
ABSTRACT

PASION:

OBJECT-ORIENTED SIMULATION ON THE PC

Stanislaw Raczynski
Panameriean University

Augusto Rodin 498
03910 Mexico city, Mexico

PASION is a process- and event-oriented simulation language
designed for those who already know and use PASCAL. The language
has a two level (process;event) structure and permits the use of
all the Pascal structures. It also offers the main features of
object-oriented programming. PASION provides necessary facili­
ties to handle sequences of random events, queues and quasi-para=
llel processes, both discrete and continuous. A PASION source
program consists of a sequence of process declarations and a main
segment which initializes the simulation. At run time the
program generates objects which represent model processes due to
the process declarations. PASION provides tools which facilitate
the building of complex models by the mechanism of inheritance.

INTRODUCTION

Looking at the existing simulation software and at the recent
tendencies in programming, it can be seen that the existing
simulation software becomes somewhat obsolete. PASION and its
environment were created for the following reasons.

First, the new simulation software should be object-oriented
not only because almost all new software is object-oriented (see
Schmucker, 1986, for a review on object-oriented programming).
The simulation software must have this orientation simply because
the real world we intent to simulate is object-oriented. Any
simulation language or package must permit to simulate dynamic
objects in the general sense, that is, without regard to whether
the object is discrete, continuous or combined.

Second, it is not a proper way to develop good simulation
tools modifying or extending languages which are 20 or even 30
years old. In my didactic work I have been looking for a well
structured and easy-to-teach simulation language. It seems that

908

System Dynamics '90 909

the most complete one is Simula. However, it is somewhat
difficult to teach Simula quickly, for its relation to Algol. The
course on Simula simply does not fit into the simulation courses
for non-programmers (e.g. for engineers who only know Basic and a
little of Pascal or Fortran). The main requirements for the new
language were as follows.

1. The language must be related to Pascal for the excellent
didactic properties, clear and good program structure and the
popularity of that language.

2. It must be object-oriented. This means that it must
permit the user to describe the properties of objects (their
behavior, interactions with other objects etc.), and to create
and handle objects. It also should be possible to define a
structure within classes of objects through the inheritance
mechanism. This will permit the user to extend the complexity of
his model using classes of objects created earlier, as
implemented in Simula.

3. It must be designed for combined continuous/discrete
models. This means that it should be little difference between
continuous and discrete objects, and that these objects must be
able to run simultaneously in the same model (in the same
simulation program).

4. The language must offer all necessary mechanisms to
control the model time, i.e. it must be equipped with a
transparent "clock mechanism" which controls the model time,
integration routines for continuous objects and event queue for
the discrete part of the model.

5. The language must be equipped with an appropriate
environment. The environment should offer a library of predefined
processes (object classes) , such as a general dynamic object,
objects which generate plots of the model trajectories, generate
history files, store the simulation results to be analyzed and
used by other models or programs etc. The recent implementation
of Pasion also includes a separate auxiliary modules such as a
generator of queuing models, generator of continuous models (as
Pasion processes) and a post-simulation analyzer for stochastic
models.

6. It must run on microcomputers.

The recent implementation of PASION seems to satisfy, to some
extend, the above requirements.

910 System Dynamics '90

THE LANGUAGE

To describe a sequence of events we must specify each event
and describe both dependence of each event on the model time, and
the interactions between the events. A process-oriented language
offers something more. Namely, it defines a structure within the
set of events by introducing different processes. By the process
w.e mean a generic segment of the program which declares a
specific object type. This declaration describes the properties
of objects which can execute events in relation to the model
time. According to this declaration the corresponding objects can
be created at run-time.

Let us consider, for example, a population of bacteria. A
bacterium can divide, move, eat or die. Thus, each bacterium can
be treated as a process which includes the following events:
division, movement, eating and dying. This model, of course,
consists of many objects of type "bacterium" which run
concurrently. The objects are closely related to each other,
because any "division" event creates a new object, and the
bacteria can eat other bacteria and interact with the common
environment. At run time, objects are generated according to
process declarations. The objects can be activated, suspended or
deleted. Once activated, an object executes its events and may
interact with other objects. Objects may represent, for example,
bacteria, cars, clients, shops with queues, continuous dynamic
systems etc.

The following sketch shows the PASION program structure.

PROGRAM prname;
- - - {declarations of global variables, queues}

REF X,Y,Z:pname;
- - - {procedures and functions}

PROCESS pname,n;
ATR- - - -{attribute declarations}

{local procedures and functions}

EVENT ename,tvname;
{local declarations, if any}
BEGIN
- - - - {event operations}

ENDEV;

EVENT ename2,tvname2;
{local declarations,if any}
BEGIN
- - - - {event operations}

ENDEV;

System Dynamics '90 911

START
- - - - {the main program}
NEWPR X:

NEWPR Y; NEWPR Z;

$

where "prname" is the program name, "pname" is the name of a pro­
cess, n is an integer, "ename" is the name of the "time-variable"
of the corresponding event, used to schedule it. A program can
contain one or more PROCESS declarations. The REF declaration
introduces "reference variables" X, Y and z of type "pname". In
the main program these variables are used in the NEWPR
instructions to create objects. The number of objects of type
"pname" which can run concurrently is limited by the integer "n".
The objects, after being created, should be given necessary
parameters for their attributes. At least one event of each new
object should be scheduled to activate the object. The scheduling
operation has the form

tvname:=timevalue;

where "tvname" is the corresponding identifier which appears in
the event header. This is not a substitution, but the scheduling
operation which defines the moment at which the event will occur
("timevalue") • Each event can be scheduled many times, and the
scheduling operation can appear in the main program or within any
event. A simple and clear visibility rules permit to refer to any
event of an object of any type from within any other object.

