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Appendix 1 – random model 

 
An indicator for coverage is the probability that a driver with average driving radius of 

miles, has no stations nearby, given a concentration of stations : 1 dr S

 ( )0 Pr distance to a station r Sp ≡ d≥  (0.1) 

Next, a patch is defined as the area that can (physically) be occupied by at most one 

station, the probability that one patch is occupied can be written as: 

 d
n

ASp
n A

=  (0.2) 

with n being the number of patches within an individual’s driving area 2
d dA rπ= .   

Then, for sufficiently small patch size, the expected number of stations per unit circle 

follows a Poisson distribution.  

As a corollary, and transforming to continuous coordinates, the probability of having at 
least c stations within one’s driving range equals (with ): S c≥
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where 

 
** d
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S Ap n
A

µ ≡ =  (0.4) 

represents the mean number of stations per driving area dA , and thus the mean coverage 
for  stations and driving range . S dr
 
The assumption of uncorrelated station entrance also allows determining a static 
equilibrium adoption profile – that is, one that is history independent.  For doing so, a 
cumulative adoption fraction  for a given station density is found by summing 
adopters 

adF

cA that experience coverage  multiplied by the probability of occurrence cS

cp over all potential levels of coverage: 
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1 The study of biological population ecologies deals with questions that are conceptually similar. For 
instance, Pielou ('77) seeks the probability that the distance between of a plant (species) to a nearest 
neighbor is larger than some critical radius for survival, , given a population density s: cr

( ), cPr distance to nearest plant of same species r |scr
d np ≡ ≤ and next, with some simplifying assumptions 

about population distributions, convenient expressions of the solutions are derived. 
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The population level adoption for a given coverage is derived by integrating over the 
product of a population density function for critical thresholds of adoption and the 
adoption fraction given coverage relative to a threshold t at: ,c ta

 ( ),
0

*c t c tA a dtρ
∞

= ∫  (0.6) 

In other words, in this model, the non-instantaneous adoption profile is determined by 
two sources. The first addresses non-homogeneous characteristics of station location or 
infrastructure: an individual’s utility of adoption increases with the actual coverage.2 
Assuming a binary adoption threshold at the individual level, an adoption fraction for the 
aggregate population must yield a smoother curve, as specific environmental (such as 
geographical) circumstances differ from person to person, while it can be assumed that 
for very small (large) coverage relative to the threshold the fraction of adoption is very 
small (high), while the responsiveness is low for both. Thus, we can characterize the 
adoption fraction as a function that increases with coverage relative the threshold 

 , ;c t t

ca f
t
σ⎛= ⎜

⎝ ⎠
⎞
⎟  (0.7) 

Where the sensitivity parameter tσ captures the combined effect of all the non-

homogeneous factors. For instance, a larger (smaller) population corresponds to a more 

uniform (homogeneous) distribution of factors, approximated by a lower (higher) tσ . 

  

A second source for non-instantaneous adoption is a distribution of preferences that 

captures the heterogeneity within the population with respect to individuals’ adoption 

threshold. This threshold depends on the demographic, socioeconomic, and other 

characteristics of the population. For instance urban travelers can be expected to have a 

lower threshold than average, while the poor, those in rural areas and those who drive 

long distances to multiple locations will have a higher threshold. Generally, we can 

assume a two parameter function with average tµ  and sensitivity tσ : 

 ( );t tf tρ µ σ=  (0.8) 

 
The probability that an individual driver has no coverage requires that all patches are 
unoccupied, or: 
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 (0.9) 

 
2 Note that the first moment results for adoption fractions are independent of the geographical 
distribution of the population, this as a result of the assumption on random station entrance. 
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When converting to a continuous formulation, in which the patch size becomes infinitely 

small ( x y∂ ∂ ), An
x y

= →
∂ ∂

∞

c

, the probability of not having coverage becomes3: 

 0,
cr

c sp e µ−=  (0.10) 

where 
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represents the mean number of stations per driving area dA , or the mean coverage.  
To get a feel for the properties of this relation under growing station density or increasing 
driving range, a useful reference value is the fill-factor φ  that is defined such that 1φ =  
corresponds with coverage, irrespective of location, for a minimum of stations(  ). 

