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Abstract

System dynamics models can become very complex as they grow. When a model spans
through several distinct elements within a certain domain, a large number of equations are
needed to describe their detailed behavior and interactions. Large models are hard to
understand and develop. However, small models may not provide the desired level of detail in
several applications. There is the need for techniques that enhance our capacity to develop
and analyze complex models.

In this paper we describe an extension to the system dynamics modeling that allows the
development and specialization of domain models. Such models provide a high level
representation for future developers within the domain. Our approach divides system
dynamics model development in three steps. First, an expert in a given domain develops a
model, which conveys the relevant categories of elements that compose the domain and the
relationships among these elements. Next, a developer uses such model to describe a
particular problem, by specifying how many elements of each category exist in the model of
interest and the particular characteristics of each one. Finally, the model is translated to
system dynamics constructors in order to be simulated and analyzed. An application of the
proposed approach is also presented.
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1 Motivation

System dynamic models intend to convey representations for real-world elements.
Traditionally mathematical equations based on four constructors of the system dynamics
modeling language – stocks, rates, processes, and tables – are used to represent such models.
Although these constructors allow representation flexibility, the comprehension of large and
complex models become a hard task. Real-world elements are not easily identified in a maze
of system dynamics constructors. Their representation is usually spread among several
equations, which forces developers to analyze them to determine the precise group of
equations that describe the behavior of an element and its relationships to other elements.

Usually, models intend to describe specific problems within a problem domain.
However, generic and reusable domain knowledge is commonly embedded within the model
equations. This characteristic leads to some limitations to the traditional modeling approach
such as:



1. It is harder to distinguish between domain and particular problem characteristics;

2. It inhibits the creation of complex domain models, since each new modeler must
acquire, learn, and represent the same domain knowledge within his model, and;

3. It does not provide economy of scale when modeling several problems for the same
domain, since every model must repeat domain knowledge modeling.

Besides, system dynamic models tend to describe uniformly all elements pertaining to
the same category in the modeling domain. Models usually use average values for such
elements’ properties. We assume this simplification is due to the system dynamics inherent
incapability to describe element properties, since they should be independent model variables,
requiring too many equations to be specified.

While we need models that are simple to understand, we also want models that can
represent the details of their interacting elements. This perception highlights the need for
techniques to enhance the development of complex models. If domain knowledge is clearly
separated from the particular problem information, every model developed for that domain
can reuse it. By reusing domain information created and organized by previous models, the
cost of developing new models within a domain can be reduced.

We propose an approach that handles model complexity by raising the abstraction level
of their constructors. By raising the abstraction level we mean that modeling constructors
shall represent concepts closer to real-world elements (elements of the problem domain)
rather than mathematical postulations (elements of the solution domain). Equations are
required for model simulation and analysis, but they are not best suited for model description,
since they represent concepts far from the model user problem domain. The model shall be
expressed in a language that is closer to the user, being later translated to mathematical
representation. So, instead of building a model from system dynamics constructors, model
developers reuse domain knowledge, which was previously described by domain experts.
Such knowledge forms the constructors for the model developer, which will describe models
from problem domain concepts rather than with system dynamics basic constructors.

To raise modeling abstraction level has been demonstrated to increase development
productivity and product quality in other knowledge areas that explore models. These areas
have demonstrated that, model readability and understandability can be increased. Pressman
(1997) presents some experimental results for the software development area. For instance,
modern object-oriented software development techniques suggest that when several software
applications are to be developed for a particular domain, the development team should
concentrate in modeling domain concepts and relationships before developing the first
application. Such domain model aims at knowledge sharing and reuse. This approach has
been explored by recent software engineering environments (Oliveira et al., 1999) and in the
context of domain engineering techniques (Braga et al., 1999). However, software domain
modeling has other features than those presented in this paper, such as context analysis,
variation points, features, and so on.

A system dynamic metamodel and a translation process compose our approach. Both
support domain models construction and reuse. The metamodel is a high level representation
for system dynamics models. A language allowing the description of categories of elements
that collaborate within a problem domain and their relationships represents the metamodel.
The translation process compiles the metamodel representation into system dynamics
constructors, which can be used for simulation and model analysis. Model behavior is
expressed using extended system dynamics constructors, which are separately described for
each distinct element category that composes the domain model.

This paper is organized in five sections. The first one comprises this motivation. Section
2 describes the proposed system dynamics metamodel. Section 3 shows an example of the



proposed techniques. Section 4 provides a comparison between the proposed metamodel and
PowerSim object-oriented system dynamics extensions. Finally, section 5 presents some
considerations and future perspectives of this work.

