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Overview -- The Challenge 
 
This paper is not a typical academic paper that is solidly grounded in the 
literature.  Instead, this paper reports practitioner’s experiences in rebuilding and 
calibrating a very large system dynamics model.  A prior version of this model 
had been in use for over 10 years in an ongoing executive training simulation.  
That model had never worked correctly in several key areas, requiring the 
outputs to be manually adjusted by very experienced facilitators during the 
course of the simulation.  The present project rebuilt the system dynamics model, 
redesigned the parts that weren’t working, and calibrated the resulting model to 
match the facilitator’s experience in how it should work.  The complexity of the 
underlying model dictated a relatively large amount of complexity in the 
replacement model. As desirable as it would for the model to be simple, such a 
model could not create the necessary degree of realism.    
 
The case study model  requires a large number of both inputs and outputs, and 
simulates a fictional company.  It had to behave in ways that were consistent with 
the industry and the specific needs of the simulation model’s learning objectives.  
There was no “real” company to reference in how it should behave.  Another 
aspect to this case study was that there were a few parts of the old model that 
were clearly wrong, but the facilitators had become used to this incorrect 
performance.  And in some cases, these differences significantly affected other 
parts of the model.  This meant that there was no complete and consistent 
dataset for the reference behavior patterns that could be used for calibration 
purposes.   
 
It was relatively easy to build a new model that corrected the errors in the old 
one.  It was much, much harder to calibrate such a large model.  In addition to 
the issue with so much unknown about how it should actually perform, there were 
57 separate inputs and 296 outputs over the simulated 8-year period.  All of 
these outputs needed to be in ranges that matched the expectations of the 
facilitators, and they needed to change in expected ways.  For example, the rate 
of change in market share must be plausible (e.g., a firm in a mature market 
cannot gain 3 market share points in one year), and other metrics should change 
only over a long period of time.   
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In many of our models, there are typically only a few outputs that are of primary 
importance, and the others simply need to look “reasonable”.  In the case study 
model, there was a need to get many different outputs into certain ranges in 
addition to getting the primary effects looking right.  The size and complexity of 
the model, combined with the number of outputs, created a difficult problem to 
manage during calibration.   
 
 
Validation/Verification/Calibration is a loop 
 
Changes in one part of the model affect the other parts.  In our experience, this 
has always been a consideration in calibrating system dynamics models.  And 
this was a significant issue in the case study model because of its large size and 
its many relevant outputs – especially during the later stages of calibration.  In a 
model this large, too many things affect too many other things.  Changes to 
correct one issue frequently created the need for more adjustments elsewhere, 
creating a seemingly never-ending loop, as shown in Figure 1.   
 
 
 
 
 

 
 
Figure 1.  Model Adjustment Loop 
 
 
The complexity of the case study model made the effect shown in Figure 1 much 
more pronounced.  Some very long feedback loops affected most of the model.  
For example, quality affected sales, which affected production, which affected 
inventory, which affected importing, which affected quality (since the quantity and 
quality of the imported products affected the combined quality of products sold).  
Changes to parameters within parts of this loop could cause significant changes 
(and some unexpected ones) throughout the model.  This can cause an 
exponential increase in the amount of work required, and in some cases could 
doom a modeling endeavor.  An equally challenging situation can result even 
when overall model size and complexity is modest, but the model needs not only 
to be plausible in all respects but also needs to replicate empirical reference data 
for multiple model variables. A recent example of this type contained six state 
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variables and a hundred auxiliary variables and parameters, and needed to 
simultaneously match reference data for five of the variables, leading to a nearly 
endless calibration loop. 
 
As suggested in Figure 2, the amount of effort needed to calibrate SD models 
depends on both model size and complexity and on the approach utilized.  Some 
approaches are easy to use for a simple model (Approach A), but can result in 
exponential increases in work as the complexity of the model goes up.  For 
complex models, our strategies tend to look more like Approach B.  This can 
result in more work for simple models, but limits the dramatic increases in work 
that can result when complexity increases.   
 

 
 
Figure 2.  Calibration effort vs. model complexity and approach.  Two different approaches 
are shown here (A and B).  Both show an exponential increase as complexity increases, 
but with very different results for the most complex models.   
 
 
Given all of these complications, it was critical to have a solid strategy.   In fact, 
to get to a solution relatively quickly, the strategy seemed to be even more 
important than the specific techniques employed.  The techniques which worked 
especially well are outlined in this paper.   
 
