
Page 1 of 19

Verifying Influence Diagrams using Dimensional Analysis

G W Komanapalli
London South Bank University

103 Borough Road
London – SE1 0AA

Phone: ++4420 7815 8239
Email: komanaga@lsbu.ac.uk

Abstract
Developing a valid model is of primary importance. Various verification and
validation procedures are used to establish confidence in the model output. To
establish confidence that a model produces right behaviour for right reasons it is
essential to ensure that the structure of model represents real world system. Amongst
the verification procedures employed, dimensional analysis is used to verify the
syntactical correctness of the equation. Despite of its significance, dimensional
analysis is one of the less prioritised procedures used during model building process.
Therefore lack of dimensional consistency raises serious doubts about the validity of
model behaviour.

The aim of this paper is to summarise various problems and difficulties identified in
System Dynamics (SD) modelling process and to suggest an alternative approach.
Firstly, this paper discusses various problems faced by beginners, which can lead to
errors in SD models. Secondly, discusses alternative approaches suggested by
researchers in SD. Thirdly this papers presents an approach to generate mathematical
model from Influence Diagrams. There are two principle benefits this approach can
offer: A software tool based on this approach, and improve SD modelling experience,
especially of those modellers who have limited mathematical experience so as to gain
benefits of quantitative SD modelling.

Key Words: System Dynamics, Model Building process, Verification and Validation,
Dimensional Analysis, Influence Diagrams.

Page 2 of 19

1. Introduction

The philosophy and theory behind SD modelling is intellectually inspiring and draws
people from various backgrounds who do not have prior experience in simulation
modelling. As the modelling process advances modellers are likely to encounter
difficulties in translating a qualitative model into a mathematical model of the system
(Homer, 2007). While popular debates on SD methodology surrounds
conceptualisation, model verification and validation procedures, beginners often have
difficulties with moving from a qualitative formulation to mathematical
implementation of the model. Due to a lack of expertise and experience, modellers
tend to make mistakes that can go unnoticed and later produce erroneous behaviour.

Ballico-Lay and Coyle (1984) discuss a variety of such issues that lead to hidden
errors in models. Simple errors like the omission of dimensions for physical quantities
(variables) in the model can lead to incorrect behaviour of the model. In fact if
variable dimensions are defined consistently this should lead to a verifiable
representation of the system. However, a range of software tools are currently used to
develop SD models and some allow the modeller to bypass dimensional analysis
completely. This can lead to an incoherent representation of the system if dimensional
errors exist which would result in the development of inappropriate policies for the
system in study. A valid SD model gives behaviour which will match with the real
world behaviour of the system (Barlas, 1989 & 1994), and for the behaviour of the
model to be valid, the structure of the model should be verified. The broad context of
this paper is to address the need for an approach which automatically generates a
structurally verified quantitative SD model and provide support for the modeller who
does not have mathematical expertise and experience in SD modelling.

This paper presents a novel approach to developing SD models that would effectively
guide the modeller and improve the modelling process for those who do not have the
required mathematical experience to develop a quantitative model. This will be
accomplished by a fundamental revision of the sequence of events that occur in
current practice and by automating the creation of the required equations directly from
the influence diagrams and from the rigorous definitions of the variables. This is a
significant new development in SD methodology and has the potential to provide a
better modelling experience, and to save considerable time and cost in model
verification, reworking and fault finding.

2. Critical review of relevant literature

This section highlights some of the problems in SD modelling practice. SD
practitioners agree that a completely correct model has never been produced. It is
more important to develop a valid model that justifies the purpose of the model
(Sterman, 2000). Therefore the following sections present discussion on the
verification and validation procedures that are used in the SD modelling process to
highlight the weaknesses in carrying out these procedures.

Page 3 of 19

2.1 Confidence in the Model

SD community statistics according to Scholl (1993 & 1995) show that less than 30%
of SD modellers have a general understanding of mathematical methods. From this it
can be inferred that a majority of the modellers prefer to use SD as a tool for
developing qualitative models using system thinking concepts. There are justifiable
reasons why quantitative models are not developed, for example Coyle (2000b) and
Wolstenholme (1998) state that in some scenarios a qualitative model is sufficient to
address the objective of modelling project.

