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ABSTRACT 

The relationship between the dynamic behavior of individual compo­
nents of a large system and the overall behavior of the large system has ra­
rely been analyzed in the system dynamics literature. The usual approach is 
to treat the large system (e.g. a national economy) as a lumped-parameter 
version of the component systems. 

A number of examples from physical systems (plasma instabilities, 
fluid and chemical-reaction waves) suggest that the lumped parameter approach 
is not always adequate as a representation of the dynamics of systems or as a 
cogent explanation of the behavior of aggregate systems. In particular, new 
collective modes of behavior are found when the stochastic distribution of 
micro-level systems over internal states is considered. The proper treatment 
of the aggregation of micro-systems can reveal novel dynamic behavior modes · 
and can indicate under what conditions these modes may become active. The 
explicit treatment of the aggregation of micro-systems can also clarify the 
relationships between the structure and parameters of the micro-systems and 
those of a lumped-parameter representation of the macro-system, thus giving 
some precision to arguments based on macro-level models of interacting micro­
level systems. 

One approach to the study of the collective behavior of elementary 
systems uses the concept of a "dissipative structure" as developed by Prigogine 
and colleagues over the past fifteen years. 

This paper continues the work of a previous paper on the subject by 
applying the Master Equation Formulation to several generic models of first 
and second order (including delays, sigmoid growth, predator-prey and other 
oscillatory systems). Conditions under which novel aggregate behaviour may be 
expected to appear are determined. Since linear systems do not present any 
novelty in the theory, most attention is focused on non-linear examples. 
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INTRODUCTION 

In a previous paper (1}, an adaptation of system dynamics modeling 

was proposed in order to deal explicitly with the question of aggregation 

of diverse but similar units. The approach used was based on a model of 

the stochastic nature of interactions in a system leading to the derivation 

of a Master Equation for the joint probability distribution of level varia-

bles. Inspired by recent results in the literature of non-equilibrium 

thermodynamics and chemical kinetics (2, 3, 4}, the analysis of a first­

order delay and the development of a consistent treatment of equations for 

the most-probable evolution of the system and for the mean and variance of 

fluctuations about this path were presented. The present paper applies the 

same methods of analysis to three generic models: a logistic growth model, 

a two-level inventory-workforce model and a predator-prey model. This set 

includes two examples of non-linear systems and two examples of oscillatory 

systems. The set includes small structures often found in larger models and 

often used for demonstrating dynamic principles. The analysis of these models 

goes some way to completing the research program proposed in the above-mentioned 

pa·per and provides some insight into the effects of stochasticity in dynamic 

systems. 

The results of the analysis of these three models can be summarized 

briefly as follows. To lowest order in the expansion scheme used, the fluc­

tuations behave similarly to the macroscopic system. For example, in linear 

systems the eigenvalues of the fluctuation equation are the same as for the 

most-probable path and for non-linear systems the fluctuation distribution 

changes with the evolution of the macroscopic system in a not-too-surprising 

manner - the variance grows or contracts during periods of expansion or 
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decline and stabilizes if the macroscopic system reaches equilibrium. Based 

on a small number of cases, these results are not perfectly general; however 

they are consistent with results from the scientific literature referenced 

above. 

LOG! STI C GROWTH 

The logistic growth model is an example of a one-level, two-loop, 

non-linear system in which the dominance of one loop over another changes 

as the initial growth stage is replaced by an adjustment to equilibrium. 

This model is used to describe the growth of a population limited by external 

constraints (area, food supply, ... ). In differential equation form, as 

shown in equation (1), we take the saturation limit to be X and introduce 

the growth parameter, a. 

The event-probability table, Table I, describes the Markovian, stochastic 

model in terms of the probability of the events, dx, which change the size 

of the population in a short time interval, dt. The probability of an event 

depends on the nature of the event (the value of &xl and on the probability, 

P(x,t), that the system is in a given state, x, at a time, t. 

State Event Probabilit;t 

x-1 Sx=+l aX(x-l)dt(l-ax2dt)P(x-l,t-dt) 

X &x=(;l (1-aXxdt) (l-ax2dt)P(x,t-dt) 

X+l ~x=-1 (1-aXxdt) (a(x+l) 2dt)P(x+l,t-dt) 

Table 1: Logistic model event-~robabilit;t table 
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The Master Equation for P is shown in equation (2) 

dP 

dt 

aX(x-l)P(x-l,t) - aXxP(x,t) 

+ a(x+l) 2P(x+l,t)- ax2P(x,t) (2) 

An alternative form of the Master Equation is given in equation (3) where 

w(x, {x) is the transition probability per unit time, describing the rate 

of increase or decrease of the state probability, P. 

dP 

dt 

rd Sxcw(x- Ax, Ex)P(x- Sx,t) - w(x, !x)P(x,t)J (3) 

For discrete changes in state, the integral becomes a sum and we can 

specify the stochastic model in a table of transition probabilities as 

shown in Table 2. 