 
Calibration Strategy 
 
As noted earlier, calibration was not just an independent step, because changes 
to improve the calibration caused the need to change other parts of the model, 
frequently creating new calibration issues.  So the strategy here was not just a 
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“calibration strategy” but rather a “validation/verification/calibration” strategy.  
With this in mind, the following elements have proven useful: 
 

1) Utilize traditional best practices as appropriate 
2) Simplify the model as much as possible.   Isolate interactions. 
3) Redesign (instead of tweaking) when calibration becomes difficult 
4) Document along the way to stay organized and minimize cycling 
5) Know when to step away   
6) Build or acquire automated tools to help in testing and analysis 

 
These methods have been useful for all of our models, but they were especially 
helpful for the case study model.  Within the above broad categories, a number 
of specific practices were especially useful, and are described below in some 
detail.  Some of the practices are very easy and do not require much time, while 
others are much more time-consuming.  But the time required increased linearly 
as opposed to the exponential increases in time that can result when attempting 
to use a simple calibration strategy with a complex model.   
 
 

1. Traditional Best Practices 
 
The literature (Sterman, Richmond, Barlas) provides a long list of useful 
techniques, and we find some of them to be particularly useful: 
 

• Unit checking.  This practice is very useful, especially as part of “code 
reads” and verification at a segment level.  Along with unit checking, 
standardization of units has also been very important.  For example, when 
using percentages, for external reporting reasons, we have standardized 
on making them always on a base of 0-100, and we put “pct” in the 
variable name.  (For example “Bad Debt Pct” is the percentage of bad 
debt occurring, represented on a 0 to 100 scale).  This practice makes it 
easy to go back through and verify that every “Pct” factor is divided by 100 
before being used in the model.  Of course, one could standardize instead 
on a 0-1 scale.  The important thing is to have a standard for these types 
of variables that can always be relied upon when reviewing and debugging 
equation logic.  This can save much confusion later in the project.   

 
• Sensitivity testing.  This tends to be especially useful at a model segment 

level to validate that smaller parts of the model are performing as 
expected, and that parameter value choices are robust (no “magic 
parameters”). 

 
• Transient testing.  This also tends to be very effective, especially at a 

segment level.  For example, if orders tripled in one month and then went 
back to the base rate the following month in the model, did the production 
and inventory logic function correctly?  What if orders dropped to zero in 
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one month and then went back to normal the following month?   Simple 
tests like these can be very useful in identifying important errors in the 
model, and in building confidence in the model.   

 
• Comparison Graphs (Richmond).  The technique of using comparison 

graphs was very useful in making sure key parameters showed the right 
behavior and were in the right ranges.  This required loading test cases 
and test results directly into the model, and creating graphs to make it 
easy to quickly compare the model behavior results with the expected or 
reference behavior.  Entering these data and creating the necessary 
graphs can be a significant time investment when the model has many 
outputs, but the benefits far outweigh the costs.  Another great use for the 
comparison graphs was to make quick visual checks for how the model 
was performing after changes were made.  At several points in the project, 
parts of the model began oscillating, but the oscillations weren’t obvious in 
the numerical results in the tables.  The graphs quickly revealed the 
oscillations – an effect that might not have been obvious otherwise.  
These graphs can also be useful at a composite level as an overall check 
for oscillations.  Frequently it has been useful to a create a single graph 
containing two or three key model outputs that are strongly affected by 
many different parts of the model, and to then check that graph frequently.  
For example, in the case study model, “Profit” is affected by nearly 
everything in the model in one way or another.  So if there are significant 
oscillations going on somewhere in the model, it is likely that Profit will be 
oscillating as well.  Keeping an eye on the graph of Profit can be useful as 
a quick overall check.   

 
There are other best practices described in the literature, and we utilize many of 
them routinely without even thinking about them.  We have noticed that the more 
complex the model, the more useful these best practices tend to be.  Since these 
practices are well documented in the literature, the remainder of this paper 
focuses on specific elements of our calibration strategy that may have received 
somewhat less attention historically. 
 
 

Simplification and Isolation of Interactions 
 
 
Our experience agrees with the universal advice that models should be as simple 
as possible for the given purpose (Richmond, et al), and in this case that means 
including enough to make the training experience meaningful without over-
complicating the model or the experience.  For the case study model, extra 
complexity was inherited from the original model and could not be easily 
removed.  Additionally, training simulation models tend to gain complexity as 
bugs are corrected and/or as calibration adjustments are made in different parts 
of the model.   
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As a general rule, our experience suggests that if a model is difficult to calibrate, 
the structure is probably the culpritThis characteristic seems to be especially 
pronounced for qualitative parts of our models, where if the structure is right, the 
calibration can go pretty quickly -- whereas calibration can be virtually impossible 
if the structure is designed without calibration in mind. And if calibration is 
eventually achieved despite a bad structure, it tends to be fragile. 
 
