or by 

stock (comparing the impact of the parameter changes across behavior modes). Tables 5 and 6 

report these two modes of output for w2, again in the case of the Inventory variable (Inv).  
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Analysis and interpretation of this output is similar to the one performed for the tables with 

weight elasticities to links (tables 1 and 2), but in the interest of brevity are not performed here. 

Note that the weight elasticity to a parameter cannot be estimated directly by adding the weight 

elasticities of the links into the variables affected by it. For example, Table 3 reports a weight 

elasticity to Inv_Adjust_Time of 0.850, while the sum of the weight elasticities to the links into 

Production_Adjust_from_Inventory, the only variable affected by Inv_Adjust_Time, in Table 1 

is –0.426 (–1.705+1.279). This is due to the fact that parameters enter in different algebraic 

forms, not just additive terms, in the various equations. 

Parameter Inv Labor Vac WIP 
InvAdjustTime 0.850 -6.289 -6.948 0.235 
WIPAdjustTime -0.467 2.208 2.457 -0.236 
ManfCycleTime 0.323 4.190 3.562 0.742 
StandardWorkWeek -0.170 -1.169 -1.169 -0.170 
Productivity -0.170 -1.169 -1.169 -0.170 
VacAdjustTime 0.102 0.417 0.446 0.129 
LaborAdjustTime 0.037 -0.872 -0.957 -0.041 
AvgTimeFillVac -0.009 0.148 1.163 0.005 
AvgDurationofEmployment -0.007 0.030 0.112 -0.003 
SafetyStockCoverage 0.000 0.000 0.000 0.000 
MinOrderProcessingTime 0.000 0.000 0.000 0.000 
CustomerOrderRate 0.000 0.000 0.000 0.000 

Table 5: Weight elasticities to parameters associated to 2nd behavior mode – sorted by Inv 

Parameter 1 2 3 
InvAdjustTime -4.712 0.850 -0.162 
WIPAdjustTime 1.677 -0.467 1.240 
ManfCycleTime 0.730 0.323 -0.169 
StandardWorkWeek 0.367 -0.170 0.811 
Productivity 0.367 -0.170 0.811 
VacAdjustTime 3.375 0.102 -0.184 
LaborAdjustTime -0.877 0.037 1.028 
AvgTimeFillVac 1.117 -0.009 0.068 
AvgDurationofEmployment 0.066 -0.007 -0.009 
SafetyStockCoverage 0.000 0.000 0.000 
MinOrderProcessingTime 0.000 0.000 0.000 
CustomerOrderRate 0.000 0.000 0.000 

Table 6: Weight elasticities Parameter associated with Inventory stock – sorted by w2 

Next Steps 
An obvious next step for the development of this tool is the application of the method to 

nonlinear models typically developed in system dynamics. The linearization of an SD model 

around an instantaneous model operating point has proven an effective strategy to use insights 
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and tools from linear dynamics in SD models (Abdel-Gawad et al. 2005; Forrester 1982; 

Gunerlap 2005; Kampmann 1996; Kampmann and Oliva 2006; Saleh and Davidsen 2001a, b). 

We are optimistic about our ability to operationalize the computations and insights form this 

analysis into a tool that can be reliably used by the SD community. These explorations are left as 

further developments for this line of research. 

Another issue outstanding is that the weights are partly a function of the initial conditions of the 

system. One may say that certain initial conditions may excite particular behavior modes more 

than others. It would be useful, therefore, to separate the effect of changing initial conditions on 

the weights from the part that comes more from structural features. 

We end with a word of caution. While changes in parameters would impact the weight matrix as 

described in the previous section, it should be noted that these changes would also change the 

eigenvalues themselves. That is, once parameter changes are made, the explanation of the impact 

of parameter changes on the behavior of inventory above suggest, the Jacobian of the system and 

consequently its eigenvalues also change. Changing the time it takes stocks to reach their steady 

state values is equivalent to stating a change on the real part of the eigenvalue controlling that 

behavior, regardless of the weight applied to it. The fact that weights and eigenvalues are not 

independently determined is perhaps one of the biggest shortcomings of this proposed method of 

analysis. The method, however, is effective in identifying leverage points for intervention in the 

models behavior and as such a promising tool for policy design. 
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Appendix A: Eigenvalue Analysis of Linear Models 

Mathematical Background 
 

In this appendix, we will decompose the time trajectory of a state variable into several modes of 

behavior. The time trajectory of a state variable is a mathematical function that specifies the 

value of the state variable at any time instant. The point of departure is the structure of the 

model, which, in the case of linear model can be represented by the following compact matrix 

equation (we denote scalars using lower case letters; vectors in bold lower case letters; and 

matrices in bold capital letters): 

 

! 

