
 1

Appendix: Dynamics of Agile Software Development – Model Structure

This study was conducted within the context of a much broader research effort to

study, gain insight into, and make predictions about the dynamics of the entire software

development process. A major part of this effort was devoted to the development of a

comprehensive system dynamics computer model of software development. The original

model is currently being used in several research capacities. Through modeling and

simulation, the model is used to study/predict the dynamic behavior of the software

development process and of the implications of managerial policies and procedures

pertaining to the development of software. In our own research four areas have so far been

studied: (1) scheduling; (2) control; (3) quality assurance; and (4) staffing. The exercise

produced three kinds of results: uncovered dysfunctional consequences of some currently

adopted policies (e.g., in the scheduling area); provided guidelines for managerial policy

(e.g., on the allocation of the quality assurance effort); and provided new insights into

software project phenomena (e.g., Brooks' Law).

In addition, the model is being used as an “experimentation microworld” to study

dynamic decision making behavior in the software management domain, e.g., project

planning and control (Abdel-Hamid et al, 1993), and the impact of feedback (Sengupta and

Abdel-Hamid, 1993), unreliable information (Sengupta and Abdel-Hamid, 1996), and reward

structures (Abdel-Hamid, Sengupta, and Hardebeck, 1994) on performance.

The model was developed on the basis of field interviews of software project

managers in five organizations, complemented by an extensive database of empirical findings

from the literature. The model integrates the multiple functions of the software development

process, including both the management-type functions (e.g., planning, controlling, and

staffing) as well as the software production-type activities (e.g., designing, coding, reviewing,

and testing).

 2

Figure A shows a high-level view of the model's four subsystems: human-resource

management, software production, control, and planning, and some of the relations between

them. The actual model is very detailed and contains more than 100 causal links; a full

description of the model’s structure and its mathematical formulation is published in (Abdel-

Hamid and Madnick 1991).

Human-resource management

This subsystem captures the hiring, assimilation, and transfer of people. We segregate the

project's work force into employee types (newly hired and experienced, for example). We

make this distinction because new team members are usually less productive than veterans.

This segregation also lets us capture the training process to assimilate new members. The

veterans usually train the newcomers, both technically and socially. This is important,

because this training can significantly affect a project's progress by reducing the veteran's

productivity. Team members are allowed to quit the project, either because of “normal

attrition” or because they are exhausted by working overtime for too long (caused by

schedule pressure). The quit rate is defined below.

- Quit rate = (Experienced Workforce / average employment time) * multiplier due to

exhaustion

- Average employment time = 700 days

- Multiplier due to exhaustion =

GRAPH(Exhaustion,0,5,{1,1,1,1.05,1.10,1.15,1.3,1.5,1.75,2.3,3.8,4.8,6,7.4,9})

- Hiring rate = workforce to replace / hiring delay

- Workforce to replace = initial workforce – (newly hired workforce + experienced

workforce)

- Initial workforce = 4.9 employees

 3

- Hiring delay = 40 days

In the model of Abdel-Hamid and Madnick experience is not explicitly modeled.

Newly hired and experienced employees have a nominal potential productivity (of

respectively 0.5 and 1 tasks/person/day). This potential productivity does not gradually

increase when new employees are trained and gain more experience, as we would expect in

real-life. Therefore, we included an “Experience” stock in the model. This level of experience

is at the start of a new project or part of a project relatively low. Each new team member

brings some experience to the team. But because this experience is lower than the currently

average experience of the team, bringing in a new team member, decreases the average team

experience. Experience decreases when team members quit the team, and it increases each

day the team works on a development task. When an iteration is finished, a project part is

closed and the team starts with a new part or iteration. At the start of this new iteration, the

experience with respect to the new part that needs to be developed is low. Therefore, each

time the team starts with a new iteration, the level of experience drops, after which it

gradually increases with each day the team develops tasks. It is assumed that this drop in

experience is equal to 50% of the experience that was gained during the process of

developing the part. The average experience of the team determines the productivity of the

team via the learning curve (see also pp. 338 of Sterman, 2000). Experience is measured in

working days.

- (d/dt) Experience of Employees = increase of experience by hiring + increase of

experience by learning – decrease of experience by attrition – experience decay rate

- Initial experience of employees = initial team size * reference experience of

employees

- Reference experience of employees = 1.5 working year

 4

- Increase of experience by hiring = hiring rate * average experience of new hires

- Average experience of new hires = 0.2 working year

- Increase of experience by learning = daily manpower available after training overhead

- Decrease of experience by attrition = average experience of team * quit rate

- Experience decay rate = 0.5 * initial person-days in product (only after a review)

- Average experience of team = Experience of Employees / total workforce

Figure A: Model of Software Project Management

Software Production

This subsystem models development; it does not include the operation and maintenance

phases. The development phases included are designing, coding, and testing. As software is

 5

developed, it is reviewed to detect any defects e.g., using quality assurance activities such as

structured walkthroughs. Errors detected through such activities are reworked. Not all

software defects are detected during development, however; some escape detection until the

testing phase. The software production subsystem models productivity and its determinants in

great detail. Productivity is defined as potential productivity (due to learning) minus the loss

from faulty processes. Potential productivity due to learning is the maximum level of

productivity that can occur when an individual or group makes the best possible use of its

resources, and is a function of the average level of experience of the team. Losses from faulty

processes are losses in productivity from factors such as communication and coordination

overhead and low motivation.

