Analyzing Dynamic Systems: A Comparison of System Dynamics and Structural Equation Modeling

Peter Hovmand

School of Social Work Michigan State University

Ralph Levine

Department of Psychology and Department of Resource Development Michigan State University

Overview

- Background
- Approach
- Comparisons
- Conclusions

Background

- System dynamics modeling (SDM)
- Structural equation modeling (SEM)
- Similarity of features that are modeled
- Tendency to see SDM and SEM as the same
- Demonstrating differences between SDM and SEM

Do SDM and SEM generate "equivalent" models?

Approach

- Develop a system dynamics model.
- Use the system dynamics model to generate simulated observed data, which implies by definition that the system dynamics model fits the observed data.
- Generate structural equation models that fit the observed data.
- Test structural equation model fit with observed data, which is then a test of fitness with the system dynamics model.

"Fixes That Fail" Causal Loop Diagram

Path Diagram

Latent Model

System Dynamics Model

$$\frac{\partial \eta_1}{\partial t} = \xi_2 \eta_3 + \eta_{1,t=0}$$

$$\frac{\partial \eta_2}{\partial t} = -\eta_2 \eta_3 + \eta_1 + \xi_1$$

$$\frac{\partial \eta_3}{\partial t} = -1.1 \cdot \eta_3 + \eta_2 + \eta_{3,t=0}$$

Structural Equation Model

$$\eta_{1} = \beta_{13}\eta_{3} + \zeta_{1}$$

$$\eta_{2} = \beta_{21}\eta_{1} + \beta_{23}\eta_{3} + \zeta_{2}$$

$$\eta_{3} = \beta_{32}\eta_{2} + \zeta_{3}$$

Measurement Model

System Dynamics Model

$$y_1(t_s) = \eta_1(t_s) + \varepsilon_1$$

$$y_2(t_s) = \eta_1(t_s) + \varepsilon_2$$

$$y_3(t_s) = \eta_1(t_s) + \varepsilon_3$$

$$y_4(t_s) = \eta_2(t_s) + \varepsilon_4$$

$$y_5(t_s) = \eta_2(t_s) + \varepsilon_5$$

$$y_6(t_s) = \eta_2(t_s) + \varepsilon_6$$

$$y_7(t_s) = \eta_3(t_s) + \varepsilon_7$$

$$y_8(t_s) = \eta_3(t_s) + \varepsilon_8$$

$$y_9(t_s) = \eta_3(t_s) + \varepsilon_9$$

Structural Equation Model

$$y_1 = \eta_1 + \varepsilon_1$$

$$y_2 = \eta_1 + \varepsilon_2$$

$$y_3 = \eta_1 + \varepsilon_3$$

$$y_4 = \eta_2 + \varepsilon_4$$

$$y_5 = \eta_2 + \varepsilon_5$$

$$y_6 = \eta_2 + \varepsilon_6$$

$$y_7 = \eta_3 + \varepsilon_7$$

$$y_8 = \eta_3 + \varepsilon_8$$

$$y_9 = \eta_3 + \varepsilon_9$$

SDM

1% of simulated values

LISREL Model 1

Model 1 Chi-Square

Model 1 RMSEA

LISREL Model 2

Model 2 Chi-Square

Model 2 RMSEA

Summary of results

Phase of loop dominance	Time interval	Dominant loop(s)	Model 1 fit	Model 2 fit
P1	0.0 to 0.6	L1 and L2	No	Yes
Transition	0.6	-	No	Yes
P2	0.6 to 2.4	L1	No	Yes
Transition	2.4	-	Yes	$No^{2,3}$
P3	2.4 to 3.7	L2	Yes	Yes
Transition	3.7	-	Yes	$No^{2,3}$
P4	3.7 to 6.3	L1	Yes	Yes
Transition	6.3	-	Yes	Yes
P5	6.3 to 10.0	L1 and L2	Yes ¹	Yes

RMSEA increases up to about 0.045 and then decreases again.

² Fails to converge.
³ Not admissible after 50 iterations.

Conclusions

- The structural equation model that corresponded to the system dynamics model did not fit the data during the initial shifts in loop dominance.
- The structural equation model that did fit the data did not correspond to the system dynamics model.