However, SD practitioners constantly emphasise that the strength of SD lies in its
simulation experiments (Homer et al, 2001). Therefore in scenarios involving the need
to quantify a model, modellers need to use mathematical methods. This is the
fundamental shift in SD modelling that requires substantial help for those who do not
have training or experience in mathematics. Lack of support at this stage can mean
that modellers gain limited benefits from SD modelling. There is a need to support
these modellers by enhancing the modelling process with an intelligent tool which
will guide the modeller towards a quantitative model. A powerful software tool might
not increase knowledge of SD, but it will improve the SD modelling experience for
those who have a non-mathematical or non-engineering background. An important
issue in modelling a system is to build a valid model which implements a correct
structure and gives correct behaviour. It is very critical to ensure that such an
intelligent tool provides support in producing a valid model.

Forrester and Senge (1980) relate confidence in the model to the purpose of the
model. Many abstractions of a system can be developed and each serves a different
purpose (Sterman, 2000). An output graph of selected variables is no guarantee of
validity, as an endless variety of invalid components (equation forms) can exist to
give the same apparent system behaviour. Forrester, (1961) and Coyle (1977,1996&
2000a) place emphasis on the model equations being dimensionally consistent and
that all the constants in a model must be clearly defined and their dimensions must be
stated. When the dimensional consistency is not maintained, the behaviour of the
model is, therefore, incorrect and conclusions drawn from its outputs may be
misleading. Thus, policy advice based on the model may be highly erroneous.
Barlas(1984) reinforces this by saying that an equation in the model represents a part
of the structure of the system and therefore a set of dimensionally consistent equations
can ensure a structurally verified model. Parameter verification tests also contribute to
ensuring that a variable represents part of the system. The literature on SD validation
and verification agrees that “the defence of a model must rest on the defence of its
details” (Forrester & Senge 1980). Dimensional errors are, therefore, a serious matter
which led to the development of the dimensional analyser, within the COSMIC
package, to detect and warn of dimensional errors (Ballico-Lay & Coyle, 1984). Some
other software environments now claim to support dimensional analysis (DA) but
doubts exist about the correctness of their algorithms (Coyle, 1996).

Balci (1995) defines model verification as the process of translating the model from
one form to another while maintaining the original purpose of the model. Therefore
when developing a quantified model, it is important to ensure that the two
representations, both qualitative SD model and quantitative SD model are compatible.

Page 4 of 19

This emphasises that the relationships between variables have to be dimensionally
compatible. However, in current SD practice, DA is rarely applied (Scholl, 1993).
This raises questions over the validity of the models developed. This paper also
discusses appropriateness of using DA in ensuring that the correct models are
developed.

2.2 Errors in models and correction through Dimensional Analysis

Dimensional analysis is a procedure often applied in physics, chemistry, and
engineering to understand physical situations involving a mix of different kinds of
quantities. In physics, dimensional analysis is used to validate the equations, and in
some instances, develop equations (Barragan et al, 2005). In principle, quantities with
the same dimensions can be added, subtracted or equated. An equation is said to be
dimensionally consistent if the dimensions of the variable on the left side of the
equation match the cumulative expressions on the right side of the equation.

Some of the errors occur due to poor modelling practice or a lack of modelling
experience. Errors that are commonly found in SD range from simple typing errors to
incomplete representations of the model which result in inconsistent dimensions,
scaling errors, missing time constraints, incorrect use of dimensionless quantities,
incorrect equation forms, incorrect use of numerical values etc.

Choudhari et al (1995) and Coyle (1996) discuss how conversion factors can
contribute to dimensional problems. For example, when modelling temperature
control in a room, in a conceptual description of the system, temperature of the room
is normally described in terms of heat in the room. This would mislead a novice
modeller to relate room temperature directly to the loss of heat or gain of heat. In
mathematical terms, heat in measured in Calories while temperature in measured in
Celsius or Fahrenheit. These types of inconsistencies can be trapped using DA.

Getmansky (1997) discusses how time constants are used to bring an equation to be
dimensionally valid but represent an incorrect representation of a system. A variable
is introduced into the equation which is not relevant in the system but is used to bring
dimensional consistency to the equation. This is also called a parameter verification
test. These types of mistakes can be avoided by applying DA. In this instance DA can
verify whether an equation is conceptually correct or not.

