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Abstract 
Developing a valid model is of primary importance. Various verification and 
validation procedures are used to establish confidence in the model output. To 
establish confidence that a model produces right behaviour for right reasons it is 
essential to ensure that the structure of model represents real world system. Amongst 
the verification procedures employed, dimensional analysis is used to verify the 
syntactical correctness of the equation. Despite of its significance, dimensional 
analysis is one of the less prioritised procedures used during model building process. 
Therefore lack of dimensional consistency raises serious doubts about the validity of 
model behaviour.  
 
The aim of this paper is to summarise various problems and difficulties identified in 
System Dynamics (SD) modelling process and to suggest an alternative approach. 
Firstly, this paper discusses various problems faced by beginners, which can lead to 
errors in SD models. Secondly, discusses alternative approaches suggested by 
researchers in SD. Thirdly this papers presents an approach to generate mathematical 
model from Influence Diagrams. There are two principle benefits this approach can 
offer: A software tool based on this approach, and improve SD modelling experience, 
especially of those modellers who have limited mathematical experience so as to gain 
benefits of quantitative SD modelling.  
 
Key Words: System Dynamics, Model Building process, Verification and Validation, 
Dimensional Analysis, Influence Diagrams. 
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1. Introduction  
 
The philosophy and theory behind SD modelling is intellectually inspiring and draws 
people from various backgrounds who do not have prior experience in simulation 
modelling. As the modelling process advances modellers are likely to encounter 
difficulties in translating a qualitative model into a mathematical model of the system 
(Homer, 2007). While popular debates on SD methodology surrounds 
conceptualisation, model verification and validation procedures, beginners often have 
difficulties with moving from a qualitative formulation to mathematical 
implementation of the model. Due to a lack of expertise and experience, modellers 
tend to make mistakes that can go unnoticed and later produce erroneous behaviour.  
 
Ballico-Lay and Coyle (1984) discuss a variety of such issues that lead to hidden 
errors in models. Simple errors like the omission of dimensions for physical quantities 
(variables) in the model can lead to incorrect behaviour of the model. In fact if 
variable dimensions are defined consistently this should lead to a verifiable 
representation of the system. However, a range of software tools are currently used to 
develop SD models and some allow the modeller to bypass dimensional analysis 
completely. This can lead to an incoherent representation of the system if dimensional 
errors exist which would result in the development of inappropriate policies for the 
system in study.  A valid SD model gives behaviour which will match with the real 
world behaviour of the system (Barlas, 1989 & 1994), and for the behaviour of the 
model to be valid, the structure of the model should be verified. The broad context of 
this paper is to address the need for an approach which automatically generates a 
structurally verified quantitative SD model and provide support for the modeller who 
does not have mathematical expertise and experience in SD modelling.  
 
This paper presents a novel approach to developing SD models that would effectively 
guide the modeller and improve the modelling process for those who do not have the 
required mathematical experience to develop a quantitative model. This will be 
accomplished by a fundamental revision of the sequence of events that occur in 
current practice and by automating the creation of the required equations directly from 
the influence diagrams and from the rigorous definitions of the variables. This is a 
significant new development in SD methodology and has the potential to provide a 
better modelling experience, and to save considerable time and cost in model 
verification, reworking and fault finding. 

2. Critical review of relevant literature 
 
This section highlights some of the problems in SD modelling practice. SD 
practitioners agree that a completely correct model has never been produced. It is 
more important to develop a valid model that justifies the purpose of the model 
(Sterman, 2000). Therefore the following sections present discussion on the 
verification and validation procedures that are used in the SD modelling process to 
highlight the weaknesses in carrying out these procedures.   
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2.1 Confidence in the Model  

SD community statistics according to Scholl (1993 & 1995) show that less than 30% 
of SD modellers have a general understanding of mathematical methods. From this it 
can be inferred that a majority of the modellers prefer to use SD as a tool for 
developing qualitative models using system thinking concepts. There are justifiable 
reasons why quantitative models are not developed, for example Coyle (2000b) and 
Wolstenholme (1998) state that in some scenarios a qualitative model is sufficient to 
address the objective of modelling project. 
 