˙ x t( ) = Gx t( ) + b  (A.1) 

where x is the vector of state variables; 

! 

˙ x is the vector of first time derivates of state variables 

(rates), b is a constant vector; and G is the Jacobian or gain matrix ( )ji xx !!= &
ijG . In linear 

systems, G is constant unlike nonlinear systems, where it is a function of the state variables and 

exogenous inputs and consequently varies over time. b is likewise constant in a linear model 

with zero or constant exogenous variables, unlike the case in nonlinear systems.  

Differentiating equation A.1 with respect to time yields 

 

! 

˙ ̇ x t( ) = G˙ x t( ) (A.2) 

where x&& is the curvature vector –the vector of second time derivates of state variables. Thus, the 

gain matrix G relates the slope vector to the curvature vector in an n dimensional standard space 

Rn.  

The solution to the system of differential equations specified by equation A.2 provides us with 

the time trajectory of the slope vector of the model. We use the eigenvalue method for solving 

differential equations (Luenberg 1979) to solve for the time trajectory of the slope. 
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The n eigenvalues and their associated right eigenvectors of the gain matrix G are defined as 

! 

Gr
k

= "
k
r
k
. The default case is to have n distinct eigenvalues, and consequently the right 

eigenvectors will be linearly independent (Luenberg 1979), and span the n-dimensional space, 

Rn. Consequently, the slope vector can be expressed as a linear combination of the right 

eigenvectors, 

 

! 

˙ x t( ) ="
1
t( )r1

+"
2
t( )r2

+ ...+"
n
t( )rn , (A.3) 

where 

! 

"
k
 are the components of the slope vector in the new coordinate system and 

! 

r
i
 are the 

constant set of eigenvectors. Differentiating equation (A.3) with respect to time yields the 

components 

! 

˙ " 
k
 of the curvature vector in the new coordinate system 

 

! 

˙ ̇ x t( ) = ˙ " 
1
t( )r1

+ ˙ " 
2
t( )r2

+ ...+ ˙ " 
n
t( )rn . (A.4) 

Substituting equation A.3 into equation A.2 yields 

 

! 

˙ ̇ x t( ) = G "
1
t( )r1

+"
2
t( )r2

+ ...+"
n
t( )rn[ ] . 

Rearranging, 

 

! 

˙ ̇ x t( ) ="
1
t( )Gr

1
+"

2
t( )Gr

2
+ ... +"

n
t( )Gr

n
, (A.5) 

and replacing the definition of eigenvalues 

! 

Gr
k

= "
k
r
k
, we obtain: 

 

! 

˙ ̇ x t( ) ="
1
t( )#1

r
1
+"

2
t( )#2

r
2

+ ...+"
n
t( )#nrn . (A.6) 

Equating A.4 and A.6 we obtain a differential equation that describe the dynamics that take place 

along the coordinate specified be the right eigenvector rk: 

 

! 

˙ " 
k
t( ) = #

k
"
k
t( ) 

The solution of the above differential equation is 

 

! 

"
k
t( ) ="

k

0
e
#
k
t$%( )  
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where τ is the initial time, i.e. the starting time of the analysis period, and 

! 

"
k

0 is the 

corresponding initial value of 

! 

"
k
. 

It is clear that the only factor determining the dynamics along a particular coordinate –i.e., a right 

eigenvector– is the eigenvalue associated with that coordinate itself. Substituting the solution of 

the dynamic behavior of each alpha 

! 

"
k
, into equation A.3 yields the time trajectory of the slope 

vector along the dimensions of the eigen-space 

 

! 