Martin (2001) & Stange(1998) identify various other types of errors with dimension
less quantities. In addition to these, the types of errors that could go unnoticed can be
found out with DA (Coyle & Sharp, 1980). DYSMAP is one of the earliest software
for developing SD models. A dimensional analyser unit in DYSMAP was effectively
developed. It proved to be effective in the model validation procedure (Coyle, 1983).

Cost benefit analysis: A cost/benefit analysis of applying verification and validation
procedures shows that verification procedures are of principle importance and next
only to structure oriented behavioural tests and structure assessment. The study also
shows that if DA is applied at the beginning of the modelling process, its benefits
would have been more evident that if its applied at the end of the modelling
process(Hoarfrost, Wakeland , 2005).
.

Page 5 of 19

In the light of difficulties and complexities involved in SD modelling, researchers in
SD modelling have proposed alternative model building process and methodologies,
which are explored in the following sections.

2.3 Alternative approaches

This section presents a review of two alternative approaches to SD modelling aiming
to increase the versatility of the model building process and SD methodology. Firstly
a matrix analysis of causal loop diagrams is presented and secondly a proposal to
extend System Dynamics methodology by using OO concepts is offered.

Analysing Influence Diagrams as Directed Graphs: Influence Diagrams can be
studied as graphs. Graphs contain vertices and edges that connect these vertices.
Influence Diagrams consists of variables and their influences. In order to apply graph
analysis principles to Influence Diagrams, the variables can be considered as vertices
of a graph and the influences as directed edges of a graph. One of the methods
employed to represent a directed graph is to develop an adjacency matrix of the graph.
For a graph with n nodes, an adjacency matrix is of size n x n. For directed graphs the
matrix element (a, b) is 1 if there is an edge from ‘a’ to ‘b’ or 0 if there is no edge
going from ‘a’ to ‘b.’ This is illustrated in figure1.

Figure 1: Matrix analysis of a graph

Burns (2001 & 2002) presented an enhanced version of this approach by applying Set
Theory principles and Matrix multiplication to structurally validate Causal Loop and
Stock Flow Diagrams.

This approach used dimensional analysis to validate the derived equation. Although
this is an interesting approach the use of matrix algebra is problematic both in terms
of computational efficiency and in the size of matrix generated. SD models may have
hundred of variables which can generate very large matrices. Therefore this approach
using matrix multiplication will be efficient if applied to small models. In this paper,
an alternative approach which uses these principles but that implements a different
type of data structure is described, which removes the constraints on the number of
variables that can be used.

Object Oriented Paradigm to SD: Myrtveit & Tignor (2000a & 200b) presents a
thought-provoking discussion on adding OO features to SD methodology. This
discussion proposes a conceptual leap in SD methodology and requires the modeller
to use OO tools to develop models and identify the patterns of behaviour of the

Page 6 of 19

system under study. The unique advantage of using this approach is that models can
be built by joining building blocks. It primarily requires the user to select the patterns
of the dynamic behaviour from the existing software library and link the building
blocks appropriately. This requires new measures for validating the links and
verifying that correct behaviour is produced through joining these various building
blocks of the system.

However, in building these generic behavioural structures of the system, the modeller
needs to think of the components of the system as objects and links. The primary
focus is on representing the structure of the system correctly. Structures and behaviour
are interdependent. Therefore, if structure is developed correctly then correct
behaviour can be obtained. When a modeller develops a model the focus is shifted
from “movement” or flow in the system to the “appearance” or state of the system.
There are benefits in this approach in that it starts from a high level conceptual
representation of the system and grows to add the smallest detail of the model.
Therefore it provides a rather less complicated process to develop the model, although
a modeller may find it difficult to adapt to the OO “programming” concepts.
However, the principle is to be able to obtain the patterns of the behaviour of various
systems and guide the modeller to join the building blocks to build a full model.

Thus this approach can be adopted to enhance and extend SD modelling methodology.
If the OO approach is implemented in a rather ingenious way in the software tool, it
can be used to generate and help verify an SD model and thereby enhance the SD
modelling process.

This paper therefore aims to present a revised approach to the SD modelling process
that adapts OO concepts at the implementation level while allowing the modeller to
formulate an SD model based on system thinking tools and qualitative models.