2 A Proposed Framework for Complex Model Development

This section presents the proposed system dynamics metamodel and process that allows
domain knowledge modeling and reuse. To support the definitions and propositions in the
following subsections, we use the software project management domain and a small software
project as an example. A simplified analysis of the software project management domain
highlights three major categories of collaborative elements: developers, activities, and
artifacts. Developers accomplish activities, which produce artifacts, eventually consuming
other artifacts. Every software project resembles this pattern of interaction, each project with
its particular artifacts, developers, and activities i.

Consider a particular software project, as depicted in Figure 1. It shows artifacts flowing
through the activities and the developers participating in each one of them. The lines in Figure
1 present the relationships among domain elements. Small arrows near the lines represent the
direction of the relationship. In this case, two developers, namely John and Jimmy, design and
code a software module. The designing activity uses the analysis model as an income to
produce the design model. The coding activity uses the previously created design model to
produce the software module source code. Developers have experience, shown as a rate in the
unity interval, which influences their work quality. Activities have a projected duration, which
specifies how many days developers are expected to work in order to accomplish it. Finally,
artifacts carry on latent errors, produced by the activities and not corrected by them. Artifacts
produced from erroneous incomes shall also contain errors. The relevant information about
each element is presented in Figure 1.

2.1 Definitions

This subsection defines the concepts used by the system dynamics metamodel and
modeling process. They are referenced throughout the remaining sections of this paper.

A class represents a set of elements that can be described by the same properties and
exhibit similar behavior. For instance, in the software project model showed in Figure 1, a
class describes the whole group of developers, while each particular developer is an element,
an instance of the class. John and Jimmy are developers’ instances.

A class defines the properties that describe its instances. A property is relevant
information about the class that can assume independent values for each instance. Each
particular instance of a class assumes a distinct value for each property defined in the class,
depending on the characteristics of the real-world element represented by the instance. In the

Figure 1 – Small software project example
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software project example, developer experience is a property of the class that represents
developers. John and Jimmy have different values for the same property.

A class also defines the behavior of its instances. The behavior of a class is a
mathematical formulation of its responses to changes in other class instances or in the
environment. Such behavior can depend on class properties, allowing distinct class instances
to react differently based on their particular characteristics or state. System dynamics
constructors describe class behavior.

Class instances can have relationships to other class instances. A relationship
represents a structural connection between two or more class instances. Such relationships can
occur among instances of different classes or instances of the same class. The later is also
called an auto-relationship.

A role represents the part an instance undertakes in a relationship. It denotes the
responsibilities and expected instance behavior. In the software project example, the design
model artifact plays the role of an income in its relationship with the coding activity.

Finally, a domain model contains the classes of elements that cooperate within a
problem domain, describing their properties, behavior, and relationships among their
instances. The domain model does not describe a model for a specific problem, but a
knowledge area where modeling can be applied. It is a generic description of the domain,
which should be specialized to a particular problem. In the context of the example, the domain
model would capture classes to represent activities, artifacts and developers together their
relationships.

2.2 The System Dynamics Metamodel

To allow the development of domain models without specifying specific model
characteristics, we propose to use a high level representation, namely a metamodel for system
dynamics. Domain experts are able to build domain specific modeling languages using the
metamodel language. By doing so, we expect modeling becomes easier than using pure
system dynamics constructors, since model developers will use domain concepts described by
the domain specific language to build their models. Similar approaches have been used in
other areas, for instance the domain model description languages found in (Neighbors, 1981).

The system dynamics metamodel allows the description of domain classes and their
relationships. These classes are used as high-level constructors for models developed within
the domain. Any model developer interested in describing a problem within that domain
specifies the problem in terms of such classes. The developer reuses the behavior described
for the classes in the domain model.

For instance, without using the metamodel, the simplified domain showed in Figure 1,
would have to be modeled directly in system dynamics equations. However, using the system
dynamics metamodel, a software project expert could have a domain model conveying the
classes that compose a software project, the behavior of these classes, and their relationships.
For this specific situation, activities, artifacts, and developers can be created to describe the
problem. The relationships among class instances, such as the precedence relationship among
two activities, the accomplishment relationship among activities and developers, and the
production and consumption relationships among activities and artifacts, can also be captured.

Model developers can reuse domain models created by experts, describing the specific
instances of the domain classes for the problem at hand. Next, developers would specify
instances properties values and define their relationships, following the relationships
described in the domain models. If the value of a property is not specified for a specific
instance, a default value, as specified in the domain model, is assumed.

Regarding the property values in the software project example, every class instance has
different property values (i.e., activity duration, developer experience, and so on). So, every



instance property must be represented by an independent equation. Several equations are
required to represent the whole set of instances, capturing their particular properties. This
leads to larger and error-prone models. By using the metamodel, the model developer just
defines the individual property values for the instances and the model behavior would adjust
to these new values. Such adaptation does not require structural redesign and no model
equations have to be analyzed.