However, SD practitioners constantly emphasise that the strength of SD lies in its 
simulation experiments (Homer et al, 2001). Therefore in scenarios involving the need 
to quantify a model, modellers need to use mathematical methods. This is the 
fundamental shift in SD modelling that requires substantial help for those who do not 
have training or experience in mathematics. Lack of support at this stage can mean 
that modellers gain limited benefits from SD modelling. There is a need to support 
these modellers by enhancing the modelling process with an intelligent tool which 
will guide the modeller towards a quantitative model. A powerful software tool might 
not increase knowledge of SD, but it will improve the SD modelling experience for 
those who have a non-mathematical or non-engineering background. An important 
issue in modelling a system is to build a valid model which implements a correct 
structure and gives correct behaviour. It is very critical to ensure that such an 
intelligent tool provides support in producing a valid model.  
 
Forrester and Senge (1980) relate confidence in the model to the purpose of the 
model. Many abstractions of a system can be developed and each serves a different 
purpose (Sterman, 2000). An output graph of selected variables is no guarantee of 
validity, as an endless variety of invalid components (equation forms) can exist to 
give the same apparent system behaviour. Forrester, (1961) and Coyle (1977,1996& 
2000a) place emphasis on the model equations being dimensionally consistent and 
that all the constants in a model must be clearly defined and their dimensions must be 
stated. When the dimensional consistency is not maintained, the behaviour of the 
model is, therefore, incorrect and conclusions drawn from its outputs may be 
misleading. Thus, policy advice based on the model may be highly erroneous. 
Barlas(1984) reinforces this by saying that an equation in the model represents a part 
of the structure of the system and therefore a set of dimensionally consistent equations 
can ensure a structurally verified model. Parameter verification tests also contribute to 
ensuring that a variable represents part of the system. The literature on SD validation 
and verification agrees that “the defence of a model must rest on the defence of its 
details” (Forrester & Senge 1980). Dimensional errors are, therefore, a serious matter 
which led to the development of the dimensional analyser, within the COSMIC 
package, to detect and warn of dimensional errors (Ballico-Lay & Coyle, 1984). Some 
other software environments now claim to support dimensional analysis (DA) but 
doubts exist about the correctness of their algorithms (Coyle, 1996). 
 
Balci (1995) defines model verification as the process of translating the model from 
one form to another while maintaining the original purpose of the model. Therefore 
when developing a quantified model, it is important to ensure that the two 
representations, both qualitative SD model and quantitative SD model are compatible. 
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This emphasises that the relationships between variables have to be dimensionally 
compatible. However, in current SD practice, DA is rarely applied (Scholl, 1993). 
This raises questions over the validity of the models developed. This paper also 
discusses appropriateness of using DA in ensuring that the correct models are 
developed.  

2.2  Errors in models and correction through Dimensional Analysis   

Dimensional analysis is a procedure often applied in physics, chemistry, and 
engineering to understand physical situations involving a mix of different kinds of 
quantities. In physics, dimensional analysis is used to validate the equations, and in 
some instances, develop equations (Barragan et al, 2005). In principle, quantities with 
the same dimensions can be added, subtracted or equated. An equation is said to be 
dimensionally consistent if the dimensions of the variable on the left side of the 
equation match the cumulative expressions on the right side of the equation.  
 
Some of the errors occur due to poor modelling practice or a lack of modelling 
experience. Errors that are commonly found in SD range from simple typing errors to 
incomplete representations of the model which result in inconsistent dimensions, 
scaling errors, missing time constraints, incorrect use of dimensionless quantities, 
incorrect equation forms, incorrect use of numerical values etc.  
 
Choudhari et al (1995) and Coyle (1996) discuss how conversion factors can 
contribute to dimensional problems. For example, when modelling temperature 
control in a room, in a conceptual description of the system, temperature of the room 
is normally described in terms of heat in the room. This would mislead a novice 
modeller to relate room temperature directly to the loss of heat or gain of heat. In 
mathematical terms, heat in measured in Calories while temperature in measured in 
Celsius or Fahrenheit. These types of inconsistencies can be trapped using DA. 
 
Getmansky (1997) discusses how time constants are used to bring an equation to be 
dimensionally valid but represent an incorrect representation of a system. A variable 
is introduced into the equation which is not relevant in the system but is used to bring 
dimensional consistency to the equation. This is also called a parameter verification 
test. These types of mistakes can be avoided by applying DA. In this instance DA can 
verify whether an equation is conceptually correct or not.  
 
Martin (2001) & Stange(1998) identify various other types of errors with dimension 
less quantities. In addition to these, the types of errors that could go unnoticed can be 
found out with DA (Coyle & Sharp, 1980). DYSMAP is one of the earliest software 
for developing SD models. A dimensional analyser unit in DYSMAP was effectively 
developed. It proved to be effective in the model validation procedure (Coyle, 1983). 
 