3. Analysing Influence Diagrams

One of the principle objectives of this paper is to analyse ID. Analysing an ID
involves walking through the diagram and recognising the connections between
variables. In order to implement this process as a programming module, an algorithm
is initially developed providing a guideline to analyse ID.

Analysing an ID involves walking through the diagram and recognising the
connections between variables. In order to implement this process as a programming
module, an algorithm is initially developed providing a guideline to analyse ID. Some
of the concepts that are used in designing the following algorithm to analyse ID are
discussed in this section. First, ID is compared with Tree structures and thereby
terminology of trees is applied to ID. Secondly tree traversal techniques are defined.
Thirdly a brief review on the notation used to develop ID as an SD model is
presented. This forms foundations to the design of the algorithm to traverse ID.

3.1 Comparing Trees and Influence Diagrams
Traversing is a process by which every node or edge in the network is traced for a
purpose. Traversal is commonly applied to graphs and trees. Graphs are diagrammatic

Page 7 of 19

notations used to represent a network while trees are data structures used in
computing to store data in a meaningful way (Carrano, 2007). Graphs needs to be
stored using an appropriate data structure. Feedback loops are the candidate features
of ID, which are not present in trees. Therefore tree traversal concepts are thus applied
to individual variables in ID rather than the whole of ID. Therefore traversing the tree
of a variable would enable to find an equation for that variable and DA can be applied
to determine the validity of the equation form. This is the fundamental idea behind
applying tree traversal techniques.

While the ID cannot be compared to the tree due to the absence of loops in the later,
the following table contrasts trees with IDs

Trees Influence Diagrams
1. Root node is at the "top" of a tree –

with 0, 1 or 2 children in a binary
tree.

2. Child nodes are the branches of trees
3. Trees have arrows outbound arrows
4. In a tree, child nodes branch out from

the parent node
5. In trees, arrows are unsigned and non-

directional
6. Loops do not exist

1. Root node is a variable being
influenced by other variables

2. Child nodes are the influencing
variables that are connected to the
variable of interest

3. A variable in an influence diagram
has inbound arrows

4. Child nodes flow into the parent node
5. Arrows are signed and carry

information about the child and the
parent nodes

6. Loops are present

Table 1: Comparison of Trees with Influence Diagrams

Traversals of a Binary tree: There are different types of trees such as general tree
and binary tree. In this current algorithm design binary tree traversals are considered.
If the root node in the tree has less than or just two child nodes then the tree is a
binary tree. Moving along the tree involves following a prescribed movement. This is
formally called as tree traversal. For example to move along the binary tree, the
traversal starts at root node and visits all the nodes on the left sub-tree and visits all
the nodes on the right sub-tree. Three types of tree traversals used to move along the
tree: Pre-Order Traversal, In-order traversal, Post Order Traversal.

Pre-Order Traversal: In this type of traversal, root node is first visited and branches
out to visit left sub-tree and then completes with visiting right sub-tree.

In-order Traversal: Visits all the nodes on the left sub-tree, then visits root node and
then finishes with visiting right sub-tree.

Post-Order Traversal: Left sub-tree is visited first in this traversal. Following this, all
the nodes on the right sub-tree and finally visits the root node.

There are specific uses of these individual traversals. A much broader discussion on
the traversals is beyond the scope of this paper. They are mentioned briefly here so as
to state meaningfully that in-order traversal is chosen to use in the algorithm.

Page 8 of 19

Notation used for drawing Influence Diagrams: When developing an ID it is
necessary to follow the framework proposed by Coyle (1996). IDs use two types of
arrows: solid lines and dotted lines. Solid lines represent physical flows while dotted
lines represent information flows. IDs use three types of variables: level, rates or
auxiliary and parameters or constants. A node with no inbound arrows is a parameter.
If node has incoming arrows then the node represents a level/ rate or auxiliary
variable.

Figure 2: Sample Influence Diagram

In the above diagram, variable ‘b’ has two incoming arrows. Since they are solid lines
they represent physical flows. The arrow from starting from ‘c’ has a negative sign
and the arrow from ‘a’ has a positive sign. An important point to note is here, is to
define the type of variable. Level variable has rates as input and outputs. The
difference of these input and output rates determine the value of the level variable,
where the variable is purely a physical quantity. There is a second type of level
variable that is a computed or an average of rates, and represents information
accumulation in the system.