As models become more complex, it becomes harder to spot structural errors.  
So it was very productive with the case study model to spend time continually 
simplifying the model.  It also helped tremendously to temporarily break the long 
feedback loops during the debugging process.  Specific techniques that were 
particularly useful included: A) submodels, B) temporary adjustment factors 
(“shims”), C) slowed transitions on inputs, D) simple cause/effect maps, E) 
careful validation at a submodel level, and F) independent validation and 
calibration of qualitative parts.     
 
2.A. Submodels  
 
In this model, one of the most valuable techniques was to take a troublesome 
section of the model and carefully redesign it until it was a simple as possible, 
then put it back into the larger model.  The work with these submodels helped to 
clarify how certain parts of the overall model should behave, providing important 
foundation points when looking at the rest of the model.  This was also a good 
way to "declutter" the larger model, because once the modeler determined which 
parts really mattered, it was possible to strip away unnecessary parts in the 
larger model.  Submodels were also a great place to apply sensitivity testing as a 
tool to determine how robust the submodel was against or with respect to 
normally expected operating conditions in the model.  
 
In deciding where to build submodels, we looked for parts of the model with 
clearly known expected outputs and behavior patterns which also provided main 
effects to the rest of the model.  For example, there was a production planning 
piece of the case study model that had to regulate production starts in order to 
maintain certain levels of inventory despite changes in demand, changes in 
supply from other regions, and changes in exports to other regions.  This part of 
the model quickly became very complicated through later changes, and it was 
very helpful to build a smaller, standalone version of this submodel and to test 
the key control logic before attending to the larger model.  Boundary testing, 
transient and sensitivity testing was very useful at this submodel level in order to 
validate that it was providing correct responses and staying within the desired 
weeks of inventory.  After completing the testing of the submodel, it was 
documented carefully and saved away as a separate model file for reference 
later.  This exercise helped immensely in cleaning up the full model and in 
building confidence in this important part of the overall model.  This technique 
was repeated in several other parts of the model when standard approaches 
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didn’t work.  Each of these solidly tested submodels provided important points of 
stability in the overall model, making it possible to quickly rule out large parts of 
the model when investigating discrepancies1. 
 
The technique of building solid submodels was probably one of the most 
important keys to getting the case study model working properly.  Given the size 
of the model, discrepancies in the outputs could frequently have been caused by 
a number of different parts of the model.  Every tested submodel provided an 
important point of stability – something that could be ruled out (at least initially) 
when investigating these discrepancies.  It saved a tremendous amount of time, 
and helped to minimize the risk of cycling2.   
 
 
2.B. Temporary Adjustment Factors (“Shims”) 
 
Builders frequently use shims to get all the separate pieces of a project aligned 
before finishing the construction, especially when parts interact, such as with 
doors and windows.  Sometimes these shims remain in place forever, and 
sometimes they are removed as the construction is finished.  In models, we 
frequently add “shims” in the way of temporary adjustment factors at the 
beginning of the calibration process.  This helps to get the numbers in the right 
ranges, making it easier to see which parts of the model need more work.  For 
example, if the market share is way off, many other numbers in the model will 
also be way off (production, revenue, costs, etc.). A useful way to see if those 
other pieces are correct is to force the market share into the right range, so a 
temporary adjustment factor was added to do that3 (see Figure 3 for an 
example).   
 

                                                 
1 A few times, the problem being worked on in the full model actually was created within a submodel that 
was thought to be solid.  But in these cases, it was possible to jump back to the submodel file and 
documentation and quickly determine what had been missed.  
2 This process also provided an important mental benefit during the middle of the project.  After finishing 
the testing of one of these submodels, it was very encouraging to feel good about the solidity of that piece, 
even if there were still numerous questions about the rest of the model.   
3 Another useful technique here was to temporarily use a SMTH function on inputs that were varying too 
much.  See later discussion of this method. 
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Figure 3.  Temporary Adjustment Factors.  These temporary elements were highlighted on 
the diagram with a bold rectangle to assure they would be removed or properly 
documented later 
 
When a model is initially constructed, a particular approach to a certain part of 
the model might seem correct, but then during calibration the original concepts 
may begin to no longer make sense.  Instead of reworking this part of the model 
(and possibly breaking something that was actually correct, thereby creating 
another endless calibration/rework loop), use of temporary adjustment factors 
was a huge help.  For example, suppose that after considerable calibration effort, 
capacity remained at a figure that was consistently 5% below the correct value.  
As a temporary measure to allow work to proceed elsewhere we might add a 
temporary adjustment factor of 5% which is added to the calculated capacity.  
We would put a highly visible box around the factor in the diagram so it would not 
be missed later (see Figure 3).  Once the rest of the calibration process was 
completed, these “magic parameters” could be safely removed.  Without 
highlighting them, it is easy for these factors to become forgotten until they begin 
to create visible problems or confusion at some time later.  (e.g., “Why is market 
share multiplied by 1.000234 here?”).  At the end of the calibration process, 
these special adjustment factors were nearly all removed.  If not, they were 
documented (and justified).  Putting the highlight box around them helped to 
make sure they would not be overlooked later.  These temporary adjustment 
factors have been especially helpful with parts of the model that interact 
extensively with other parts of the model.     
 