Cost benefit analysis: A cost/benefit analysis of applying verification and validation 
procedures shows that verification procedures are of principle importance and next 
only to structure oriented behavioural tests and structure assessment. The study also 
shows that if DA is applied at the beginning of the modelling process, its benefits 
would have been more evident that if its applied at the end of the modelling 
process(Hoarfrost, Wakeland , 2005).  
. 
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In the light of difficulties and complexities involved in SD modelling, researchers in 
SD modelling have proposed alternative model building process and methodologies, 
which are explored in the following sections. 

2.3 Alternative approaches 

This section presents a review of two alternative approaches to SD modelling aiming 
to increase the versatility of the model building process and SD methodology. Firstly 
a matrix analysis of causal loop diagrams is presented and secondly a proposal to 
extend System Dynamics methodology by using OO concepts is offered. 
 
Analysing Influence Diagrams as Directed Graphs: Influence Diagrams can be 
studied as graphs. Graphs contain vertices and edges that connect these vertices. 
Influence Diagrams consists of variables and their influences. In order to apply graph 
analysis principles to Influence Diagrams, the variables can be considered as vertices 
of a graph and the influences as directed edges of a graph. One of the methods 
employed to represent a directed graph is to develop an adjacency matrix of the graph. 
For a graph with n nodes, an adjacency matrix is of size n x n. For directed graphs the 
matrix element (a, b) is 1 if there is an edge from ‘a’ to ‘b’ or 0 if there is no edge 
going from ‘a’ to ‘b.’  This is illustrated in figure1.  

 
Figure 1: Matrix analysis of a graph 
 
Burns (2001 & 2002) presented an enhanced version of this approach by applying Set 
Theory principles and Matrix multiplication to structurally validate Causal Loop and 
Stock Flow Diagrams.  
 
This approach used dimensional analysis to validate the derived equation. Although 
this is an interesting approach the use of matrix algebra is problematic both in terms 
of computational efficiency and in the size of matrix generated. SD models may have 
hundred of variables which can generate very large matrices.  Therefore this approach 
using matrix multiplication will be efficient if applied to small models. In this paper, 
an alternative approach which uses these principles but that implements a different 
type of data structure is described, which removes the constraints on the number of 
variables that can be used.  
 
Object Oriented Paradigm to SD: Myrtveit & Tignor (2000a & 200b) presents a 
thought-provoking discussion on adding OO features to SD methodology. This 
discussion proposes a conceptual leap in SD methodology and requires the modeller 
to use OO tools to develop models and identify the patterns of behaviour of the 
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system under study. The unique advantage of using this approach is that models can 
be built by joining building blocks. It primarily requires the user to select the patterns 
of the dynamic behaviour from the existing software library and link the building 
blocks appropriately. This requires new measures for validating the links and 
verifying that correct behaviour is produced through joining these various building 
blocks of the system. 
 
However, in building these generic behavioural structures of the system, the modeller 
needs to think of the components of the system as objects and links. The primary 
focus is on representing the structure of the system correctly. Structures and behaviour 
are interdependent. Therefore, if structure is developed correctly then correct 
behaviour can be obtained. When a modeller develops a model the focus is shifted 
from “movement” or flow in the system to the “appearance” or state of the system. 
There are benefits in this approach in that it starts from a high level conceptual 
representation of the system and grows to add the smallest detail of the model. 
Therefore it provides a rather less complicated process to develop the model, although 
a modeller may find it difficult to adapt to the OO “programming” concepts. 
However, the principle is to be able to obtain the patterns of the behaviour of various 
systems and guide the modeller to join the building blocks to build a full model. 
 
Thus this approach can be adopted to enhance and extend SD modelling methodology. 
If the OO approach is implemented in a rather ingenious way in the software tool, it 
can be used to generate and help verify an SD model and thereby enhance the SD 
modelling process.  
 
This paper therefore aims to present a revised approach to the SD modelling process 
that adapts OO concepts at the implementation level while allowing the modeller to 
formulate an SD model based on system thinking tools and qualitative models. 

3. Analysing Influence Diagrams 
 
One of the principle objectives of this paper is to analyse ID. Analysing an ID 
involves walking through the diagram and recognising the connections between 
variables. In order to implement this process as a programming module, an algorithm 
is initially developed providing a guideline to analyse ID.  
 