In SD for each of these types of variables has a standard form of equation. Therefore,
tree templates for these types of variables are designed. These templates can be used
in context of teaching or applying the algorithm to an ID.

3.2 Design of Algorithm

A number of models (influence diagrams) from (Coyle, 1996) are analysed and the
following inferences are made.

Polarity of the incoming arrow signifies the direction of its influence on the other
variable it is connected to.

In addition to DA, polarities of incoming variables help determine the type of
algebraic operator to be used in the expression.

 If the polarities of the incoming variables are the same then the equation will
consists of either addition or multiplication of these variables.

 If the polarities are opposite then the equation will consist of division or

subtraction of the variables depending on the dimensions of the variables.

Steps involved in the “Tree Analysis of ID Algorithm” - TAIDA

Step 1: Consider each variable as a parent node.
Step 2: Identify Child nodes which are linked to the incoming arrows

a b c

d

+ -

Page 9 of 19

Step 3: Save the variable as Tree using the templates provided depending on the type
of the variable.
Step 4: Carryout In-Order tree traversal to generate the equation
Step 5: Apply DA to validate the equation

3.3 Applying the Algorithm to Influence Diagram
In order to apply the algorithm described below it is important to define parent node
and child nodes of a variable. ID has three important types of variables: Level, Rate or
Auxiliary and Parameters. As the diagram is drawn, modeller is required to specify,
name, units and type of variable.

This algorithm is applied to the following diagram for illustration purposes. This ID
represents a qualitative SD model taken from Coyle (1996).

Figure 3: Model taken from (Coyle,1996)

Inventory of
Parts
INV

Production Rate
PR

Backlog
Elimination Time

TEBLOG

Parts
Manufacturing

Backlog
PMBLOG

Rate of Ordering
New Parts

RONP

Inventory
Correction

Time
TCI

Desired
Inventory

DINV

Weeks of Cover
Required in
Inventory
TTCAS

Average
Consumption

Rate
AVCON

Inventory
Discrepancy

INVDIS

Consumption
Averaging

Period
TAC

Consumption
Rate

CONSR

+

+

+

-

+

+

-

+

+

-

+

Page 10 of 19

Before applying the algorithm it is important to define the dimensions for each
variable. Table 2 outlines the definitions of variables.

Variable Type Dimensions
Average Consumption Rate
(AVCON)

Level [Parts]/[Time]

Consumption Rate: (CONSR) Rate [Parts]/[Time]
Desired Inventory: (DINV) Auxiliary [Parts]
Inventory of Parts: (INV) Level [Parts]
Inventory Discrepancy: (INVDIS) Auxiliary [Parts]
Production Rate: (PR) Rate [Parts]/[Time]
Parts Manufacturing Backlog:
(PMBLOG)

Level [Parts]

Rate of Ordering New Parts:
(RONP)

Rate [Parts]/[Time]

Consumption Averaging Period:
(TAC)

Parameter [Time]

Inventory Correction
Time: (TCI)

Parameter [Time]

Backlog Elimination Time
[TEBLOG]

Parameter [Time]

Weeks of Cover Required in
Inventory [TTCAS]

Parameter [Time]

Table 2: Variable Definitions

The following is an illustration for one Variable RNOP. A segment of the ID is shown
separately (in Figure 6) to show the how the algorithm is applied.

Step1: RNOP is rate variable
Step2: Child nodes for RNOP are linked to the incoming arrows which are, AVCON,
INVDIS and TCI
Step 3: Rate Tree Template is used to produce tree for RNOP (Figure 5)
Step 4: By applying In-order traversal an equation can be obtained.

In-order traversal is carried by visiting left sub-tree, root node, and right sub-tree.
This can be applied to the variable tree developed for RNOP. This tree is shown in the
“Diagram 3”. When In-order traversal is applied the following equation is obtained:

RNOP = AVCON (+, -, *,/) INVDIS (+, -, *,/) TCI

Step 5: DA is applied to decide which arithmetic operator occupies parent node at
level 1 and 2 of the tree.

When DA is applied to the above tree, the following equation would be derived.
RNOP = AVCON + INVDIS /TCI

Above sequence of steps can be applied until all the level, rate and auxiliary variables
are covered.