- Productivity of employees due to learning = nominal productivity of employees *

(average experience of team / reference experience of employees)^exponent

learning curve

- Exponent learning curve = LN(1+strength of learning curve)/LN(2)

- Strength of learning curve = 0.25

- Nominal productivity of employees = 0.8 tasks/day/employee

- Software development productivity = productivity of employees due to learning *

multiplier due to communication losses and motivation

Control Subsystem

As progress is made, it is reported. A comparison of the degree of project progress to

the planned schedule is captured within the control subsystem. In all organizations, decisions

are based on the information available to the decision maker. Often, this information is

inaccurate. Apparent conditions may be far removed from those actually encountered,

depending on information flow, time lag, and distortion. Progress rate is a good example of a

 6

variable that is difficult to assess during the project. Because software is basically an

intangible product during most of the development, it is difficult to measure things like

programming performance and intermediate work. In the earlier phases of development,

progress is typically measured by the rate of resource expenditure rather than

accomplishments. But as the project advances towards its final stages, though, work

accomplishments become relatively more visible and project members better perceive how

productive the work force has actually been.

Planning subsystem

In the Planning Subsystem, project estimates are made and revised as the project

progresses. For example, when a project is behind schedule, the plan may be revised to hire

more people, extend the schedule, or both. By dividing the value of person-days remaining at

any point in the project by the time remaining, a manager can determine the indicated work

force level, which is the work force needed to complete the project on time. However, hiring

decisions are not made solely on the basis of scheduling requirements. Managers also

consider training requirements and the stability of the work force. Thus, before adding new

project members, management assesses the project employment time for the new members.

In general, the relative weighting between the desire for work force stability and the desire to

complete the project on time is not static; it changes throughout the project's life. Although

management determines the work-force level needed to complete the project, this level does

not necessarily translate into the actual hiring goal. The hiring goal is constrained by the

ceiling on new hires. This ceiling represents the highest work force-level management

believes can be adequately handled by its experienced project members. Thus, three factors -

scheduled completion time, work-force stability, and training requirements - affect the work-

force level.

 7

Model Validation

The model was developed on the basis of field interviews of software project

managers in five organizations, complemented by an extensive database of empirical findings

from the literature. The following sets of tests were conducted to validate the model:

- Face validity test. To test the fit between the rate/level/feedback structure of the

model and the essential characteristics of real project environments. This fit was

confirmed by the software project managers involved in the study.

- Replication of reference modes. To test whether the model can endogenously

reproduce the various reference behavior modes characterizing real environments.

Reference modes reproduced by the model included a diverse set of behavior patterns

both observed in the organizations studied as well as reported in the literature (e.g.,

the “90% syndrome”, diminishing returns of QA effort, the deadline effect, etc.).

- Case studies. Five case studies were conducted after the model was completely

developed1. All case studies were conducted in organizations other than the five

organizations studied during model development.

References

Abdel-Hamid, Tarek K., and Stuart E. Madnick. 1991. Software Project Dynamics – an

integrated approach. Prentice Hall, Englewood Cliffs, New Jersey.

Abdel-Hamid, Tarek K., Kishore Sengupta, and Daniel Ronan. 1993. Software Project

Control: An Experimental Investigation of Judgment with Fallible Information. IEEE

Transactions on Software Engineering. 19:6:603-612.

Abdel-Hamid, Tarek K., Kishore Sengupta, and Michael J. Hardebeck. 1994. The Effect of

Reward Structures on Allocating Shared Staff Resources Among Interdependent Software

1 Two case studies are reported in Abdel-Hamid and Madnick (1991) and Abdel-Hamid (1993). Case studies
were conducted independently at Bellcore (Glickman and Kopcho 1995), Mitre (Powell 1987), and Bell
Laboratories (not published).

 8

Projects: An Experimental Investigation. IEEE Transactions on Engineering

Management. 41:2:115-125.

Glickman, S. and J. Kopcho. 1995. Bellcore’s Experiences Using Abdel-Hamid’s Systems

Dynamics Model. COCOMO Conference. Pittsburgh, PA, Software Engineering Institute,

Carnegie Mellon University.

Powell, F.D. 1987. Study of a Software Development Process Dynamic Model. Technical

Report MTR 10314, Mitre Corporation, December.

Sengupta, Kishore, and Tarek K. Abdel-Hamid. 1993. Alternative conceptions of Feedback in

Dynamic Decision Environments: An Experimental Investigation. Management Science.

39:411-428.

Sengupta, Kishore, and Tarek K. Abdel-Hamid. 1996. The Impact of Unreliable Information

on the Management of Software Projects: A Dynamic Decision Perspective. IEEE

Transactions on Systems, Man, and Cybernetics. 26:177-189.

Sterman, John D. 2000. Business Dynamics - Systems Thinking and Modeling for a Complex

World, Boston: Irwin McGraw-Hill.