Analysing an ID involves walking through the diagram and recognising the 
connections between variables. In order to implement this process as a programming 
module, an algorithm is initially developed providing a guideline to analyse ID. Some 
of the concepts that are used in designing the following algorithm to analyse ID are 
discussed in this section. First, ID is compared with Tree structures and thereby 
terminology of trees is applied to ID. Secondly tree traversal techniques are defined. 
Thirdly a brief review on the notation used to develop ID as an SD model is 
presented. This forms foundations to the design of the algorithm to traverse ID. 

3.1 Comparing Trees and Influence Diagrams 
Traversing is a process by which every node or edge in the network is traced for a 
purpose. Traversal is commonly applied to graphs and trees. Graphs are diagrammatic 
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notations used to represent a network while trees are data structures used in 
computing to store data in a meaningful way (Carrano, 2007).  Graphs needs to be 
stored using an appropriate data structure. Feedback loops are the candidate features 
of ID, which are not present in trees. Therefore tree traversal concepts are thus applied 
to individual variables in ID rather than the whole of ID. Therefore traversing the tree 
of a variable would enable to find an equation for that variable and DA can be applied 
to determine the validity of the equation form. This is the fundamental idea behind 
applying tree traversal techniques.  
 
While the ID cannot be compared to the tree due to the absence of loops in the later, 
the following table contrasts trees with IDs 
 
Trees Influence Diagrams 
1. Root node is at the "top" of a tree – 

with 0, 1 or 2 children in a binary 
tree.  

2. Child nodes are the branches of trees  
3. Trees have arrows outbound arrows 
4. In a tree, child nodes branch out from 

the parent node 
5. In trees, arrows are unsigned and non-

directional  
6. Loops do not exist 
 

1. Root node is a variable being 
influenced by other variables  

2. Child nodes are the influencing 
variables that are connected to the 
variable of interest  

3. A variable in an influence diagram  
has inbound arrows 

4. Child nodes flow into the parent node 
5. Arrows are signed and carry 

information about the child and the 
parent nodes 

6. Loops are present 
 

Table 1: Comparison of Trees with Influence Diagrams 
 
Traversals of a Binary tree: There are different types of trees such as general tree 
and binary tree. In this current algorithm design binary tree traversals are considered. 
If the root node in the tree has less than or just two child nodes then the tree is a 
binary tree. Moving along the tree involves following a prescribed movement. This is 
formally called as tree traversal. For example to move along the binary tree, the 
traversal starts at root node and visits all the nodes on the left sub-tree and visits all 
the nodes on the right sub-tree. Three types of tree traversals used to move along the 
tree: Pre-Order Traversal, In-order traversal, Post Order Traversal.  
 
Pre-Order Traversal: In this type of traversal, root node is first visited and branches 
out to visit left sub-tree and then completes with visiting right sub-tree.  
 
In-order Traversal: Visits all the nodes on the left sub-tree, then visits root node and 
then finishes with visiting right sub-tree. 
 
Post-Order Traversal: Left sub-tree is visited first in this traversal. Following this, all 
the nodes on the right sub-tree and finally visits the root node.  
 
There are specific uses of these individual traversals. A much broader discussion on 
the traversals is beyond the scope of this paper. They are mentioned briefly here so as 
to state meaningfully that in-order traversal is chosen to use in the algorithm.  
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Notation used for drawing Influence Diagrams: When developing an ID it is 
necessary to follow the framework proposed by Coyle (1996). IDs use two types of 
arrows: solid lines and dotted lines. Solid lines represent physical flows while dotted 
lines represent information flows.  IDs use three types of variables: level, rates or 
auxiliary and parameters or constants. A node with no inbound arrows is a parameter.  
If node has incoming arrows then the node represents a level/ rate or auxiliary 
variable.  
 
 
 
 
 
 
Figure 2: Sample Influence Diagram 

 
 
In the above diagram, variable ‘b’ has two incoming arrows. Since they are solid lines 
they represent physical flows. The arrow from starting from ‘c’ has a negative sign 
and the arrow from ‘a’ has a positive sign.  An important point to note is here, is to 
define the type of variable. Level variable has rates as input and outputs. The 
difference of these input and output rates determine the value of the level variable, 
where the variable is purely a physical quantity. There is a second type of level 
variable that is a computed or an average of rates, and represents information 
accumulation in the system.  
 
In SD for each of these types of variables has a standard form of equation. Therefore, 
tree templates for these types of variables are designed. These templates can be used 
in context of teaching or applying the algorithm to an ID.  