The metamodel allows two types of relationships: multi-relations (also known as 1:N
associations), where one instance of a source class is associated to several instances of a target
class, and single-relations (also known as 1:1 associations), where one instance of a source
class is associated to a single instance of a target class. The model behavior, which can
reference such relationships, will be automatically adjusted to the configuration of instances
and connections. Such references can be used to define an instance behavior according to the
behavior of the instances to which it is associated. Consider that, after observing the model
behavior, a project manager decides to try different allocations of the staff among the
activities. The model written without using the metamodel would have to be deeply changed
for each staff allocation analysis, since the relationships between developers and activities are
hard-coded within system dynamics equations. By using the metamodel, the developer would
just have to change such relationships, which are clearly stated for each model instance.

A relationship between two or more instances allows one instance behavior equation to
assess and even modify other instance behavior (in this case, rate equations affecting foreign
stocks). Relationships are unidirectional by default, that is, only the source instance has access
to the target behavior. Relationships can be set bi-directional by specifying a role for the
target instance. Through this role name, the target instance can manipulate the behavior of its
source instance. Auto-relationships are always required to be bi-directional.

The metamodel limits references across relationships though visibility constructors. An
instance can access its related instances’ information only whether this information is placed
in a public area. Private information can be used only by other behavior equations within the
same metamodel instance. Table 1 presents a simplified BNF ii syntax for the system dynamics
metamodel, which is represented as a modeling language. Reserved words are quoted, while
non-terminals are presented in italics.

model = “MODEL” model_name “{” {model_item} “}” “;”
model_item = (class | relation) “;”
class = “CLASS” class_name “{“ {class_item} “}”
class_item = (property | behavior | “public” | “private” ) “;”
property = “PROPERTY” property_name default_value
behavior = (stock  | rate | proc | table)
stock = “STOCK” stock_name initial_level
rate = “RATE” “(“ affected_stock_name “)” rate_name rate_expression
proc = “PROC” proc_name proc_expressions
table = “TABLE” table_name table_values
relation = (multi_relation | single_relation)
multi_relation = “MULTIRELATION” relation_name source_class “,” target_ class [target_role]
single_relation = “RELATION” relation_name source_class “,” target_class [target_role]
target_role = “(“ role_name ”)”

Table 1- System dynamics metamodel simplified BNF syntax

Table 2 presents a simplified BNF syntax for models created using the system dynamics
metamodel.



model_instance = “DEFINE” model_instance_name model_name “{” {class_instance} “}” “;”
class_instance = class_instance_name “=” “NEW” class_name {definition}
definition = (property | relation) “;”
property = “SET” property_name “=” property_value
relation = “LINK” relation_name instance_list

Table 2 – Simplified BNF syntax for models built using the system dynamics metamodel

2.3 The Modeling Process

This subsection presents the proposed system dynamics modeling process based on the
definitions presented in section 2.1. We divide the modeling process in three steps. First, an
expert in a given domain builds a domain model. Such model cannot be simulated, since it
does not specify how many instances of each class exist in the model nor specifies any value
for their properties. This step is called domain modeling.

The creation of a model from a domain model is the second step in the modeling
process, when a model developer specifies how many instances of each class defined for the
domain exist in the model of interest. The developer also specifies the instances properties
values describing how they are related to each other, based on domain model defined
relationships among classes. The resulting model conveys only information about the
elements that it uses. It does not present any system dynamics constructor. Such constructors
are carried from the behavior of the classes, which are described in the domain model.
Behavior equations can be parameterized by the values of the properties of each individual
instance, generating different behavior for elements with distinct characteristics. This step is
called model instantiation.

Finally, the model is translated to system dynamics equations in the third step of the
modeling activity. This allows the model to be simulated and analyzed in standard system
dynamics simulators. The resulting model uses only standard system dynamics constructors,
while the preceding model is described in a high level representation. The high-level
representation helps model development and understanding, simplifying the interaction
between developers and models. The representation based on system dynamics constructors
allows simulation and behavior analysis. This step is called model compilation.

3 An Application of the System Dynamics Metamodel

This section shows an application of the system dynamics metamodel and modeling
process presented in section 2. We use the software project management knowledge domain
and the simplified software project presented in section 2 to show how to develop the domain
model for a specific problem, how to create a model from it and how to compile the model to
system dynamics constructors.

3.1 Domain Modeling

To exemplify the development of a domain model, consider the project management
domain. For the purpose of this example, consider that the relevant classes within the domain
are the activities, developers, and artifacts. Developers accomplish activities, which create
artifacts, eventually consuming other artifacts. Table 3 presents a simplified model for the
project management domain using the proposed system dynamics metamodel language. The
model in Table 3 does not specify any behavior. It only shows the syntax for class declaration
within the domain model.