This is achieved under hexagonal tiling with 

1Sφ=≡
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Thus, the probability of having no coverage decreases exponentially with S and . 2
dr

 
While the zero-coverage threshold is indicative, it does not provide serious insight into 
the attractiveness and/or actual adoption dynamics. For this, higher coverage thresholds 
need to be explored. Luckily, the situation of (0.9) is easy to generalize. Probabilities for 
higher coverage are given by the binomial distribution and can be approximated by a 
simple analytical expression (e.g. Pielou ('77); Casella and Berger ('90) )4: 
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Finally, the probability  of having at least stations within one’s driving range 
equals: 
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3 also required is a small enough np , which is clearly satisfied for this problem (as well in 
applications below) 
4 Note that expected coverage should equal the mean number of stations per driving area, which 

holds: 
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Here we cannot approximate the outcome by one analytical expression, as  is generally 
very small, compared to the total number of stations. Note further that both a critical and 
troublesome assumption behind this is that the station distribution is uncorrelated with 
drivers. 

cS

 
 Figure 1 shows the fraction of the population covered (that is, at least the number of 
stations equal to a threshold within one’s driving range) for increasing station density. 
For the reference number of stations the characteristics of California are taken, which has 
a land area of 160.000 square mile, and an equilibrium situation of 10.000 stations. 
Assumed is an average driving radius of 50 miles per driver, which yields an average of 
200 stations per driver. However, the results can be scaled. The results are shown for 
different thresholds.  
 

Sthres=1

Sthres=0.25*Seq

Sthres=0.5*Seq

Sthres=0.75*Seq

Sthres=Seq

station density and coverage - different thresholds

Station density – relative to California gasoline 2004  
Figure 1 – Expected fraction population covered by at least the threshold for increasing 

station densities and different coverage thresholds. 

 
To contrast this result from random emergence, perfect tiling (equidistant locating of all 
stations) would result in step functions that cross the random curves at 50% coverage 
(For this random distribution experiment both expected and median of coverage are 
50%). Towards the other extreme, more clustering (higher mean-variance ratios) results 
in less steep curves 
 
On the adoption curves 
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A useful approximation is for instance the logistic growth curve5: 
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The foundation for this is the binomial choice model with the attractiveness of the 
alternative choice being equal to 1. A larger (smaller) elasticity to a change in coverage 

covσ  indicates a more aggressive (smoother) adoption response to a change in coverage. 
The larger the population group considered, within a segment, the smoother the curve 
will be. 
 
Density 
For the distribution of the population preferences there is again a variety of choice for the 
density function. Here we choose one that is symmetric around the equilibrium value, 
such that the average threshold is at the equilibrium value (i.e., in the case of California 
this equals 100 stations within a disc with radius of 50 miles).  
:  

 ( ) ( )( )cov cov
1 * 2

threshrel rel
thresh thresh

thresh

s s
Cum

σ
ρ σ = − s  (0.17) 

with the normalization term and parameter threshCum threshσ  representing the heterogeneity 
in preferences. A higher (lower) value implies a larger (smaller) concentration at the 
mean/modus and thus more (less) homogeneity. 
 
Adoption curve 
The figure shows that the adoption curves have a slope of around 1, but more generally 
this slope can be shown to approximate: 

 n n2 0thresh thresh

dF S for S S
dS

≈ << <<

                                                

 (0.18) 

That is, while not shown, shifting the average threshold only implies a linear shift in the 
adoption curve.   
 
 
 

 
5 There are many plausible alternatives (Weibull, Richards, Gompertz etc…). The choice of the 
function does not matter much for this coarse and conceptual level of analysis. The main 
argument to choose this form are its simplicity in shape (symmetric properties), such that the 
resulting patterns are easy to interpret, and, associated with this, the limited number of 
parameters (two). The cumulative normal distribution would also be an obvious choice; however 
no simple closed form solution exists for this. 
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Appendix 2 – tables 

 
Table 1 – indices used for variables 

Shorthand Definition Description / Note 
   
∂  Household type Different types can have different mobility 

patterns or different socio-economic 
characteristics.  

l  Location Location in the area A 

t  Trip destination location Location is relative to stating location of a 
household. In the model t is replaced by polar 
coordinates ( ( , )t f r θ=  

u  Underway location Arbitrary location between home and 
destination location for a trip. Used to identify 
“critcal location” at which service is required 

s  Station location relative to stating location of a household 
blue  Observed parameters  

red  Unobserved parameters  

 
 
 
 
Table 2  - aggregate demand variables 

Shorthand Definition Derivation 
,l

aH ∂  Total adopters of type ∂ in location  l p aA h∂  

aH  Total adopted population 
.