Transition 

.fx=+l 

8x=-l 

Probability, w(x,dx) 

axx 

Table 2: Logistic model transition probabilities 

A consistent expansion of the Master Equation in terms of a parameter, 

!t, representing the size of the system compared to the stochastic fluctuations, 

leads to consideration of the equations for the evolution of the most-probable 

state, y, and for fluctuations, Sy, about this state (1). These equations 

involve the moments of the transition probability distribution and are 

summarized in equation (3) for the general case. 



dy/dt 

dKY/dt 

d yjdt 

d .r-/dt 

cl(y) 

K(y) y 

Kp.+ l/2 K'<> 

K<r+ (K<r)T + D 

5 

(3) 

In general, y is a state vector, ~Y a fluctuation vector with mean, n, 

and covariance matrix,o;and the function c
1 

is a vector function of Y 

while the functions K and D are matrix functions of the state, y. In 

terms of the transition probability, we have the following expressions for 

c
1

, K and D. 

JdCxw(yJx)Sx 

dci (y)/dyj 

c~·i (y) = Jd&xw(yJxl (Ed 

For the logistic growth model, we find 

ay(X-y) 

a(X-2y) 

D aXy + a/ 

(4) 

(5) 

Thus we recover, to lowest order in the expansion, the original macroscopic 

or deterministic equation. The stochastic model permits us to specify the 

equations of evolution of the mean and variance of fluctuations, namely 

dpldt 

dcrt'dt 

a(X-2y)/4- a<r 

2a(x-2y)<r + ay(X+y) (6) 
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From these equations we note that for y<X/2 initially, the mean and 

variance of fluctuations grow quasi-exponentially, while as y approaches 

the macroscopic saturation limit, X, the mean of fluctuations decreases 

to -1 and the variance approaches the equilibrium value of X. The Markovian 

assumption for the transition probabilities gives in this limit an almost­

Poisson distribution whose mean is X-1 and variance X. As seen from 

equation (6), the variance passes from an initial growth phase to a final 

equilibrium, a behavior noted by Kubo et al.(7) in relation to a chemical 

reaction model. 

INVENTORY-WORKFORCE MODEL 

This two-level model is a linear model of a commonly occurring situa­

tion in which the delays inherent in managing a resource (the workforce, L) 

to achieve some desired level of performance (measured by a stock of finished 

goods, S) in the face of external influences (the sales rate, SALES), leads 

to oscillations as the system adjusts to a new equilibrium after a step 

change in SALES. The differential form of this model in terms of the above 

variables is given in equation (7) 

dL/dt (DL - L) /TAL 
dS/dt PROD*L - SALES (7) 

DL (OS - S) /(TAS*PROD) 
OS SCOV*SALES 

where 
TAL, TAS Time to adjust workforce, stock (weeks) 
PROD Productivity ((un/man)/week) 
scov Stock coverage time (weeks) 
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In a more compact, abstract form we can write 

where 

-1/TAL 

1/(TAS*TAL*PROD) 

PROD 

SCOV/(TAS*PROD) 

- u (8) 

A transition probability table for this model is shown in Table 2, where 

x = (x1,x2) 

Transition 

Sx1 =+ l.fx2=0 

Sx1=-l,Sx2=0 

gx1 =O,Sx2 =~ 1 

8x1 =O ,8x
2 

=-1 

Probability w(x, x) 

b
1
u 

a11 x1 + a12 x2 

a21 x1 

u 

Table 2 : Inventory-Workforce Model - Transition Probabilities 

We remark, for future reference, that the transitions Jx1=+1 

and &x2=-l are assumed independent of each other. 

The first and second moments of the transition probability distribution 

are shown in equation (9) 
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l-1•, x1 + a12 x2) + b1 

") a21 x1 - u (9) 

(''' ,, : .,, ,, . ,, " 0 

) a21 x1 + u 

The independence of the transitions Jx1=+1, Jx2=-l leads to the second 

moment matrix, c2, being diagonal. The ,equations of evolution of the most 

probable state, x, are the same as the deterministic equations, that is 

dx/dt (10) 

The equations of evolution of the mean and variance of fluctuations 

about this state are determined by substituting for K and 0 in equation 

(3) where 

K 

0 (11) 

Thus for this linear model, the autonomous part of the equations of 

evolution of the fluctuations and of the mean are the same as for the deter-

ministic system. Hence the dynamic characteristics (damping, oscillation 

frequency, ... ) summarized by the eigenvalues of K are the same as for the 

deterministic model. \~e note that the eigenvalues, A1,2, are given by 
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(12) 

and these give exponential decay, with or without oscillations. The equa­

tions for the components of the covariance matrix can be written by re­

arranging the corresponding component of equation (3), namely 

( 
o-;_11 (-

2
:11 

o-12 21 dt 

1122 0 

d -2a12 
-a 

11 
(13) 

The eigenvalues of this equation are 

(14) 

Thus the covariance components decay exponentially with or without oscilla­

tions under the same conditions as the deterministic model. This is a 

general result for linear systems which follows from the fact that the 

derived matrix, K• for a linear system, is identical to the system 

matrix. 
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LOTKA VOLTERRA MODEL 

This two-level, non-linear model of interactions between two popula-

tions {predator and prey) has also been used to study bi-molecular chemical 

reactions. The generalization to more than two species has been treated 

elsewhere (5). Our interest in this model stems from the fact at it gene­

rates non-linear oscillations and hence combines the features of the models 

discussed previously. The differential equation form of the model is shown 

in equation (15) where x1 is the number of "prey" and x2 is the number of 

"predators": 

dx1/dt = ax1 - bx1x2 

dx2/dt = bx1x2 - dx2 (15) 

A transition probabi"lity"-table for this system is shown in Table 3. 