Page 11 of 19

Rate of
Ordering New

Parts
RNOP

Inventory
Discrepancy

INVDIS

+

+

-

+

Average
Consumption

Rate
AVCON

Inventory
Correction

Time
TCI

Figure 6: ID for Rate Variables
RNOP

=

v1 +,-*,/-

v2 v3

=

v1 +,-*,/-

v2
+,-,*,/

v3 v4

Figure 4: Standard Tree Templates for Rate Equations

=

RNOP +,-,*,/

AVCON
+,-,*,/

INVDIS TCI

Level 0

Level 1

Level 2

=

Parts / Time

+

Parts/Time

/

Time
Parts

Figure 7: Dimensional Equation
Tree for RNOP

3-variable tree

4 - variable tree

Figure 5:
Rate Equation Tree for RNOP

Page 12 of 19

Complete Set of equations obtained by applying the TAIDA

TACDTRONPCONSRAVCONAVCON
TTCASAVCONDINV
INVDINVINVDIS

AVCONTCIINVDISRNOP
DTPRRNOPPMBLOGPMBLOG

TEBLOGPMBLOGPR
DTCONSRPRINVINV

/*)(
*

/
*)(

/
*)(

−+=
=

−=
+=

−+=
=

−+=

4 Analysis of Algorithm and Insights

The algorithm is applied to the above diagram with three scenarios as stated below.

Scenario 1: All variables and influences defined correctly.

Scenario 2: Incorrect types of influences and correct dimensions for the variable
INVDIS to RNOP;

Scenario 3: Missing variable for RNOP.

Page 13 of 19

Complete Set of equations obtained for Scenario 1 by applying the TAIDA

TACDTRONPCONSRAVCONAVCON
TTCASAVCONDINV
INVDINVINVDIS

AVCONTCIINVDISRNOP
DTPRRNOPPMBLOGPMBLOG

TEBLOGPMBLOGPR
DTCONSRPRINVINV

/*)(
*

/
*)(

/
*)(

−+=
=

−=
+=

−+=
=

−+=

Inventory of
Parts
INV

Production Rate
PR

Backlog
Elimination Time

TEBLOG

Parts
Manufacturing

Backlog
PMBLOG

Rate of Ordering
New Parts

RONP

Inventory
Correction

Time
TCI

Desired
Inventory

DINV

Weeks of Cover
Required in
Inventory
TTCAS

Average
Consumption

Rate
AVCON

Inventory
Discrepancy

INVDIS

Consumption
Averaging

Period
TAC

Consumption
Rate

CONSR

+

+

+

-

+

+

-

+

+

-

+

Scenario 1

Page 14 of 19

Complete Set of equations obtained for Scenario 2 by applying the TAIDA

TACDTRONPCONSRAVCONAVCON
TTCASAVCONDINV
INVDINVINVDIS

TCIINVDISAVCONRNOP
DTPRRNOPPMBLOGPMBLOG

TEBLOGPMBLOGPR
DTCONSRPRINVINV

/*)(
*

/
*)(

/
*)(

−+=
=

−=
−=

−+=
=

−+=

Insights obtained Scenario 2: If both the polarities are positive then the arithmetic
operator on the Right Hand Side(RHS) of equation would be either ‘+’ or ‘*’. On the
other hand if the polarities of both the incoming arrows are negative, then the
arithmetic operator of RHS of equation will have either “-“or “/”. This principle
works for the rate variables: PR and RNOP.

Consider RNOP rate variable. It has three incoming arrows from TCI, INVDIS, and
AVCON. Therefore, RNOP is the root node and it has three sub nodes. Now by
applying DA and using polarities of the variables the equation can be formulated as
follows.