3.2 Design of Algorithm   

A number of models (influence diagrams) from (Coyle, 1996) are analysed and the 
following inferences are made.  
 
Polarity of the incoming arrow signifies the direction of its influence on the other 
variable it is connected to.  
 
In addition to DA, polarities of incoming variables help determine the type of 
algebraic operator to be used in the expression. 
 

 If the polarities of the incoming variables are the same then the equation will 
consists of either addition or multiplication of these variables.  

 
 If the polarities are opposite then the equation will consist of division or 

subtraction of the variables depending on the dimensions of the variables. 
 
Steps involved in the “Tree Analysis of ID Algorithm” - TAIDA 
 
Step 1: Consider each variable as a parent node. 
Step 2: Identify Child nodes which are linked to the incoming arrows 

a b c 

d 

+ - 
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Step 3: Save the variable as Tree using the templates provided depending on the type 
of the variable.  
Step 4: Carryout In-Order tree traversal to generate the equation 
Step 5: Apply DA to validate the equation  

3.3  Applying the Algorithm to Influence Diagram  
In order to apply the algorithm described below it is important to define parent node 
and child nodes of a variable. ID has three important types of variables: Level, Rate or 
Auxiliary and Parameters. As the diagram is drawn, modeller is required to specify, 
name, units and type of variable.  
 
This algorithm is applied to the following diagram for illustration purposes. This ID 
represents a qualitative SD model taken from Coyle (1996). 

 
 

Figure 3: Model taken from (Coyle,1996)

Inventory of 
Parts 
INV 

Production Rate 
PR 

Backlog 
Elimination Time 

TEBLOG  

Parts 
Manufacturing 

Backlog 
PMBLOG 

Rate of Ordering 
New Parts 

RONP 

Inventory 
Correction 

Time 
TCI 

Desired 
Inventory  

DINV 

Weeks of Cover 
Required in 
Inventory  
TTCAS 

Average 
Consumption 

Rate  
AVCON 

Inventory 
Discrepancy  

INVDIS 

Consumption 
Averaging 

Period 
TAC 

Consumption 
Rate 

CONSR  

+ 

+ 

+ 

- 

+ 

+ 

- 

+ 

+ 

- 

+ 



Page 10 of 19 

Before applying the algorithm it is important to define the dimensions for each 
variable. Table 2 outlines the definitions of variables. 
 
Variable Type Dimensions 
Average Consumption Rate  
(AVCON) 

Level [Parts]/[Time] 

Consumption Rate: (CONSR ) Rate [Parts]/[Time] 
Desired Inventory:  (DINV) Auxiliary [Parts] 
Inventory of Parts: (INV) Level [Parts] 
Inventory Discrepancy: (INVDIS) Auxiliary [Parts] 
Production Rate: (PR) Rate [Parts]/[Time] 
Parts Manufacturing Backlog: 
(PMBLOG) 

Level [Parts] 

Rate of Ordering New Parts: 
(RONP) 

Rate [Parts]/[Time] 

Consumption Averaging Period: 
(TAC) 

Parameter [Time] 

Inventory Correction 
Time: (TCI) 

Parameter [Time] 

Backlog Elimination Time 
[TEBLOG ] 

Parameter [Time] 

Weeks of Cover Required in 
Inventory [TTCAS] 

Parameter [Time] 

Table 2: Variable Definitions 
 
The following is an illustration for one Variable RNOP. A segment of the ID is shown 
separately (in Figure 6) to show the how the algorithm is applied.  
 
Step1: RNOP is rate variable 
Step2: Child nodes for RNOP are linked to the incoming arrows which are, AVCON, 
INVDIS and TCI 
Step 3: Rate Tree Template is used to produce tree for RNOP (Figure 5) 
Step 4: By applying In-order traversal an equation can be obtained. 
 
In-order traversal is carried by visiting left sub-tree, root node, and right sub-tree. 
This can be applied to the variable tree developed for RNOP. This tree is shown in the 
“Diagram 3”. When In-order traversal is applied the following equation is obtained:  
 
RNOP = AVCON (+, -, *,/) INVDIS (+, -, *,/) TCI 
 
Step 5: DA is applied to decide which arithmetic operator occupies parent node at 
level 1 and 2 of the tree.  
 