2.C. Slowed Transitions Within Feedback Loops 
 
In complex models, it is very easy for oscillations to appear in one part of the 
model due to changes made in different parts of the model.  It can be difficult to 
identify the cause of these oscillations.  One technique that helped was to 
temporarily slow down the rate of change around selected feedback loops.  For 
example, within the case study model, exports were authorized based on 
production costs, quality levels, production capacity available, and shortage in 
the importing region.  Exports started oscillating after revisions were made in the 
way product costs were computed.  The oscillation was created by an intentional 
penalty on the producing region that would cause their costs to increase when 
they exported.  The first time slot they exported, their costs would go up, causing 
them to no longer qualify.  They would therefore stop exporting, and their costs 
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would go down, allowing them to qualify again.  So they were starting or stopping 
exports at every time step, leading to an artifactual oscillation (see Figure 4, 
below).  A SMTH function on the cost comparison verified that this was the cause 
(see 5), and the model was redesigned to correct the issue. 
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Figure 4.  Oscillations.  Note the oscillations starting prior to month 73 in WIP for Export.  
In this example, products are being built in Asia for sale in Europe (the blue line above).  
Variations in the blue line are caused by random fluctuations in market demand.  The 
oscillations in exports caused shipments (in blue) to drop significantly. 
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Figure 5.  Oscillations Removed.  After adding a SMTH function on the cost comparison, 
the oscillations were removed, and shipments (in blue) were back where they were 
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supposed to be.  (The temporary drop in shipments at about time 70 was unrelated; 
caused by factory shutdowns in Europe prior to new factories being ready in Asia) 
 
 
In this example, the addition of the SMTH was permanent, but prior to identifying 
the problem, temporary SMTH functions were tried in several locations to rule out 
other parts of the feedback loops as contributing factors.  For example, quality 
could also have been a cause of the oscillation, because as imports increase, the 
effective quality level in the importing region changes based on the quantity and 
quality of the imports.  As a quick check of this, a SMTH function was temporarily 
added to this quality input, and it was possible to quickly eliminate this factor as a 
possible contributor to the oscillations.  Of course, there are other ways to arrive 
at the same conclusion, but this technique was both quick and effective. 
 
Note also that these SMTH functions provided an easy way to temporarily get 
parts of the model into relatively steady state in order to be able to initiate further 
calibration and testing.     
 
 
2.D. Simple Cause and Effect Maps to Isolate Issues 
 
This one seems pretty obvious, but on a number of occasions while investigating 
model results it was helpful to remember to quickly sketch out a simple causal 
diagram around a troublesome output.  For example, at one point the quality of 
shipped product was wrong.  It could have been caused by too much or too little 
importing of product compared to local production and/or changes in the quality 
levels of the importing or exporting regions.  A simple map laid all of this out, and 
then by examining the reported results for each of the causal factors, it was easy 
to identify the part of the model that had to be the problem.  Then it was a simple 
matter to track down the reason. 
 
This technique seems so simple that it could be easy to overlook and/or assume 
that it might not be necessary.  But it was very helpful in restoring sanity at those 
times during long days when the model behavior had stopped making sense. 
 
 
2.E. Validate, Verify, and Calibrate Initially at a Submodel Level 
 
In a complex model, calibration of one part of the model can have ripple effects 
throughout the rest of the model, causing endless loops of adjustments in one 
area, then adjustments in another, then back to the original area.  This is 
necessary to some extent with complex models, but techniques to reduce this 
looping really help.  One such technique is to thoroughly calibrate segments as 
individual standalone submodels before trying to calibrate the entire ensemble.  
For example, in the case study model “Quality” was an important output on the 
reports, and it was also a critical feed into other areas of the model, showing its 
effect on production capacity, market share, etc.  Calibration of something like 
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revenue, then, could require endless iterations over capacity, market share, then 
quality, then back again.  Instead, the components of quality were thoroughly 
calibrated first and reviewed with the client.  The results of extreme conditions of 
inputs on quality were displayed through an automated Excel tool (see  
 
Figure 6), and adjustments of effects were made here until the client was satisfied 
with the responses.  Then it was possible to treat quality as a “given” in the later 
calibration – so if one of the downstream numbers was wrong, it must have been 
because something else was wrong.   
 