MODEL ProjectModel
{

CLASS Developer
{

PROPERTY experience 1;
};

CLASS Artifact
{

PROPERTY latent_errors 0;
};

CLASS Activity
{

PROPERTY duration 0;
};

};

Table 3 – Simplified model for the project management domain

The MODEL keyword introduces the domain model, namely ProjectModel. The model
contains three classes, each one declared using the CLASS keyword. The classes are declared
within the domain model context, delimited by angled brackets. Each class contains its own
context, also delimited by angled brackets, where properties and behavior are declared.

The PROPERTY keyword specifies a property for a class. When using the domain
model to create a particular model, a developer can specify the value of the properties for each
instance of the classes defined in the domain model. If the value of a property is not specified
for an instance, such property assumes a default value, which is specified next to the property
name in the domain model.

The project management domain model defines the Experience property for the
Developer class. Such property represents the knowledge and development experience of a
developer, which will affect his ability to accomplish activities and capacity to avoid errors.
When developing a particular model from the domain model, the developer must determine
how many developers are needed and specify each developer experience level. So, the
metamodel allows the precise specification of individual property values for each instance of
a class. If such precision is not required, an average value can be defined through the property
default value, which is used when particular values for each element property are not defined.

The Artifact and the Activity classes convey a single property each. The Latent_Errors
property specifies the number of error expected in a previous developed artifact used as the
income for an activity. To the purpose of this example, the model assumes that the latent
errors in an income artifact are propagated to the artifact produced within an activity. The
Duration property specifies how much time a group with the same number of average
experienced developers needs to accomplish an activity.

Table 4 presents a more complete version of the domain model, containing the
relationships among classes. The RELATION keyword represents a single relationship, that
is, a relationship with only two participant class instances. The domain model conveys only
one single relationship, the Outcome relationship, which occurs between one activity and one
artifact. It denotes that an activity produces only one artifact. When creating a model from the
domain model, a developer must indicate the artifact produced by each activity.

The MULTIRELATION keyword represents a multiple relationship, where one
instance of the source class is associated to several instances of the target class. The Team
relationship, which represents the developers assigned for an activity, is a multiple
relationship. There may be several developers assigned for the same activity. The Team
relationship is also a unidirectional relationship, where only the Activity class instance has
access to the information about its developers. There must be a role specified for the target



class (in this case, the developers) to make the relationship bi-directional. The role is specified
within parenthesis, next to the name of the target class. The Income relationship is similar to
the Team relationship, being a multiple and unidirectional relationship. It represents the
artifacts used as income to produce the outcome artifact of the activity.

MODEL ProjectModel
{

CLASS Developer
{

PROPERTY experience 1;
};

CLASS Artifact
{

PROPERTY latent_errors 0;
};

CLASS Activity
{

PROPERTY duration 0;
};

MULTIRELATION Precedence Activity, Activity (NextActivities);

MULTIRELATION Team Activity, Developer;

MULTIRELATION Income Activity, Artifact;

RELATION Outcome Activity, Artifact;
};

Table 4 – Model for the project management domain representing class relationships

The Precedence relationship is an auto-relationship, since it links instances of the same
class. It is also multiple and bi-directional. The NextActivities role is specified for the target
class, as required by the metamodel. The target class behavior can use the role names to
access information about the associated instances. Table 5 presents a complete domain model,
containing classes, properties, relationships, and behavior descriptions.

Observe that the domain model behavior equations are distributed among several
classes, each class containing its specific behavior. The Developer and Artifact classes have
very simple behavior. The Developer class only defines a process to store its Experience
property value. This allows other instances to consult the property value, since the property
itself can only be accessed by its containing instance. The Artifact class contains a single
stock to represent the expected number of errors in the artifact. Errors could happen during
the activity accomplishment and due to latent errors in artifacts used as incomes to produce
the current artifact. Since errors are generated during the activity accomplishment, the error
generation behavior is located within the Activity class.

The Activity class contains most behaviors of the domain model. The TimeToConclude
stock describes the time required to accomplish an activity, being depleted as the simulation
advances. The Work rate is responsible for depleting this stock. Observe that the stock name,
presented within parenthesis after the RATE keyword, associates the rate to the stock. In the
metamodel, rates are always supposed to raise their associated stock level. To allow stock
depletion, the rate equation must generate negative numbers, as it occurs in the Work rate.