,

l
a

l

H ∂

∂
∫  

,tm∂  
Annual miles driven per type for a trip t by an 
individual of type ∂ (in location l ) 

,2 *t td f ∂  

m∂  
Annual vehicle miles, for an individual of type 

in location l  ∂
,t

t

m∂∫  

,lM ∂  
Total annual miles driven by all individuals of type 

in location l  ∂ * *p hA mρ∂ ∂  

M  Total annual miles driven by the total population 
,

,

l

l

M ∂

∂
∫  
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Appendix 3 – Constant Elasticity of Substitution function 

A useful non-linear weighted average function is the Constant Elasticity of Substitution 
(CES) function. As this form will be used throughout, its properties will be discussed 
here briefly. Its general shape is, in continuous form: 

 ( )
1/

( )* ( )
y

x y x y
ε

ερ
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦
∫ ; (0.19) 

ε  is the key parameter, that allows to incorporate assumptions on what. Higher (lower) 
values imply larger contributions from the bigger (smaller).  In the extreme, 

( )ε →∞ −∞ implies the non-linear weighted average equals the maximum (minimum) 
contributions. Other special cases are 1ε = (linear) and 0ε = (unit elasticity of 
substitution, Cobb-Douglass). Further, ρ is the density function (thus, ), 

allowing for a non-uniform distribution over importance. 

( ) 1
y

yρ =∫

Potential applications 

First, this could also be used to determine a non-linear weighting over different factors 
that. For instance, averaging over the underway sites of a trip the effort entails: t
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where is the effort, as perceived on one particular point on the trip  is the total trip 

distance. 

,t ue td

 
Note further that one can use this expression to convert between two reciprocals, such as 
“trip effort” and “trip coverage” and can derive effective aggregates in a mathematically 
identical, but more intuitive way. When contribution to trip coverage is defined as the 
inverse of effort:  

 
( )

1
l

l

c
e α≡  (0.21) 

then, for instance, the average effort can be found by integrating over coverage, weighted 
by any desired weight function: 
 

 
1

; l l
l

e c c w cα−⎡ ⎤= =⎣ ⎦ ∫ *  (0.22) 

Where between brackets the effective coverage is derived. The different weighting of 
locations in terms of coverage is a much more intuitive exercise.   
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Appendix 4 – Parameters 
Observable parameters 
Parameter ShN Value Implication 
Average Population density 

hρ  
35 [people/square mile] 

Driver adoption time, normal 
hazard rate 

,1/a nτ λ
 

1 [year] 

Typical Driving radius s
nd

 
30 [miles]  

Average distance of a trip l
fr  

0.6*rd [miles] this implies that the variance parameters dfσ  

and dfσ  
are equal to 0.5  

mode is 0.4*rd 
Fuel economy mpg 25 [miles/gallon equivalent] 
Tank size tf 4 [gallons equivalent] 
Vehicle miles Nvm 15.000 [miles/vehicle/year] 
Fixed cost FC 1,000,000 $/year 
Reference profits per station 

refπ  0.1*Fixed 
Cost 

 

Normal station capacity Nac Na Driving is only constraint by attractiveness from the 
supply side 

Sensitivity of Expected 
Effective Supply to Distance cβ  -0.6 

Sensitivity of Expected 
Effective Demand to Distance rβ  -0.2 

Normal fractional capture of 
potential market after entry ,r ng  0.2 

Calibrated to correspond most local rational behavior – 
that is , probability of location, based on expected 
profits, corresponds with the relative attractiveness for 
that location, based on actual profits after entry. This is 
calibrated for station entry with existing grids with 
different  distances. 

 
Unobservable parameters 
Model Parameter ShN Value Implication 
Sensitivity of Utility to drive to 
Effort eβ  -0.5 At 50% adoption, if effort decreases by 1% , utility will 

increase by 0.5%. 
Utility Inflection Point for Trip 
Effort 0.5e  2 Average utility effect from effort equals 0.5 when effort is 

twice the normal effort, leading to 0.5*50% adoption fraction 
weight distance effect on effort, 
weight of risk effect on effort, 
and weight of crowding on effort  

td

ri

tf

w
w
w

 

0.5
0.5
0

 

 

Fraction tank range critical 
fα  0.06  

Sensitivity of Market 
Attractiveness to Market 
Profitability 

enβ  0.5  

Sensitivity of Exits to 
Profitability exβ  -0.1  

Sensitivity of location share to 
expected Profits to Expected 
Profitability s 

,en sβ  2  

Sensitivity of Station share to 
effort sβ  −∞  People have full information; all trip trajectories are identical 

to the average. People select the best  service station available. 
 

 9