Similarly, market share was driven by a number of different factors (quality, 
advertising, service, price, etc.), and it was very helpful to look at extremes in 
these inputs and have the client decide if the responses were reasonable (see 
Figure 6).  Calibrating these two areas (quality and market share) at a segment 
level significantly simplified the job of calibration of the overall model.  Both of 
them needed to be adjusted slightly in the final stages of model testing, but the 
changes were small, and by then the other parts of the model were also 
reasonably well-calibrated.  Other segments had fewer interactions with the rest 
of the model, but it was useful to get them to stable reference points as well.  
Then the job of calibrating the full model became more of a job of blending the 
effects of these different submodels (operating as black-boxes) without having to 
worry about changes inside the submodels.   
 
 
2.F. Independent Validation And Calibration of Qualitative Parts 
 
Qualitative parts of a system dynamics model can get tricky, and the case study 
model had two important qualitative components:  first, a “Quality” measure 
which calculates outgoing product quality, and second, a number of factors 
affecting product market share – qualitative factors such as market awareness, 
sales effectiveness, service perception, etc.  In the old model, both “Quality” and 
“Market Share” never worked correctly, and were manually adjusted by the 
facilitator during each workshop.  Since these qualitative factors are quite 
subjective, it seemed important to get them locked down individually before 
proceeding to the rest of the model.   
 
The first part to resolve was “Quality”.  Quality was expected to improve in more 
or less an S-curve as effort was expended, with a certain delay for actions to take 
effect.  In addition to the S-curve shape, it should never go above a certain level 
(such as 85% -- different by product), and should take a varying amount of time 
to get there (different by product).  Several other parameters/factors in the model 
impact quality, so, given the issues with quality in the old model, this part of the 
model was built and tested as a separate module, and the resulting behavior 
over time graphs were shared with the client (see Figure 6).   
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Figure 6.  Qualitative Calibration chart showing a family of curves for different model input 
conditions.  It was used to validate the behavior of this part of the model with the client.  
 
 
Each trace in  
 
Figure 6 represents the resulting quality for a specific set of input conditions.  
Similar graphs were created for each of the different products and regions, and 
the client reviewed each for expected behavior.  For the remainder of the project, 
this part of the model could largely be ignored (trusted).  It was important to be 
able to depend on this as being mostly correct, because changes here would 
ripple through large parts of the rest of the model. 
 
The other qualitative/subjective area was in the market share logic and the six 
qualitative factors that drove it.  These were similarly adjusted as a separate 
module (see Figure 7) before attempting to calibrate the entire model. 
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Figure 7.  Market Share Example.  For this product and region, the “driven” (demand) 
market share is shown in the blue dashed line, and the actual delivered market share is 
shown in the solid blue line.  The difference between these two is caused by inadequate 
production capacity to meet all orders.  The “PS Market Share” line in pink shows the 
market share produced by the earlier model.  The factors at the bottom of the graph are 
two of the six components driving market share in the model.   These factors were 
adjusted until the market share performance met client expectations for the given model 
inputs and state.  
 
 
The ideas in this section were essentially parts of a “Divide and Conquer” 
strategy – aimed at breaking the big model into pieces that could be managed, 
and then solving as many problems as possible at the smaller level.  Within that 
strategy, and within the rest of the model as well, continual redesigns and 
simplification were also important.   
 

 
   

3. Redesign Along the Way 
 
 
In our experience, when models are difficult to calibrate, it frequently means 
something is wrong with the design.  It is very easy to design a model that is 
impossible to calibrate, and it also seems that models which are designed 
correctly calibrate quickly.  Therefore, when calibration became difficult here, it 
frequently was productive to redesign part of the model.  This was usually done 
through working with submodels as noted earlier, copying relevant parts to 
another model, simplifying it, validating it, then implementing the results back into 
the main model.  Additionally, it was very helpful to just take the time to review 
related parts of the model as they were encountered in the debugging process, 
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and carefully redesign them if appropriate.  It seems like models invariably get 
cluttered up with unnecessary (and possibly undesirable) temporary fixes as a 
natural part of a lengthy project.  Therefore, it seems helpful as an offset to this 
tendency to periodically look for opportunities to pull them out.   In the case study 
project, following this practice resulted in the removal of a number of potential 
issues that would have been very difficult to track down otherwise. 
 