For the purpose of this example, an activity can only be executed when all preceding
activities are concluded. So, the Work rate depends on the DependOk process, which
determines if the preceding activities of an activity are already concluded. Such process uses
the GROUPSUM operator, which sums the values of a selected property for every instance
associated to the current instance through a specific relationship. In the DependOk process,
the GROUPSUM operator sums the level of the TimeToConclude stock for every activity that



must be executed before the current one. The DependOk process verifies if the operation
result is near to zero, determining if the activities have already been accomplished.

MODEL ProjectModel
{

CLASS Developer
{

PROPERTY experience 1;
PROC ExperienceLevel experience;

};

CLASS Artifact
{

PROPERTY latent_errors 0;
STOCK Errors latent_errors;

};

CLASS Activity
{

PROPERTY duration 0;
STOCK TimeToConclude duration;
RATE (TimeToConclude) Work if(DependOk, -Min (ExpLevel * TimeToConclude / DT, ExpLevel), 0);
PROC DependOk GROUPSUM (Precedence, TimeToConclude) < 0.001;
STOCK ExecutingOrDone 0;
RATE (ExecutingOrDone) RTExecuting if (AND(ExecutingOrDone < 0.001, DependOk), 1, 0);
RATE (Outcome.Errors) ErrorsTransmit if (RTExecuting>0.001, GROUPSUM(Income, Errors) / DT, 0);
PROC ExpLevel GroupMax (Team, ExperienceLevel);
PROC ErrorsPerDay 5;
RATE (Outcome.Errors) ErrorsCommited -1 * ErrorsPerDay * Work / ExpLevel;

};

MULTIRELATION Team Activity, Developer;

MULTIRELATION Precedence Activity, Activity (NextActivities);

MULTIRELATION Income Activity, Artifact;

RELATION Outcome Activity, Artifact;
};

Table 5 – A simple, although complete model for the project management domain

The next two constructors, ExecutingOrDone and RTExecuting, are used to create a
variable that contains zero most of the time, but raises to one in the simulation step that marks
an activity start. This variable is used by the ErrorsTransmit rate, which raises the number of
errors in the produced artifact. In the example, we assume that all errors latent in the income
artifacts will be reproduced in the outcome artifact. Although this assumption is not
appropriate for most project management models, it is used here to present a mechanism
named multirate, which allows a rate to affect several stocks at a time.

A multirate is a rate that can be connected to several stocks through a relationship. If the
name of the stock affected by a rate is composed by the name of a relationship, followed by a
dot and a stock name in the target class of the selected relationship, the stocks of each
associated instance will be affected by the rate. If the relationship is a single one, only one
stock will be affected. Otherwise, the stocks with the selected name on all instances
associated to the current instance through the selected relationship will be affected by the rate.
The ErrorsTransmit rate uses a single relationship to the outcome artifact Errors stock,
summing the number of errors propagated from the income artifacts to the produced artifact
when the activity starts. A similar strategy is used by the ErrorsCommited rate to add new
errors to the produced artifact during the activity accomplishment.

Finally, the ExpLevel process calculates the experience level of the team developing the
activity. Again we simplify the model for the purpose of this example, assuming that the most
experienced developer drives the whole team. So, team experience is equal to the most



experienced developer experience. The ExpLevel process uses the GROUPMAX operator to
determine the maximum value for a property in the instances associated with the current
instance through a selected relationship. Its counterpart, the GROUPMIN operator determines
the minimum value for a property in the instances associated with the current instance through
a selected relationship.

The above example shows the main components and the syntax of a domain model.
Next section presents the model instantiation process, explaining how a model can be built by
reusing the knowledge expressed in the domain model.

3.2 Model Instantiation

To exemplify the model instantiation process, consider the software development
project presented in Figure 1, where two developers design and code a software module from
its specification. Table 6 presents a simplified model for this particular project.

DEFINE MyProject ProjectModel
{

John = NEW Developer
SET Experience = 1;

Jimmy = NEW Developer
SET Experience = 0.8;

AnalysisModel = NEW Artifact
SET latent_errors = 10;

DesignModel = NEW Artifact
SET latent_errors = 0;

SourceCode = NEW Artifact
SET latent_errors = 0;

Designing = NEW Activity
SET duration = 10;

Coding = NEW Activity
SET duration = 5;

};

Table 6 – A simplified model for the proposed project

The model in the preceding table is very simple: it only conveys the instances of the
classes defined in the domain model that are necessary to describe the proposed project. The
DEFINE keyword introduces the project model, followed by the model name, MyProject, and
by the domain model to which it is related, ProjectModel. Class instances are represented
within the model context, delimited by angled brackets.

The developers, John and Jimmy, are the first class instances presented within the
model. The NEW keyword creates an instance of the class identified by the name presented
after the keyword. The newly created instance is associated to the identifier presented in the
left side of the equal operator. Next, the model creates the instances of the artifacts and the
activities.