When DA is applied to the above tree, the following equation would be derived. 
RNOP = AVCON + INVDIS /TCI 
 
Above sequence of steps can be applied until all the level, rate and auxiliary variables 
are covered. 
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Complete Set of equations obtained by applying the TAIDA 
 

TACDTRONPCONSRAVCONAVCON
TTCASAVCONDINV
INVDINVINVDIS

AVCONTCIINVDISRNOP
DTPRRNOPPMBLOGPMBLOG

TEBLOGPMBLOGPR
DTCONSRPRINVINV

/*)(
*

/
*)(

/
*)(

−+=
=

−=
+=

−+=
=

−+=

 

4 Analysis of Algorithm and Insights  
 
The algorithm is applied to the above diagram with three scenarios as stated below.  
 
Scenario 1: All variables and influences defined correctly.   
 
Scenario 2: Incorrect types of influences and correct dimensions for the variable 
INVDIS to RNOP;        
 
Scenario 3: Missing variable for RNOP.       
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Complete Set of equations obtained for Scenario 1 by applying the TAIDA  
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Complete Set of equations obtained for Scenario 2 by applying the TAIDA  
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Insights obtained Scenario 2: If both the polarities are positive then the arithmetic 
operator on the Right Hand Side(RHS) of equation would be either ‘+’ or ‘*’. On the 
other hand if the polarities of both the incoming arrows are negative, then the 
arithmetic operator of RHS of equation will have either “-“or “/”. This principle 
works for the rate variables: PR and RNOP.  
 
Consider RNOP rate variable.  It has three incoming arrows from TCI, INVDIS, and 
AVCON. Therefore, RNOP is the root node and it has three sub nodes. Now by 
applying DA and using polarities of the variables the equation can be formulated as 
follows. 
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RNOP = (INVDIS/TCI) + AVCON 
 
However, if the user the makes a mistake and indicates that AVCON variable has a 
negative influence on RNOP then even though DA gives a positive results, the 
equation takes a different form as follows 
 
RNOP = (INVDIS / TCI) – AVCON 
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Complete Set of equations obtained for scenario 3 by applying TAIDA  
 

TACDTRONPCONSRAVCONAVCON
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Insights obtained Scenario 3: This scenario demonstrates the need to develop a 
software tool that works according to the algorithm and supplies possible forms of 
valid equations. The algorithm is applied to the diagram free hand and therefore, the 
researcher has not entered equation for RNOP. In ideal situation, DA part of the 
algorithm would suggest a valid variable type based on the dimensions. 
 
Limitations of the algorithm: This scenario 2 identifies that dimensional analysis 
cannot help or prevent the user from using incorrect use of influences on the variables. 
Dimensional analysis can help formulate equations however in order to ensure 
complete accuracy there must be another verification procedure to make sure that the 
type of influences are correctly identified.  
 

5 Conclusions and Recommendations  
 
In SD modelling, conceptualising is generally the most difficult phase of the process. 
Complexity involved at this stage of modelling is purely psychological in that the 
modeller and the people involved in the model building process have to define the 
boundaries of the system, identify leverage points, and identify dynamic feedback 
structures. This generates complex behaviour that can be difficult to comprehend 
giving rise to psychological complexity (Kalokota et al, 1993). In order to achieve 
success in this area, multi-paradigm methodologies are proposed (see Sec 2.3) such as 
adding Object Oriented features to SD modelling methodology. This study provides 
guidelines for conceptualising a system and developing OO modules for SD models, 
thereby contributing to the reduction of psychological complexity involved in 
modelling process.  
 
The paper presents a critical summary of verification and validation procedures used 
in SD. This summary identifies how DA is sidelined in the normal practice of SD 
model building. As mentioned in the previous sections, model behaviour based on 
incorrect forms of equations give rise to incorrect policy suggestions. This paper 
reinforces the importance of using DA and shows how DA can generate correct forms 
of equations and help develop a structurally valid model.  
 
Software implementation of the algorithm illustrates how this approach has by-passed 
some of the fundamental stages (i.e. writing equations) in the current model building 
process, representing a breakthrough in SD modelling practice. Future enhancements 
to the software can help engender error proof modelling. 
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So far there is no algorithm available to derive equations from diagrams. Significance 
of the approach discussed comes from the analysis of influence diagrams which have 
more precision than causal loop diagrams. The scope of this paper is limited in that 
the algorithm is not applied to every other form of diagram that is used in SD 
modelling. However the author believes the same generic algorithm can be extended 
to various other forms of diagrams such as Stock Flow Diagrams. Therefore, the 
originality of this approach lies in the algorithm developed to derive equations for 
variables in the influence diagrams. The anticipated change in modelling process will 
be evident from the software tool which implements this algorithm to generate 
equations from ID.  
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