˙ x t( ) ="
1

0
e
#

1
t$%( )

r
1

+"
21

0
e
#

2
t$%( )

r
2

+ ...+"
n

0
e
#
n
t$%( )

r
n
. (A.7) 

Integrating the above slope trajectory equation with respect to time (from time = τ to time = t), 

yields 

 

! 

x t( ) = "
1

0 #
1( ) e#1 t$%( ) $1( )r1 + "

2

0 #
2( ) e#2 t$%( ) $1( )r2 + ...+ "

n

0 #
n( ) e#n t$%( ) $1( )rn + x

0
, 

where x0 is a constant vector representing the initial values of the state variables. Expanding the 

above equation, 

 

! 

x = "
1

0 #
1( )e#1 t$%( )

r
1

+ ...+ "
n

0 #
n( )e#n t$%( )

r
n
$ "

1

0 #
1( )r1 $ ...$ "

n

0 #
n( )rn + x

0
, 

defining

! 

w
k

= "
k

0 #
k( )rkand 

! 

u = " #
1

0 $
1( )r1 " ..." #

n

0 $
n( )rn + x

0
 we obtain an expression  

 

! 

x t( ) = w
1
e
"
1
t#$( ) + ...+ w

n
e
"
n
t#$( ) + u (A.8) 

that decomposes the state trajectory into several modes of behavior, each characterized by an 

eigenvalue. Below we discuss special cases. 

Conjugated eigenvalues 
In case of conjugate eigenvalues, their weights will also be conjugated, and they will combine 

into an oscillating behavior mode. Assume, without loss of generality, that τ =0 and consider a 

pair of conjugated eigenvalues in equation A.8. 

 

! 

x
i
t( ) = w

i1
e
"
1
t + w

i2
e
"
2
t + u

i
, 
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where   

! 

w
i1

= a + ib,  w
i2

= a " ib,  #
1

= c + id,  and #
2

= c " id , and, consequently, 

! 

u
i
= "2a, i.e.,  

 

! 

x
i
t( ) = ect (a + ib)eidt + ect (a " ib)e" idt " 2a . (A.9) 

Using Euler’s formula in complex analysis 

! 

e
i"

= cos" + isin" , A.9 becomes 

 

! 

x
i
t( ) = ect (a + ib) cos dt( ) + isin dt( )[ ] + ect (a " ib) cos "dt( ) + isin "dt( )[ ] " 2a 

that simplifies to 

 

! 

x
i
t( ) = 2ect acos dt( ) " bsin dt( )[ ] " 2a . 

Taking 

! 

a
2

+ b
2 as a common factor on the first term yields 

 

! 

x
i
t( ) = 2 a

2 + b2ect
a

a
2 + b2

cos dt( ) +
"b

a
2 + b2

sin dt( )
# 

$ 
% 

& 

' 
( " 2a , 

defining an angle

! 

"  such that 
  

! 

sin "( ) = a a
2 + b2  and cos "( ) = #b a

2 + b2 , i.e., 
  

! 

" = atan a #b( ) , 

and replacing  

 

! 

x
i
t( ) = 2 a

2 + b2ect sin "( )cos dt( ) + cos "( )sin dt( )[ ] # 2a , 

and simplifying 

 

! 

x
i
t( ) = 2 a

2 + b2ect sin dt + "( ) # 2a, 

we reduce the conjugate pair to a single oscillatory behavior mode 

! 

e
ct
sin dt + "( )( ) , and identified 

the weight of that behavior mode to xi 

! 

2 a
2 + b2( )  and its contribution to the u vector (-2a).  

Zero eigenvalue 
Assume a zero eigenvalue in the slope trajectory equation A.7 

! 

˙ x t( ) ="
1

0
e

0 t#$( )
r

1
="

1

0
r

1
. 

Integrating the above equation (from time = τ to time = t) yields 

! 

x = (t " # )$
1

0
r
1

. 



 20 

The above equation represents a linear mode of behavior. The weight vector associated with this 

linear mode is equal to 
1

0

1
r! , and this mode does not contribute at all to the u vector since at the 

starting time of the analysis period this linear mode equals zero. 