Let us consider a simple example of object-oriented
simulation in PASION. To simulate the growth of a plant it is
sufficient to describe the behavior of one "cell" of the plant.
It can be a "branch element" which can generate one or more other
branch elements which grow upwards, with random inclination. The
branch element can also increase its thickness to "support" more
branches. The program describes one branch element with two
events: "generating new branch" and "to get fatter". The main
program generates one initial core element which generates the
branches (other objects of the same type), which, in turn,
generate other branches etc. It is easy to show this process on
the screen, as indicated in Fig.l. Observe that this simulation
is not only the generation of the image of the plant. Each
"branch element" of the plant is "alive", as an active object of
the model and its behavior can be modified in order to experiment
with the model.

912 System Dynamics '90

CORRESPONDENCE BETWEEN MODELS AND PASION PROGRAMS

According to the commonly used simulation terminology (see
Zeigler, 1976) a simulation model is composed by its components
(e.g. clients in a shop) . The state of each component is
described by the corresponding set of descriptive variables and
their activities are gives by the rules of interaction between
the components. Experimental frames define the actually used set
of descriptive variables and permit to determine the complexity
of the model. The PASION language has all these basic modeling
elements, as shown blow.

MODEL

Components

Component specification

Descriptive variables
(including the state of
the component)

Component activities and
the rules of interaction

Experimental frames

<===>

<===>

<===>

<===>

<===>

PASION program

Objects

PROCESS declaration
(object type)

PROCESS attributes

Events

Process hierarchy and
inheritance

Inheritance enables programmers to create classes and
therefore objects that are specializations of other objects. This
enables the programmer to create complex models by reusing code
created and tested before. Inheritance in PASION can be applied
using prefixed process declarations. For example, if PA is the
name of an existing process and we wish to create a new one, say
PB, having all the properties of the process PA (this means all
its attributes and events), it can be done using the name PA/PB
instead of PB in the heading of the process declaration. While
processing such declaration, the translator looks for the process
PA (the parent process) and inserts all the attribute decla­
rations and event descriptions from PA into the new process PB
(derived process) . Parent processes can reside in separate
files, or be placed in the same source file. Thus, the user can
prepare and store some useful source "capsules" and use them
while creating new processes.

System Dynamics '90 913

PASION ENVIRONMENT

There are few programming languages which can be effectively
used without an appropriate environment. PASION is equipped with
the Minimal PASION Programming Environment (MPPE) which consists
of a library of predefined processes and other modules. It
supports interactive simulation, graphics, statistical analyses
of the results, continuous dynamic models and queuing models.

PASION PREDEFINED PROCESSES

The core of MPPE consists of the library of PASION predefined
processes. These are generic program segments which generate
processes. Predefined processes are written in PASION extended
by a simple "meta-language" which permits a process to have for­
mal parameters. The user invokes a predefined process by its
name and specifies the actual parameters, which are passed to the
corresponding process declaration in the user program :Qy name,
before the program is translated to PASCAL. The user can prepare
his own predefined application-oriented processes and add them to
the library.

The library provided with the PASION-to-PASCAL translator PAT4
contains the following predefined processes.

INTERP

INTERB

INTERN

SHOWP

STOR

MONIT

DYNAM

LSTAT

for graphical output, interactive simulation,

for graphical output (animated bar-graphs etc.),
interactive simulation,

numerical output, interactive simulation,

graphical output at given time i?stant,

(and program VARAN) graphical output after the simu­
lation is terminated, average trajectories,
variance analysis, confidence intervals,

displays the existing objects in graphical form,

simulates a continuous dynamic system,

for queue statistics.

914, System Dynamics •90

QUEUING MODEL GENERATOR

The Queuing Model Generator (QMG) is a module of the PASION
environment. It contains a block-diagram editor which permits the
user to define the structure of the model, and a program genera­
tor which generates the corresponding PASION code. This code is
automatically translated to PASCAL. QMG is transparent, i.e. the
languages {PASION and PASCAL) are not visible for "non-progra­
mmer" users. However, if the user knows PASION or PASCAL, then
he can work with the resulting code, creating much complex mo­
dels.