   

4. Document Throughout The Process 
 

“First Rule of Wing Walking:  Don't let go of 
what you've got hold of, until you have hold of 

something else."   (Anonymous) 
 
As noted earlier, in a complex model, it is very easy for changes made late in the 
calibration process to affect other parts of the model that worked properly earlier 
in the process.  As a result, the logic that is actually correct could get modified in 
an attempt to fix a problem introduced later.  This cycling back and forth can be 
an issue with any model, but it was a particularly risky problem with the case 
study model, given its size and the number and the lengths of the feedback 
loops.  In addition to the ideas mentioned elsewhere, careful documentation was 
a critical tool in minimizing counter-productive cycling through the model.  Early 
cave explorers talked about tying a string, and letting it spool out behind them in 
case they needed it to find their way back out.  Early wing-walkers learned to 
always keep one hand (or at least one foot) on the wing.  Good documentation in 
a complex model can provide the same type of safety net.  Specific techniques 
for improving documentation include:  A) revision management, B) 
recordkeeping, C) code reads, and D) maintain a questions list. 
 
4.A. Revision Management 
 
We have always found it helpful to maintain a careful process of model revisions 
management.  Our system is to save away the first version of the model as 
something like “Model rev A1.itm”. When a number of changes have been 
accumulated, we would save the updated version away as “Model rev A2.itm”.  
This process continues throughout the project.  When significant changes occur, 
we might go to rev B1, C1, etc.   As a further example, if we are working on 
version A23 and made a big change to how demand is generated, that would be 
a signal to move to A24.  If we decide later to change the demand generation 
part back, along with a new set of different changes, the revision would be 
incremented to A25.  That would make it possible to later recover the method 
used in A24, if it was decided that it was a better solution.   
 
The important part of this process is to maintain an appropriate degree of 
discipline, and to jot down notes to indicate what changed in each particular 
revision.  This practice has been a huge help with large models that might be 
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under development for weeks or months.  This practice also has the obvious 
potential to serve as a sort of macro “undo” function, making it possible to revert 
to an earlier revision or to be able to recover pieces from an earlier version.  But 
it was also very helpful in just understanding why something that used to work no 
longer worked.  (For example, “Inventory management worked fine in A22, and 
it’s no longer working in A29, even though I didn’t make any changes in that 
area.  Why?”)  It is a very quick process to pull up each revision of the model and 
compare the relevant pieces.  If necessary, it is also possible to save the 
equations in a text file and use text file comparison to identify all of the changes.  
(see Figure 7).  Saving many model revisions is a very easy thing to do, and it 
can produce huge benefits. 
 
4.B. Recordkeeping 
 
Keeping a change log is an obvious part of documentation, and yet it is easy to 
overlook.  In the case study project, recordkeeping involved keeping meticulous 
notes about what changed and why.  This made it possible to answer the 
question later of "what was I thinking when I did this.”  It was very useful to index 
this by model revisions as noted above.  It can include the changes in a given 
model revision, why they were made, relevant assumptions, etc.  Without this 
information later, it can be hard to decide whether what I’m looking at is just a 
bug, or was done that way for a particular reason.  That information can save a 
lot of time trying to figure it out – or worse, creating a new issue by throwing out 
something important.  The hard part about recordkeeping has always been 
remembering to take the time to make a few quick notes before moving to the 
next thing.  The changes and the rationale all seem so obvious at the time that 
writing it down seems unnecessary.  It isn’t.  It can also be helpful to include in 
the change log screenshots of model runs, references to or extracts from 
information sources, quotes from telephone conversations, etc. 
 
4.C. Code Reads 
 
Related to some of the ideas mentioned earlier, “code reads" were very helpful in 
finding and removing errors without having to trace back from the output.  This 
also was a good way to clean up parts of the model that had become confused 
by various changes over a long period of time.  The process of read, analyze, 
rewrite, test helped to tighten up the model and make it more sustainable. 
 
Since our models are frequently part of ongoing training programs, they tend to 
be used for years.  One business simulation has been in continuous use for over 
5 years in an MBA program, with several thousand students having gone through 
it to-date.  With that many students trying to find a way to “beat” the model, it is 
imperative for the model to be robust and well-tested, and these code reads (and 
rewrites) really help to achieve that goal.  It is also helpful when questions and/or 
issues arise years later because clean code makes it more likely that answers 
can be quickly found.  The documentation described earlier can also be very 
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helpful in these situations, but having a clean model seems to be even more 
important than having great documentation.  
 