Inventory of
Parts
INV

Production Rate
PR

Backlog
Elimination Time

TEBLOG

Parts
Manufacturing

Backlog
PMBLOG

Rate of Ordering
New Parts

RONP

Inventory
Correction

Time
TCI

Desired
Inventory

DINV

Weeks of Cover
Required in
Inventory
TTCAS

Average
Consumption

Rate
AVCON

Inventory
Discrepancy

INVDIS

Consumption
Averaging

Period
TAC

Consumption
Rate

CONSR

+

+

-

-

+

+

-

+

+

-

+

Scenario 2

Page 15 of 19

RNOP = (INVDIS/TCI) + AVCON

However, if the user the makes a mistake and indicates that AVCON variable has a
negative influence on RNOP then even though DA gives a positive results, the
equation takes a different form as follows

RNOP = (INVDIS / TCI) – AVCON

Inventory of
Parts
INV

Production Rate
PR

Backlog
Elimination Time

TEBLOG

Parts
Manufacturing

Backlog
PMBLOG

Rate of Ordering
New Parts

RONP

Desired
Inventory

DINV

Weeks of Cover
Required in
Inventory
TTCAS

Average
Consumption

Rate
AVCON

Inventory
Discrepancy

INVDIS

Consumption
Averaging

Period
TAC

Consumption
Rate

CONSR

+

+

+

-

+

+

-

+

+

-

+

Scenario 3

Page 16 of 19

Complete Set of equations obtained for scenario 3 by applying TAIDA

TACDTRONPCONSRAVCONAVCON
TTCASAVCONDINV
INVDINVINVDIS

errorRNOP
DTPRRNOPPMBLOGPMBLOG

TEBLOGPMBLOGPR
DTCONSRPRINVINV

/*)(
*

*)(
/

*)(

−+=
=

−=
=

−+=
=

−+=

Insights obtained Scenario 3: This scenario demonstrates the need to develop a
software tool that works according to the algorithm and supplies possible forms of
valid equations. The algorithm is applied to the diagram free hand and therefore, the
researcher has not entered equation for RNOP. In ideal situation, DA part of the
algorithm would suggest a valid variable type based on the dimensions.

Limitations of the algorithm: This scenario 2 identifies that dimensional analysis
cannot help or prevent the user from using incorrect use of influences on the variables.
Dimensional analysis can help formulate equations however in order to ensure
complete accuracy there must be another verification procedure to make sure that the
type of influences are correctly identified.

5 Conclusions and Recommendations

In SD modelling, conceptualising is generally the most difficult phase of the process.
Complexity involved at this stage of modelling is purely psychological in that the
modeller and the people involved in the model building process have to define the
boundaries of the system, identify leverage points, and identify dynamic feedback
structures. This generates complex behaviour that can be difficult to comprehend
giving rise to psychological complexity (Kalokota et al, 1993). In order to achieve
success in this area, multi-paradigm methodologies are proposed (see Sec 2.3) such as
adding Object Oriented features to SD modelling methodology. This study provides
guidelines for conceptualising a system and developing OO modules for SD models,
thereby contributing to the reduction of psychological complexity involved in
modelling process.

The paper presents a critical summary of verification and validation procedures used
in SD. This summary identifies how DA is sidelined in the normal practice of SD
model building. As mentioned in the previous sections, model behaviour based on
incorrect forms of equations give rise to incorrect policy suggestions. This paper
reinforces the importance of using DA and shows how DA can generate correct forms
of equations and help develop a structurally valid model.

Software implementation of the algorithm illustrates how this approach has by-passed
some of the fundamental stages (i.e. writing equations) in the current model building
process, representing a breakthrough in SD modelling practice. Future enhancements
to the software can help engender error proof modelling.

Page 17 of 19

So far there is no algorithm available to derive equations from diagrams. Significance
of the approach discussed comes from the analysis of influence diagrams which have
more precision than causal loop diagrams. The scope of this paper is limited in that
the algorithm is not applied to every other form of diagram that is used in SD
modelling. However the author believes the same generic algorithm can be extended
to various other forms of diagrams such as Stock Flow Diagrams. Therefore, the
originality of this approach lies in the algorithm developed to derive equations for
variables in the influence diagrams. The anticipated change in modelling process will
be evident from the software tool which implements this algorithm to generate
equations from ID.

References

Balci O., 1995. Principles and techniques of simulation validation, verification, and
testing. Proceedings of the 27th conference on Winter simulation, p147 – 154.

Ballico_Lay B and Coyle R G., 1984. Concepts and software for dimensional analysis
in modelling. IEEE Transactions on Systems, Man and Cybernetics 14(3).

Barlas Y., 1989. Multiple Tests for Validation of System Dynamics Type of
Simulation Models. European Journal of Operations Research 42(1), pp. 59-87.