CONTINUOUS MODEL GENERATOR

This program was designed as a module of the simulation
language PASION in order to facilitate simulation of dynamic
continuous systems. The Continuous Model Generator (CMG) is a
program generator which generates automatically source PASION
andjor PASCAL code, according to the model specifications given
by the user, mainly in graphical form. Actually two versions of
CMG are available: Pasion version (CMG/PN) and Pascal version
(CMG/PS). The only difference between these versions is that
CMG/PN can generate PASION source code and CMG/PS can not. Thus,
the CMG/PS ·version can be used as an independent simulation tool,
without using any elements of the PASION system. The only
additional software needed is a Pascal compiler to run the
resulting program.

CMG is a program generator with built in graph diagram editor.
The input to this program is the graphical description of a model
created by the user on the screen in the interactive mode. The
model may be linear or non-linear and may contain time-delay
links. The model also can include "sample-and-hold" links, which
permits to simulate digital control ("sampled-data") systems.

After completing the corresponding graph and defining the
necessary model parameters, CMG generates the corresponding
source code, so that no programming is needed to create the
simulation program. The PASION output is created in the form of a
PASION process declaration which can be inserted into any PASION
(continuous, discrete or combined) model. The PASCAL output is
generated as a complete PASCAL program which can be run using a
PASCAL compiler.

The input to CMG is formulated in terms of graph diagram which
describes the dynamics of the modeled system. By the graph
diagram we mean a network composed of nodes and directed links.
Nodes represent signals and links represent transfer functions.

CMG permits the following types of the links:

1. Static linear
2. Static non-linear

System Dynamics '90 9115

3. Dynamic linear
4. Time delay

.5. Sample-and-hold
6. Superlink (a complex dynamic system)

The last link type (Superlink) permits to include whole
dynamic model (specified earlier and stored in a file) to the
model actually being created. This feature is useful while
developing complex models, composed of submodels created and
tested separately.

There are two output modes for the CMG module. The PASCAL
mode and the PASION mode. In PASCAL mode the program generates a
complete PASCAL source simulation program which can be compiled
and ran using a PASCAL compiler. In the PASION mode, CMG produces
the PASION source code being a PASION process declaration. This
declaration can be included into any PASION program, and can
generate one or more dynamic continuous objects. These objects
can run concurrently with any other PASION objects of any type.

COMBINED MODELS AND STATE EVENTS

There are three ways to define continuous processes: (1} To
describe a continuous process as a source PASION process, (2} to
use the predefined process DYNAM and (3) to use the embedded
global continuous process. The case (1) needs more programming
and gives the programmer full control over the process. The
corresponding process can be coded by the user or generated by
the Continuous Model Generator CMG. Using the predefined process
DYNAM the user only invokes the process and specifies the right­
hand sides of the corresponding differential equations as its
actual parameters. Case (3) is the shortest way to introduce a
continuous process and only needs the expressions for the right­
hand sides of the system equations to be coded. The embedded
continuous process is global and visible from inside all existing
objects. Any number of continuous objects of kind (1) and (2)
can run simultaneously with other (discrete) object in the same
model.

PASION permits to define "state-events" which occur when the
continuous part of the model reaches a particular state.

IMPLEMENTATION

PASION-to-PASCAL translator runs on the IBM PC and compatib­
les. The code produced by the translator can be compiled by any
PASCAL compiler. The resulting program expands dynamically while
new objects appear, so that the number of objects which can run
simultaneously depends on the amount of the operational memory
available at the run time and on the size of data (attributes) of
the objects. A new version of the PASION translator is being

916 System Dynamics '90

developed which swaps the objects between the memory and a hard
disc. This version uses the operational memory only to maintain
arrays of pointers to the generated objects, so that the total
amount of objects can theoretically be as great as 350.000 on a
640 Kbytes machine equipped with appropriate hard disk. However,
this mode of simulation will be considerably slower than the
"operational memory" version.

PASION has been used in teaching simulation methods. It is
important to have an easy to learn simulation tool which may be
used to illustrate the concepts of process declarations, objects,
events, inheritance, preprocessing and animation, when the stu­
dents have some knowledge on structural programming in PASCAL and
does not have any experience in simulation.

LITERATURE

Schmucker, K.J.: "Object-oriented Languages for the Macintosh",
BYTE 11 no. 8 (Aug.), 1986.

Raczynski, s.: "PASION - Pascal-related simulation Language for
small systems", SIMULATION 46(6), June 1986.

Raczynski, s.: "Process hierarchy and inheritance in PASION",
SIMULATION 50(6), June 1988.

Raczynski, s.: "PASION: The language and its environment",
Proceedings of the scs Multiconference on Modeling and Simulation
on Microcomputers, San Diego, February 1988.

Raczynski, S.: "On a simulation experiment with a parallel
algorithm for optimal control", Transactions of the Society for
Computer Simulation, 5(1),1988.

Raczynski, s.: "Simulating our immune system", Proceedings of the
SCS Multiconference, Modeling and Simulation on Microcomputers,
San Diego, January 1989.

Zeigler, B. P. "Theory of Modeling and Simulation", John Wiley &
sons, New York 1976.

System Dynamics •oo 917

20

/j

r Nj. of active objds:

Fig. 1