Transition Probability w{x, ox) 

ox1 + 1, ox2 0 ax1 

ox1 1. ox2 + 1 bx1x2 

ox1 0, ox2 - 1 dx2 
Table 3 Lotka-Volterra Model Transition Probabilities 

In this model, the assumption is made that the reduction of the component 

x1 by one unit is simultaneous with the increase by one unit of the component 

x2. While the assumption is not very realistic for predator-prey models, it 
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is an accurate representation of chemical reactions. We retain this assump­

tion for comparison with the inventory-workforce model where the correspon­

ding changes in levels are independent. 

The first moment of the fluctuations about the most-probable path gives an 

equation which is the same as equation (15}. The second moment permits us 

to determine the evolution of the variance from the equation 
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- d) _:X )C)+("' : :::::) 
2(bx1 ~ d \;22 dx2 + bx1x2 (16) 

The simultaneous increase and decrease of the two components, x1, x2, shows up 

as the non-autonomous term in the equation for cr12 • 

During periods when the levels are slowly changing, approximate eigenvalues of 

the autonomous part of equation (16) can be found. These eigenvalues are 

where 

gl a - bx2, "growth rate" of x1 

g2 bx1 - d, "growth rate" of x2 

dl bx2 interaction of x2 on x, 

d2 bx1 interaction of x1 on x2 

The first pair of eigenvalues are almost the same as the approximate eigenvalues 

of the most-probable path, namely 

12 

The similarity with the inventory-workforce results is remarkable in light 

of the different underlying stochastic models. 

Although a general solution of equations {15} and (16} is not availa-

ble, a special case corresponding to simultaneous growth or decline of both 

populations gives a result similar in spirit to the ~rowth of the variance 

in the logistic model. When g1 = g2 = g, the equations for~,, and ~22 may 

be combined and integrated assuming x1, x2 are constant (or very slowly chan­

~ing). The result, with initial values cr11 = cr22 = 0 for convenience, is 

(17} 

The linear combination of variances is positive (as it should be) and grows 

or declines according as g is greater or less than zero. 

Comments 

From these examples we see that in the linear case, the stochastic model 

introduces no novel behavior compared to the deterministic approach, i.e. the 

eigenvalues of the fluctuation distribution are the same as those of the ma· 

croscopic deterministic model. For non-linear models, the fluctuations may 

show behavior similar but not identical to the macroscopic system. 

The specification of a model for the fluctuations should be of some use 

in identifying a macroscopic model. However the results of the (approximate) 

eigenvalue calculations for the two oscillatory models indicated a certain 

'robustness' of the eigenvalues in the face of alternative stochastic models. 
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That is, the differences in the 'eigenvalues' of the macroscopi.c and the 

fluctuation equations is due to structural factors, such as the number 

and polarity of minor loops, and not to the detailed differences in a$­

sumptions about the simultaneity or independence of some of the stochas­

tic events underlying the dynamics. This means-that such dynamic charac­

teristics as eigenvalues are not the best instruments for specifying a 

model and that other instruments must be used. 

One possibility for further investigation rests on the observation 

that in some regions of state space or over some time-interval, the as­

sumption of slowly-varying states may break down and a more detailed study 

of the transition may reveal non-exponential time behavior which is charac­

teristic of the stochastic model. Such is the case for the logistic model 

where the increase in the variance during the growth period may be of se­

veral orders of magnitude according to the first-order model while a more 

detailed analysis reveals slower than exponential time-variation in the 

transition from growth to equilibirum-seeking (6). Further work on other 

generic models needs to be done to verify if the increase in variance 

(or flattening of the distribution) is evident in other, non-linear sys­

tems. Informal tests on the 'Market Growth' model are as yet inconclusive 

on this point. 

Extensions of the Master Equation 

The models presented here are for systems that are uniform in space. 

The diffusion term, D, in equation (3), represents a diffusion rate in the 

space of level variables and as such establishes a scale factor for the 

variance as seen, for example in equation (17). To study the effects of 
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diffusion into and out of the system, the master equation can be modified 

to account for arrivals and departures across some boundary. Such a mo­

dification contributes terms similar to linear, delay-type terms in the 

macroscopic model. The interpretation of these terms as diffusive in­

troduces measures of the critical 'size' of a system necessary to support 

instability (6). 

Thus, it appears that the state-space diffusion term, D, cannot 

explain the onset of instability, contrary to a claim made in a previous 

paper (1). However, by the same token, it appears that the relationship 

between delay and diffusion-type terms may lead to a specification of cri­

tical delay-times which give rise to instability, or whose control can 

suppress instability. Analysis along these lines is being pursued. 
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