Incomplete set of right-eigenvectors 
The term “complete right-eigenvectors” means that the right-eigenvectors span the whole n-

dimensional space (the default case developed above). Incomplete set of right-eigenvectors can 

only occur where there are non-distinct (repeated) eigenvalues but non-distinct eigenvalues is not 

a sufficient condition (Edwards and Penny 2005). 

An eigenvalue is of multiplicity k if it is repeated k times—i.e. if it is a k-fold root of the equation 

Det(G – λ I) = 0. An eigenvalue of multiplicity k is said to be complete if it has k linearly 

independent associated right-eigenvectors. If every eigenvalue of the Jacobian matrix is complete 

then, since right-eigenvectors associated with different eigenvalues are always linearly 

independent (Edwards and Penny 2005), it follows that G does have a complete set of n linearly 

independent right eigenvectors. An eigenvalue λ of multiplicity k > 1 is called defective if it is 

not complete and has only p linearly independent right-eigenvectors, where 0<p<k. The number 

d is called the defect of the defective eigenvalue λ and denotes the number of "missing" 

independent right-eigenvectors (d=k–p). 

Since any nxn matrix G has n linearly independent right-eigenvectors (Edwards and Penny 2005, 

p. 449), in an incomplete case, i.e. if a defective eigenvalue exits), it is necessary to compute d 

"generalized" right-eigenvectors linearly independent from each other and the original p right-

eigenvectors.  
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Without loss of generality, assume that matrix G has a single eigenvalue λ with multiplicity n 

(k=n), and that there is only one linearly independent right-eigenvector (r1) associated with λ 

(p=1), thus the defect of λ is d=n-1. 

The initial right-eigenvector r1 can be computed from the definition of eigenvalue 

! 

Gr
1

= "r
1
 and 

the d generalized right-eigenvectors, r2… rn, which are based on r1, can be computed from the 

recursive equation 

! 

Gr
i
= "r

i
+ r

i#1
 (Edwards and Penny 2005), thus: 

 

! 

Gr
2

= "r
2

+ r
1

Gr
3

= "r
3

+ r
2

...

Gr
n

= "r
n

+ r
n#1

 

Replacing these definitions of the generalized right-eigenvectors in equation A.5 and arranging 

yields 

! 

˙ ̇ x t( ) = ("
1
t( )#+"

2
t( )) r

1
+ ("

2
t( )#+"

3
t( )) r

2
+ ...+ (" j t( )#+" j+1

t( )) r j + ...+ ("n t( )# ) rn .(A.10) 

Equating A.4 and A.10 we obtain the following differential equations 

! 

˙ " 
1
t( ) ="

1
t( )#+"

2
t( )

˙ " 
2
t( ) ="

2
t( )#+"

3
t( )

...

˙ " 
n
t( ) ="

n
t( )#

 

and, starting from the last differential equation, one can recursively solve all differential 

equations obtaining 
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! 

"n t( ) ="n

0
e
#t

"n$1 t( ) = "n$1
0 +"n

0 t

1!

% 
& 
' 

( 
) 
* 
e
#t

"n$2 t( ) = "n$2
0 +"n$1

0 t

1!
+"n

0 t
2

2!

% 
& 
' 

( 
) 
* 
e
#t

...

" j t( ) = " j

0 +" j+1

0 t

1!
+ ...+"n

0 t
n$ j

(n $ j)!

% 
& 
' 

( 
) 
* 
e
#t

...

"
1
t( ) = "

1

0 +"
2

0 t

1!
+"

3

0 t
2

2!
+ ...+"n$1

0 t
n$2

(n $ 2)!
+"n

0 t
n$1

(n $1)!

% 
& 
' 

( 
) 
* 
e
#t

 

Substituting the above equations into A.3 yields 

 

! 

