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ABSTRACT 

This paper presents a general quantitative performance measure to 
analyze the performance of System Dynamics models for the desired 
model behavior. Th~ advantages of using a quantitative 
performance analysis facility are discussed. Some possible 
applications including optimization and sensitivity analysis are 
discussed. Also discussed are the implementation aspects. 

1. INTRODUCTION 

System Dynamics (SD) and DYNAMO (Pugh 1976) were dev~loped over 
25 years ago. In spite of the vast scope fo~ further 
developments, very limited research has been done to improve the 
SD simulation languages as well as applications like.optimization 
tBapna 1985, Bapna, Ghose, Sharma 1987a and 19"87b, Ghose et al. 
1987b, Keloharju 1987, Rohrbaugh 1983, Wolstenholme 1985a and 
1985b) 

At present, no te-chniques or tools are available which allow the 
SD practitioner to quantitatively measure the model performance 
for the desired model behavior. In the current situation, it is 
necessary to study graphical or tabular outputs to determine how 
gpod the model performance is. 

'fhe ability to quantitatively analyze the performance of a SD 
model would permit, among others, .,development of Optimization and 
Sensitivity Analysis facilities. 

To calculate the quantitative performance measure, the user is 
required to mathematically express the desired model behavior, 
and this will help the user understand the desired system 
behavior more precisely. 
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2. QUANTITATIVE PERFORMANCE MEASURE (QPM) 

The desired behavior of an SD model can be represented as the 
values of various syst~m parameters (and variables) over the 
simulation time period. The QPM is based 01:1 the use of error 
functions to compute the error between the desired model behavior 
and the simulated model 'beha.vior. When the desired model behavior 
and the simulated model behavior ·are identical, t.he value of QPM 
is zero. 

The QPM is defined a:s follows. 

where 

QPM = 
~ 

2_ Wi * fi (pi , pi 0 ) 
i=1 

Pi - the simulated value of the i. th parameter over the 
simulation period, as function of time. 

pio- the desired value of the 1 th parameter over the 
simulation period, as function of t.ime. 

fi - a non linear function representing the integration, 
over the simulation period, of some function expressing 
difference between pi and piO as below. 
fi (Pi , pi o ) = L ei (Pi , pi o ) * DT 

(Summation over simulai:.ion period at DT intervals) 
Here ei is error function. Appendix shows some of the 
possible functions for ei 

Wi - weightage associated with fi (pi , pi o). 
n - total number of parameters used in QPM. 

To compute QPM once, the SD model has to be simulated over the 
desired period of time. To calculate QPM, all the system 
parameters or only some important parameters may be used. 

The concept of quantitative performance analysis is illustrated 
in Fig. 1. The diagram shows the desired inventory changing from 
i1 o to i2 o as a result of consumption changing from cl to c2 at 
the time Tl. The simulated inventory is shown superimposed over 
the desired invent<.:>ry. The shaded area shows the deviation of 
the simulated inventory from . the desired inventory. The 
deviation or error can be represented by QPM as below. 

QPM = f(i.2, i2o) 

where f ( i2 , i2 o ) = ~ e ( i2 , i2 o ) * DT 
(Summation over simulation period at DT intervals) 

where the function e is a non linear function of the desired 
inventory (i2o) and the simulated inventory (i2). DT is the time 
increment for simulation. The'function e can be chosen to be one 
of the functiom; iescri.bed in the Appendix, say ( i2 -i2o )2. 

On the basis of U·te above description, QPM gives a ·figure of 
merit for the mode!. p•erformanc·~ .. Once the QPM is def i.ned for an 
SD model, it is ea::;:,r t.o simulate t.he model for diffenmt. policies. 
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(or parameters) and achieve optimi38.tion. Similarly it is easy 
to do sensitivity analysis. Both optimization and sensitivity 
analysis are described in detail in the next section. 

The QPM presented here is general enough to allow the user to 
express any desired model behavior of an SD model. The QPM and 
its applications can be implemented easily in languages like 
DYMOSIM (Mohapatra and Bora 1883) or any general purpose 
programming languages l"ike F'ORTRAN, BASIC. Software can be 
developed for DYNAMO (Pugh 1976), DYSMAP (Coyle 1977) to offer 
facilities like QPM, optimization, sensitivity analysis etc. in a 
very easy-to-use way. 

3. APPLICATIONS 

The facility to measure the model performance quantitatively can 
be used to perform sensitivity analysis and optimization as 
described below. 

3.1 Sensitivity Analysis 

Sensitivity analysis 
performance with the 
variables) , 

is the study of the variation in model 
variation in the -model parameters (ox.· 

One possible method of its implementation is as follows. The 
sensitivity of an SD model to certain variable X can be 
represented in several ways, four of which are described below. 

(1) s = [QPM(X+AX) - QPM(X)] I (AXJ 

(2) s = [QPM(X+AX) - QPM(X)] I [.~X/X] 

( 3) s = [QPM(X+AX) - QPM(X)] I (QPM(X) *AX] 

(4) s = (QPM(X+AX) - QPM(X)] I [QPM(X) *AX/X] 

The sensitivity (S) in item (4) represents-the ratio of percent 
variation in modei performance to the pereent variation in the 
model parameter. 

3.2 Optimization 

Three possible types of optimization for SD studies are described 
below. 