The SET keyword specifies the value of a property for a specific class instance.
Property values are defined immediately after the instance creation. Observe that different
property values can be assigned to distinct instances of the same class. For instance, the
experience of John is supposed to be 1, while the experience of Jimmy is supposed to be 0.8.
This feature allows system dynamics model developers to precisely account for the relevant
differences between instances of a same class, which is harder in the traditional, equation
based models.



The preceding project model does not show any relationships between class instances.
Table 7 presents a complete model for the proposed project, containing the occurrences of the
Precedence, Income, Outcome, and Team relationships. The complete model for the proposed
project presents class instances, properties, and relationships among class instances. Only the
activities specify relationships, since they are always referenced as source classes. The LINK
keyword determines which class instances are associated in each relationship. For instance,
the Coding activity uses the design model artifact as its income, is dependent of the Designing
activity, is developed by Jimmy, and produces the SourceCode artifact.

DEFINE MyProject ProjectModel
{

John = NEW Developer
SET Experience = 1;

Jimmy = NEW Developer
SET Experience = 0.8;

AnalysisModel = NEW Artifact
SET latent_errors = 10;

DesignModel = NEW Artifact
SET latent_errors = 0;

SourceCode = NEW Artifact
SET latent_errors = 0;

Designing = NEW Activity
SET duration = 10;
LINK Team John;
LINK Income AnalysisModel;
LINK Outcome DesignModel;

Coding = NEW Activity
SET duration = 5;
LINK Team Jimmy;
LINK Precedence Designing;
LINK Income DesignModel;
LINK Outcome SourceCode;

};

Table 7 – Complete model for the proposed project

This section presented how models are created from a domain model. Observe that the
models do not specify any behavior or system dynamics constructor. Those are inherited from
the domain model and used to translate the model description to system dynamics equations
that can be simulated. This translation process is called model compilation, and is described
in the next section.

3.3 Model Compilation to System Dynamics Constructors

The techniques presented in the previous sections allow a model developer to build
domain models and create models for particular problems from them. While these techniques
help the construction of larger and detailed models, they are rendered useless if these models
cannot be simulated. To allow such simulation capabilities, this section describes the process
that translates the class-based representation to system dynamics constructors, which can be
analyzed in a conventional simulator. This process is called model compilation. We will use
the software project model presented in Section 3.2 as an example. Table 8 presents the
compiled version of this model.



The compiled model conveys only system dynamics constructors, which are represented
using the ILLIUM tool modeling language (Barros et al., 2000) (Barros, 2001). This language
allows the definition of stocks, rates, processes, and tables. Every constructor has a unique
name, used to identify it in the model equations. Processes, stocks, and rates are described by
an expression, which is evaluated in every simulation step. Rates are also associated to two
stocks, which represent the origin and the target of its flow. Infinity providers, represented by
the SOURCE keyword, or infinity sinkers, represented by the SINK keyword, can replace
such stocks. Tables are described by a list of comma separated constant values. Tables and
infinity sinkers were not necessary in the current example.

# Code for object "John"
PROC  John_experience 1.0000;
PROC  John_ExperienceLevel John_experience;

# Code for object "Jimmy"
PROC  Jimmy_experience 0.8000;
PROC  Jimmy_ExperienceLevel Jimmy_experience;

# Code for object "AnalysisModel"
PROC  AnalysisModel_latent_errors 10.0000;
STOCK AnalysisModel_Errors AnalysisModel_latent_errors;

# Code for object "DesignModel"
PROC  DesignModel_latent_errors 0.0000;
STOCK DesignModel_Errors DesignModel_latent_errors;

# Code for object "SourceCode"
PROC  SourceCode_latent_errors 0.0000;
STOCK SourceCode_Errors SourceCode_latent_errors;

# Code for object "Designing"
PROC  Designing_duration 10.0000;
STOCK Designing_TimeToConclude Designing_duration;
RATE  (SOURCE, Designing_TimeToConclude) Designing_Work IF (Designing_DependOk,  -MIN (Designing_ExpLevel

* Designing_TimeToConclude / DT, Designing_ExpLevel), 0.000);
PROC  Designing_DependOk 0 < 0.001;
STOCK Designing_ExecutingOrDone 0.000;
RATE  (SOURCE, Designing_ExecutingOrDone) Designing_RTExecuting IF (AND (Designing_ExecutingOrDone < 0.001,

Designing_DependOk), 1.000, 0.000);
RATE  (SOURCE, DesignModel_Errors) Designing_ErrorsTransmit1 IF (Designing_RTExecuting > 0.001,