˙ x t( ) = z
1
e
"t + z

2
t e

"t + ...+ z j t
j#1
e
"t + ...+ zn t

n#1
e
"t , (A.11) 

where 

! 

z
1

="
1

0
r
1
+"

2

0
r
2
+ ...+"n

0
rn

z
2

="
2

0
r
1
+"

3

0
r
2

+ ...+"n

0
rn#1

z
3

=
"
3

0

2!
r
1
+
"
4

0

2!
r
2

+ ...+
"n

0

2!
rn#2

...

z j =
" j

0

( j #1)!
r
1
+

" j+1

0

( j #1)!
r
2

+ ...+
"n

0

( j #1)!
rn# j+1

...

zn =
"n

0

(n #1)!
r
1

 

Integrating A.11 yields 

! 

x t( ) = w
1
e
"t + w

2
t e

"t + ...+ w j t
j#1
e
"t + ...+ wn t

n#1
e
"t + u 

where 
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! 

w
1

=
z
1

"
#
z
2

"2
+ ...+

(#1)
i#1
(i #1)! z i

0! "i
+ ...+

(#1)
n#1
(n #1)! zn

0! "n

w
2

=
z
2

"
#
2z

3

"2
+ ...+

(#1)
i#2
(i #1)! zi

1! "i#1
+ ...+

(#1)
n#2
(n #1)! zn

1! "n#1

...

w j =
z j

"
#
j z j+1

"2
+ ...+

(#1)
i# j
(i #1)! z i

( j #1)! "i+1# j
+ ...+

(#1)
n# j
(n #1)! zn

( j #1)! "n+1# j

...

wn =
zn

"

u = #w
1
+ x

0

 

These values of wi and u have the same interpretation as the values with the same labels in 

equation A.7, but in this case the wi coefficients represent the weight of a hyper-exponential 

mode.  
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Appendix B: Model Equations 
Independent_Variables: 
init  Inventory = 50000 
init  Labor = 1000 
init  Vacancies = 150 
init  Work_In_Process_Inventory = 60000 
 
const Customer_Order_Rate = 10000 
const Vacancy_Adjustment_Time = 4 
const Productivity = .25 
const WIP_Adjustment_Time = 6 
const Inventory_Adjustment_Time = 12 
const Manufacturing_Cycle_Time = 8 
const Desired_Inventory = 40000 
const Labor_Adjustment_Time = 19 
const Average_Time_To_Fill_Vacancies = 8 
const Average_Duration_Of_Employement = 100 
const Standard_Workweek = 40 
 
Dependent_Variables: 
aux   Production_Adjustment_From_Inventory = (Desired_Inventory-Inventory) 

/Inventory_Adjustment_Time 
aux   Desired_Production = Customer_Order_Rate+Production_Adjustment_From_Inventory 
aux   Desired_WIP = Manufacturing_Cycle_Time*Desired_Production 
aux   Adjustment_For_WIP = (Desired_WIP - Work_In_Process_Inventory) 

/WIP_Adjustment_Time 
aux   Desired_Production_Start_rate = Desired_Production+Adjustment_For_WIP 
aux   Desired_Labor = Desired_Production_Start_rate/(Productivity*Standard_Workweek) 
aux   Adjustemnt_For_Labor = (Desired_Labor-Labor)/Labor_Adjustment_Time 
aux   Quit_Rate = Labor/Average_Duration_Of_Employement 
aux   Desired_Hiring_Rate = Quit_Rate+Adjustemnt_For_Labor 
aux   Desired_Vacancies =  Desired_Hiring_Rate*Average_Time_To_Fill_Vacancies 
aux   Adjustment_For_Vacancies = (Desired_Vacancies-Vacancies) 

/Vacancy_Adjustment_Time 
aux   Vacancy_Creation_Rate = Adjustment_For_Vacancies+Desired_Hiring_Rate 
aux   Hiring_Rate = Vacancies/Average_Time_To_Fill_Vacancies 
aux   Vacancy_Closure_Rate = Hiring_Rate 
aux   Production_Start_Rate = Labor*Standard_Workweek*Productivity 
aux   Production_Rate = Work_In_Process_Inventory/Manufacturing_Cycle_Time 
aux   Shipment_Rate = Customer_Order_Rate 
 
Flows: 
flow  Work_In_Process_Inventory = Production_Start_Rate  - Production_Rate 
flow  Inventory = Production_Rate  - Shipment_Rate 
flow  Vacancies = Vacancy_Creation_Rate - Vacancy_Closure_Rate 
flow  Labor = Hiring_Rate - Quit_Rate  