Note that these “code reads” are different than just reading back through the 
code while debugging.  The biggest difference is in the mindset, at least for us.  It 
is too easy to simply see what you expect to see.  In the debug process, you’re 
looking for a bug, and the more correct code you see, the more likely it is that 
you subconsciously begin to assume that everything you see is correct.  And 
therefore, that is exactly what we see.  (In these situations, an outsider is 
frequently able to spot the bug more quickly).  A “code read” is an examination of 
the code without knowing there is a bug there – seeing if it all makes sense and 
is as clean as it could be.  Effectively, the mental assumption during code reads 
is that “everything is wrong unless proven otherwise”, as opposed to “everything 
is OK unless I can see how it could have caused this bug.”.  It seems to us to be 
a very useful mental shift.   By doing a code read looking for weak links in the 
chain of logic, it has been possible to spot something like a subtle units-
conversion problem which might have been difficult to spot during debugging.  
This type of error can often be found in a careful code read, avoiding a potentially 
lengthy debug process when it shows up later in testing and calibration.  
 
As changes are made during the development and debugging process, it is easy 
for the model to become cluttered with quick fixes that may or may not have been 
appropriate.  And, as the overall model evolves and matures, some of these fixes 
may have become no longer necessary, and some may actually get in the way of 
progress.  The code read process helps to identify these fixes so that they can be 
removed.  Overall, the code read process can help tremendously to get a model 
slimmed back down to its essential parts – especially late in the project.  This 
helps to make the model more robust, more explainable, and more maintainable 
(and less embarrassing when someone else reviews your work)! 
 
4.D. Maintain a Questions List 
 
In projects like the case study project, the modeler will invariably have numerous 
questions from day one.  A useful practice is to note these questions in the 
project notebook as they arise, with an open check-box beside them.  Some of 
them will be answered quickly, and can be easily checked off.  Many remain for a 
while, because the answers are not obvious, and other work can be performed in 
the meantime.  As questions are resolved, they are checked off, and the answers 
are noted in the project notebook.  Some of these solutions will need to be 
revisited later, so the documented explanation can be invaluable.  Or, during 
debugging, the question might come up again.  In both cases, it can be very 
helpful to have a record of the questions and how they were answered4.   

                                                 
4 These questions (and solutions) can also be very helpful when creating the final user documentation for 
the project.  The list is a great way to remember important assumptions that were made in the project and 
other questions that a user might have about the behavior of the model.  If we have a question when 
building the model, others are likely to have similar questions at some point.  
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Although the case study model was not created from scratch, a number of 
questions were noted as the new model was built.  These were helpful in 
identifying places to start in the debugging process, and in reminding us of 
places that needed more thought after the entire model had been implemented.   
 
Further, writing down issues can be intrinsically helpful, because in trying to 
explain the problem in words it can help to reveal errors in thinking or bad 
assumptions. 
 

 
5. Know When to Step Away 

 
We all know that there are times when the best thing to do is to just step away 
from a complex task for a while.  But it’s hard to recognize when to do this, and 
even if it is recognized, there is a mental battle between the need to take a break 
from the model versus the concern to keep working while the model is all “in our 
head.”  In the case study project, when the modeler finally decided that it was 
time to step away, he wrote down everything he had observed about the current 
problem and any thoughts about what to try next.  Then he took the break.  After 
taking the break, he nearly always had an immediate insight about where the 
problem might be.  And if not, at least there was a good starting point for getting 
back on track.  Stepping away was helpful, and the documentation was useful 
then and later.  
 
 
  

6. Build/Acquire Automated Tools 
 
 
There are times when system dynamics model development feels a lot like 
electrical engineering.  In that field, it is frequently necessary to design and build 
devices that are only used to help check out the design of a particular product.  It 
can seem expensive to spend the time and money to construct this test 
hardware, but it is frequently essential.  In system dynamics models we have 
seen the same need from time to time.  Fortunately, the SD development 
platforms provide helpful tools for this task, but it might be necessary to make a 
significant time investment.  Although the cost might be high, the payoff can be 
huge.  Specific techniques include: A) automated testing tools, B ) automated 
analysis tools, and C) code comparison utility. 
 
6.A. Automated Testing Tools 
 
The SD development platform usually provides a method for doing sensitivity 
testing, and sensitivity tests are essential for validating the stability of submodels, 
as noted earlier.  Sensitivity tests are also helpful for studying the results of 
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combinations of the many different inputs to the overall model.  However, 
preparation of the inputs for the sensitivity testing could easily become time-
consuming and error-prone.  In this project, several times we built special Excel-
based tools that would create the inputs for these sensitivity tests and assist in 
analysis of the outputs.  For example, this method was used to create the quality 
profiles shown earlier (e.g.,  
 
Figure 6).   
 