Barlas, Y., 1996. Formal Aspects of model validity and validation in system
dynamics. System Dynamics Review 12 (3), 183–210.

Barragan J, Puig-Bargues J., Ramirez de Cartagena F., 2005. Development of
Equations for calculating the Head Loss in effluent Filtration in Micro irrigation
Systems using Dimensional Analysis, Biosystems Engineering 92(3), 383-390.

Bell G., Warwick J., 2006. Towards establishing the use of holons as an enquiry
method. International Transactions in Operational Research 14(1), p 55 – 73.

Burns J.R., 2001. Structural Validation of Causal Loop Diagrams. Proceedings of the
System Dynamics Society 19th Annual Conference.

Burns J.R., Ulgen.,2002. A Matrix Architecture for Development of System
Dynamics Models. Proceedings of the System Dynamics Society 20th Conference.

Buckingham E., 1914. On physical systems. Illustration of the use of dimensional
equations. Physics Review, 4(4).

Choudhari M., Gary M S., Glick M., Oh A., 1995. Mistakes and Misunderstandings:
Examining Dimensional Inconsistency, D-4452-1

Carrano F M., 2007. Data Structures and Abstractions with Java. Pearson Prentice
Education.

Coyle R.G., 1977. Management System Dynamics. John Wiley & Sons.

Page 18 of 19

Coyle R.G., Sharp J.A., 1980. System Dynamics Problems. University of Bradford
Printer.

Coyle R.G., 1983. The technical elements of the system dynamics approach.
European Journal of Operational Research Vol. 14,

Coyle R G., 1996. System Dynamics Modelling: A Practical Approach. CRC Press.

Coyle R.G., 1998., The practice of system dynamics: milestones, lessons and ideas
from 30 years experience. System Dynamics Review 14(4).

Coyle R.G., Exelby D.,2000a. The validation of commercial system dynamics models.
System Dynamics Review 16(1).

Coyle, R. G., 2000b. Qualitative and quantitative modelling in system dynamics:
some research questions. System Dynamics Review 16(3).

Easterbrook S., Damian D., Singer J., Storey M., 2008. Guide to Advanced Empirical
Software Engineering. Springer

Forrester J.W., 1961. Industrial Dynamics. Cambridge, MA: MIT Press.

Getmansky M., 1997. Mistakes and Misunderstandings: Time Constants and Decay
Fractions. D-4679

Hoarfrost M., Wakeland W., 2005. The case for thoroughly testing complex system
dynamics models. The 23rd International Conference of The System Dynamics
Society, Boston, USA.

Homer J., Oliva R., 2001. Maps and models in system dynamics: a response to Coyle,
System Dynamics Review 17(4).

Homer J., 2007. Reply to Jay Forrester's System dynamics - the next fifty years.
System Dynamics Review 23(4).

Kalakota R., Rathnam S., Whinston A.B., 1993. The role of complexity in object-
oriented systems development. Proceeding of the Twenty-Sixth Hawaii International
Conference on System Sciences 4, p759-768

Martin M A., 2001. Mistakes and Misunderstandings: Table Functions. D-4679.

Myrtveit M., 2000a. Object Oriented Extensions to System Dynamics. Conference
Proceedings of the 18th International Conference of the System Dynamics Society,
Bergen, Norway.

Myrtveit M., Tignor W., 2000b. Object Oriented Design Patterns and System
Dynamics Components. Conference Proceedings of the 18th International Conference
of the System Dinamics Society, Bergen, Norway.

Page 19 of 19

Scholl, G J., 1995. Benchmarking the System Dynamics Community: Research
Results. System Dynamics Review 11(2),p139-155.

Panneerselvam, R., 2004. Research Methodology. Prentice-Hall of India

Senge, P. M., 1990. The Fifth Discipline: The Art and Practice of the Learning
Organization. New York: Currency Doubleday

Sargent R G., 1998. Verification and validation of simulation models. Proceedings of
the Winter Simulation Conference

Stange K A., 1998. Mistakes and Misunderstandings: Hidden Time Constants and
Growth Fractions. D-4768

Wolstenholme E. F., 1999. Qualitative vs. Quantitative Modelling: The Evolving
Balance. Journal of the Operational Research Society 50, 422–428.