Optimization Type 1: Here the user is required to specify the 
names and ranges of paramet.ers. The number of parameters is 
assumed to be n, thus the n-dimensional space is searched for 
optimization. Two simple implementation methods are described 
below. In the first one the data points are selected at random, 
and iri the second one the data points are selected in a regular 
fashion. 
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(A) Here; the non linear programming technique is used. First, a 
set of n random numbers are generated. Each random number 
determines the value of a corresponding parameter. In this 
manner, a set of parameters for one simulation run are generated. 
This randomization process is done several times giving different 
simulation runs, and thus sub-optimal solution is found along 

'with the associated parameter values. 

{B) In this -implementation, all the parameter ranges are divided 
into several equidistant discrete values, and thus a definite 
number of equidistant points in the n-dimensional .space are 
generated. QPM is determined for each of them and thus the sub­
optimal solution is found along with the assoctated parameter 
values. 

In most of the cases, as the model performance varies smoothly 
over a parameter range (Keloh,.arju 1987) for SD problems , the 
method (B) is lill;ely to give a solution quite close to the 
optimal solution. 

The optimization method (A) or (B) can be used to optimize 
parameters locally {over DT or multiples of DT period). This 
local optimization can be done thorough-out the simulation time, 
thus generating dynamically changing policies (parameters). 

Optimization Type 2: Here the user is required to specify the. 
alternate policies (equations or parameters). The QPM for each 
policy option is computed and thus optimal solution is found. 

Optimization Type 3: In this optimization, a model base is us.ed. 
The model base may contain several SD models for the same system. 
These models may differ in one or more modules. But the 
parameters present in the QPM should be common to each of the 
alternative models. The QPM for each SD model is computed and 
thus the optimal model is chosen. 

As a variation, some of the best solutions obtained by' the above 
types of optimization can be presented to the user with the final 
choice left to him or her. 

The above optimizations require QPM to be determined for each 
alternative choice. The best choice at any time. can be remembered 
by the program, so that a simulation »un may be stopped as soon 
as the performance is found to be not as good as current best. 
Thus, not all of the simulation runs will have to cover the full 
length of simulation time period. 

4. CONCLUSIONS AND FURTHER RESEARCH 

This paper· presented a quantitative performance measure. This 
measure makes possible quantitative analysis of the SD models 
quantitatively. The ap)'lications of the measure to optimization 
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anti sensitivit.y anCJ.lysfs of the SD 
Implementation aspects of optimization 
were also discussed. 

models were described. 
and sensitivity analysis 

There is a vast scope for further research on quantitative 
performance analysis and its applications to SD models. The QPM 

. as presented in this paper serves only as a beginning. The 
following are the possible directions for further research. 

(1) Various error functions for QPM in the context of SD problems 
can be studied and suitable ones identified. 

(2) The QPM may consider factors 
settling time etc to simplify the 
certain. specific SD applications. 

like frequency, raise time, 
QPM function description for 

(3) Optimization and sensitivity analysis, using QPM method, can 
be carried out for real life probl~ms as well as text book 
problems. Such experience with QPM would help improve the QPM 
methodology. 

( 4) D:i,fferent sensi t,i vi ty analysis formulae including those 
presented in this paper can be studied, and suitable ones 
identified for use with the SD models. 

(5) Algorithmic 
analyzed for 
information can 
fashion (Bapna, 

control modules (Wolstenholme 1985b) 
sensitivity to parameter variation. 
be of use while developing an SD model in 
Ghose, Sharma 1987b). 

can be 
Such 

modular 

( 6) The techniques of A:~,·tificial Intelligence and Decision · 
Support Systems , with the usage of the QPM, can be used to 
result significant. developments in SD methodology, techniques and 
tools. 
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APPENDIX - ERROR FUNCTIONS FOR QPM 

As described in Section 2, the QPM is represented as 

QPM = 
'h. 

L wi * fi ( i , io ) 
i•S. 

where fi (pi , pi o ) = ~ ei (pi , pi o ) * DT 
(Summation over simulation period at DT intervals) 

Some of the error functions ei (i,io) that can be used for QPM and 
their implications are described below. 

(1) Difference (i-io) 

This error function gives equal importance to deviation on either 
side of the desired value, but errors with opposite sign cancel 
each other. It also gives .. equal importance to deviation of small 
magnitudes as well as large magnitudes. 

( 2) Square of difference (' U:;:~9]2 ) 
.,<'.: ·}:"::.·;-=·. 

This error function adds up errors of both the positive and the 
negative signs. The errors of large magnit.udes are magnified. 
This error function is likely to be useful in most cases. 

(3) Negative difference only ( 1/2 ([i-io]- :[i-ioJ: )) 

This error function penalizes deviations only of negative sign. 
This may be useful in modeling parameters such as actual or 
nC)tational profit. 

(4) Positive difference only ( 1/2 ( [i-io) + : [ i·-io j: ) ) 

This error function penalizes deviations only c•f positive sign. 
This may be useful in modeling parameters such as actual or 
not,:ttional loss. 

(5) Even power of difference (i-io)n 

This is similar to the error function in item (2), but amplifies 
the large errors to a greater extent than the function in item 
(2). May be useful in modeling those parameters such as risk or 
parameters whose large value will have catastrophic effect on 
nodel performance. 