6.B. Automated Analysis Tools 
 
In addition to creating automated testing tools, we also created tools that were 
just used in helping to analyze the results.  As noted earlier, the case study 
model had 296 outputs that were important, and it was easy to miss undesirable 
changes in some of those outputs while other parts were being adjusted.  An 
Excel-based tool was constructed that would compare the results from a number 
of model revisions and show the differences.  This tool looked at each time slot of 
all 296 outputs for each model. The tool was a bit tedious to construct, and for 
that reason, it was not built until late in the project (out of necessity at that point).  
But it was well worth the effort, and in hindsight it should have been built much 
earlier.    
 
6.C. Code Comparison Utility 
 
A tool borrowed from the software development realm can be useful for 
identifying differences between various model revisions, as noted earlier.  One 
such tool is WINDIFF.EXE, provided by Microsoft5.  This tool quickly shows every 
line that is different between the two files, making it easy to quickly see how the 
two versions differ. 
 
 

 
 
Figure 7.  Text File Comparison Tool.  The screenshot above is from WINDIFF, showing 
part of a comparison between two model revisions (A72 and A76) – one in red and the 
other in yellow.  All lines that are not colored are identical between the two files.  The 
scrollbars to the left show where in the file differences appear. 

                                                 
5 See the Wikipedia entry for WINDIFF or the Microsoft website for more information.  
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This tool has been especially useful in tracking down why part of a model 
suddenly no longer works, even though it appeared to work earlier.  It is a simple 
matter to go back and get text versions of the equations from each of the two 
model revisions, and then the comparison tool will quickly show everything that is 
different between the two model revisions.  This simple technique has 
undoubtedly saved hours of confusing analysis.  Since it is so easy to use, it has 
also made it possible to investigate and identify the causes of special conditions 
observed within the model that aren’t clearly “bugs”, but just aren’t working the 
way the way it was expected under different inputs.     
 
The automated tools described here are not always very important in simple 
modeling projects, but in complex ones, we believe they can make a huge 
difference in the time required and the quality of the resulting model.   
 
 

6. Conclusions 
 
 

Every system dynamics project offers the opportunity for learning, and the case 
study project offered many such opportunities.  The project served to validate a 
number of our normal practices, and it also inspired the creation of new ones.  A 
few general themes seemed especially important.   
 
First, many of the techniques presented were clearly valuable in hindsight, but 
there was a strong temptation to not do them originally because they seemed like 
unnecessary work.  Some techniques might not have been necessary on a small 
project, but all of the techniques were very useful (in fact essential) on the case 
study project, and it would have been helpful to have made the investment 
earlier.   
 
Second, staying organized on a project like this was a major challenge, and 
many of the tools discussed earlier were very helpful.  Thorough submodels 
provided important points of stability, making it easy to decide “the problem is 
elsewhere,” which helped to preventing throwing out solid work by accident.  
Careful documentation and revision management provided a stable reference 
point on what was done, why, and what questions remained.   
 
Third, having a clear strategy was critical.  Simple models, or models with only 
one or two key issues, can be approached without worrying so much about a 
strategy.  But complex models that might have many critical issues can create 
endless cycling unless a good strategy is carefully followed. 
 
Finally, continual redesigns were critical in the process, especially given the way 
the case study model will be used.  It was a lot like the military idea of “divide and 
conquer,” where a large opposing force is conquered by concentrating 
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overwhelming forces on smaller units one at a time.  In this project, it was more 
like “divide and solidify” – put all of the focus on a small part of the model, and 
don’t leave until that small part is solid – then move to the rest.  Initial versions of 
our models are pretty clean, and invariably get cluttered as changes are made to 
correct various issues or to solve specific client needs.  By taking advantage of 
opportunities to reexamine or redesign pieces of the model along the way, the 
final model is once again clean, providing a stable and understandable result.  
And the process also avoids having to track down innumerable issues later.  
Additionally, this practice is also extremely beneficial months or years later when 
there are questions about the model.  Many of these training models are used for 
years, and they generate an ongoing stream of questions from instructors and 
students along the way.  Because the models are clean and well-documented 
questions can often be answered in 15 or 20 minutes, even years later – and half 
of that time is spent reconstructing the situation in the model that motivated the 
questions. 
 
In the case study project, and in our experience in general, 
validation/verification/calibration of system dynamics models is a loop, as 
illustrated in Figure 1.  Changes made as a result of issues in one of these three 
activities often affects the other activities, creating the potential for endless 
cycling.  We break these cycles by using a divide and conquer approach, getting 
each piece solid, simplified and well-tested before moving to the next.  And we 
assume that if calibration is difficult, the cause is most likely within the model 
structure.  This overall strategy, along with the specific techniques described, 
was very helpful in getting the case study project to a completed state 10 years 
after calibration work on the earlier model was largely abandoned.   
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