(AnalysisModel_Errors) / DT, 0.000);
PROC  Designing_ExpLevel MAX (John_ExperienceLevel);
PROC  Designing_ErrorsPerDay 5.000;
RATE  (SOURCE, DesignModel_Errors) Designing_ErrorCommited1  -1.000 * Designing_ErrorsPerDay *

Designing_Work / Designing_ExpLevel;

# Code for object "Coding"
PROC  Coding_duration 5.0000;
STOCK Coding_TimeToConclude Coding_duration;
RATE  (SOURCE, Coding_TimeToConclude) Coding_Work IF (Coding_DependOk,  -MIN (Coding_ExpLevel *

Coding_TimeToConclude / DT, Coding_ExpLevel), 0.000);
PROC  Coding_DependOk (Designing_TimeToConclude) < 0.001;
STOCK Coding_ExecutingOrDone 0.000;
RATE  (SOURCE, Coding_ExecutingOrDone) Coding_RTExecuting IF (AND (Coding_ExecutingOrDone < 0.001,

Coding_DependOk), 1.000, 0.000);
RATE  (SOURCE, SourceCode_Errors) Coding_ErrorsTransmit1 IF (Coding_RTExecuting > 0.001, (DesignModel_Errors) /

DT, 0.000);
PROC  Coding_ExpLevel MAX (Jimmy_ExperienceLevel);
PROC  Coding_ErrorsPerDay 5.000;
RATE  (SOURCE, SourceCode_Errors) Coding_ErrorCommited1  -1.000 * Coding_ErrorsPerDay * Coding_Work /

Coding_ExpLevel;

Table 8 – Traditional system dynamics model generated from the model presented in section 2.2



To avoid confusion we will reference the class-based representation by model, while the
system dynamics constructors based version will be referenced as the compiled model. The
compiled model presents seven distinct blocks, one for each instance represented in the
model. Consider the equations generated to the John instance of the Developer class. Such
equations, highlighted in Table 9, convey the declaration of a property and a behavior
description.

PROC  John_experience 1.0000;
PROC  John_ExperienceLevel John_experience;

Table 9 – Model generated to developer John class instance

The first equation declares the Experience property for the John instance. Properties are
declared as processes in the compiled model, being initialized with the value specified to them
in the model or by their default value, as stated in the domain model. Observe that the name
of the process representing the property in the compiled model is composed by the instance
name followed by the property name. Both names, separated by an underlining sign, compose
a unique name for the process within the compiled model. This allows the declaration of
several instances with their distinct property values, since each instance is required to have a
unique name in the model. Different processes in the compiled model will represent such
instances. This effect also happens in the model generated to the Jimmy instance.

The second equation represents the single behavior description defined in the Developer
class, which is specialized for the John instance. References to properties in the behavior
equations are linked to the processes that represent such properties in the current instance. The
instance name is also used as a prefix to the behavior constructor name in the compiled
model. Behavior descriptions are repeated for every instance in the compiled model. This can
also be observed by analyzing the model generated to the Jimmy instance.

The model generated for the Artifact class instances does not present any particularities
that were not highlighted by the Developer class instances. However, the model generated for
the Activities class instances is more interesting. Table 10 highlights the model generated to
the Coding activity.

PROC  Coding_duration 5.0000;

STOCK Coding_TimeToConclude Coding_duration;

RATE  (SOURCE, Coding_TimeToConclude) Coding_Work IF (Coding_DependOk,  -MIN (Coding_ExpLevel *
Coding_TimeToConclude / DT, Coding_ExpLevel), 0.000);

PROC  Coding_DependOk (Designing_TimeToConclude) < 0.001;

STOCK Coding_ExecutingOrDone 0.000;

RATE  (SOURCE, Coding_ExecutingOrDone) Coding_RTExecuting IF (AND (Coding_ExecutingOrDone < 0.001,
Coding_DependOk), 1.000, 0.000);

RATE  (SOURCE, SourceCode_Errors) Coding_ErrorsTransmit1 IF (Coding_RTExecuting > 0.001, (DesignModel_Errors) /
DT, 0.000);

PROC  Coding_ExpLevel MAX (Jimmy_ExperienceLevel);

PROC  Coding_ErrorsPerDay 5.000;

RATE  (SOURCE, SourceCode_Errors) Coding_ErrorCommited1  -1.000 * Coding_ErrorsPerDay * Coding_Work /
Coding_ExpLevel;

Table 10 - Model generated to Coding activity class instance

The first equation of the model represents the Duration property declaration. The next
two equations present behavior descriptions parameterized by other behavior equations and by
the Duration property. The fourth equation presents the compiled model for the GROUPSUM



operator. Such operator is compiled to a list of arithmetic sums, whose operands are the
instances participating in the relationship selected for the operator. The DependOk behavior
description within the Activity class uses the Precedence relationship.

In the Coding instance, which is preceded by a single activity, the Designing instance,
the GROUPSUM operator is compiled to a reference to a behavior equation of the Designing
instance. In the Designing activity, the GROUPSUM operator is compiled to zero, since there
is no precedent activity, therefore, no operand for the arithmetic sums.

The DependOk behavior within the Coding instance uses a stock declared by other
instance (in this case, the Designing activity). This is accomplished through model
relationships, which allow an instance to consult or modify the behavior of other instances.
The compiling process perceives such access to externally defined behavior through the
relationship name, used within the behavior description equations. It precedes the name of the
accessed behavior by the name of the instance being manipulated.

The next two equations just replicate behavior descriptions for the current instance.
However, the declaration of the Coding_ErrorsTransmit rate conveys the model generated to
the ErrorsTransmit rate declared in the Activity class. Such rate is a multirate and shall be
compiled to several rate equations, one for each stock that it affects. Since the ErrorsTransmit
rate is associated to a single relationship in the current example, the model generated for it
conveys only one rate, which affects the stock that represents the expected number of errors in
the produced artifact (in case, the SourceCode). Observe the number appended to the rate
name: it is used to differentiate the names of the several rates that can be generated to
represent a multirate. Observe also the access to the Errors stock in the DesignModel
instance, which results from the model generated for a GROUPSUM operator.

The next equation uses the GROUPMAX operator, which works in a similar way to the
GROUPSUM operator. Instead of generating arithmetic sums for its operands, the
GROUPMAX operator applies the MAX operator to its operands. The last two equations
present the specialization of a simple behavior description for the instance and the model
generated to other multirate.

Although the model generated by the compiling process uses the ILLIUM modeling
language, it is based on basic system dynamics constructor. So, the same techniques can be
used to generate models for other system dynamics simulators.

4 Related Works

The proposed system dynamics metamodel can be compared to the PowerSim object-
oriented system dynamics modeling extensions (Myrtveit, 2000). Both are recent attempts to
bring system dynamics modeling to a higher-level of abstraction, where a developer creates
models that can be reused by other developers or assembled to build more complex models.
However, there are some noticeable differences between both approaches.

First, we believe that the proposed metamodel is simpler than PowerSim object-oriented
system dynamics extensions because it comprises a few new concepts and uses plain system
dynamics constructors to describe class behavior. PowerSim proposal involves several new
elements, such as plugs and sockets, and complex visibility constructors.

Next, our metamodel attempts to describe a problem domain, focusing on the classes of
elements that interact within the domain, their relationships, properties, and behavior. A
domain expert can provide such high-level modeling, while less experienced developers can
build models from the expert-created knowledge based. PowerSim attempts to describe
domain-independent components, which can be assembled together by connecting their
interfaces to system dynamics constructors from outside or from other components.

Finally, while it clearly defines high-level components to build models with them,
PowerSim proposal does not explicitly represent the relationships among such components in



the models. Such relationships have to be built using system dynamics constructors, mixing
higher and lower abstraction levels. By focusing in a problem domain and not only on
independent components, the proposed metamodel defines the permitted relationships among
components (i.e., classes). Class roles are clearly stated and relationships can be used to refine
class behavior.

5 Final Considerations and Future Perspectives

This paper presented a system dynamics metamodel, a modeling language that allows
the development of domain models and their specialization to particular problems. A domain
model describes the classes of elements that compose the domain, detailing their properties,
behavior, and relationships. The model represents a particular problem, describing how many
elements of each class participate in the problem and defining their property values and
associated elements. The model is built using a language closer to the domain concepts, while
the metamodel is described using an extended system dynamics syntax. We believe that, since
the model construction language is closer to the user knowledge, it helps model development.
We have described the domain model construction process, the model instantiation process,
and the model compilation process to system dynamics basic constructors. Also, an example
of the proposed techniques was presented.

The metamodel compiler to system dynamics was implemented and some domain
models were built. We expect to develop more domain models and to create more instances of
such models to provide more evidence of the metamodel applicability. We also expect to run
some experiments to support our hypothesis that the metamodel produces models easier to
develop and understand.

As future perspectives of this work, we are exploring the development of extension
modules to domain models. An extension module is a separately described system dynamics
model that can be integrated into a model, modifying its behavior without any new system
dynamics equation. Such modules are expected to form a scenario library for the domain,
being useful for the model developers.

Scenario models and their integration interface to a domain model are relevant to the
project within which the system dynamics metamodel was developed. Our intention is to be
able to use system dynamics modeling and quantitative risk management through scenario
analysis for operational project management. Further details regarding this research can be
found in (Barros et al., 2001).
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