

Customer Acquisition Dynamics

"Getting Started with STELLA and iThink" Workshop International System Dynamics Conference July 27, 2006

> Presented by: Joanne Egner Karim Chichakly Peter Lacey

(Reinforcing Loop)

Customers(t) = Customers(t - dt) + (Customer_Recruitment) * dt INIT Customers = 100

INFLOWS:

Customer_Recruitment = Marketing_Spend*Productivity
Marketing_Spend = Revenue*Marketing_Spend_Fraction
Marketing_Spend_Fraction = 0.08
Productivity = 0.05
Revenue = Customers*Revenue_per_Customer
Revenue_per_Customer = 50

(Reinforcing Loop with Balancing Loop)

Customers(t) = Customers(t - dt) + (Customer__Recruitment) * dt INIT Customers = 100

INFLOWS:

Customer__Recruitment = Marketing_Spend*Productivity
Potential__Customers(t) = Potential__Customers(t - dt) + (- Customer__Recruitment) * dt
INIT Potential__Customers = 900

OUTFLOWS:

Customer__Recruitment = Marketing_Spend*Productivity
Marketing_Spend = Revenue*Marketing_Spend_Fraction
Marketing_Spend_Fraction = 0.08
Productivity = 0.05
Revenue = Customers*Revenue_per_Customer
Revenue_per_Customer = 50

(Introducing a Market Saturation Effect)

Customers(t) = Customers(t - dt) + (Customer__Recruitment) * dt INIT Customers = 100

INFLOWS:

Customer__Recruitment = Marketing_Spend*Productivity

Potential__Customers(t) = Potential__Customers(t - dt) + (- Customer__Recruitment) * dt

INIT Potential__Customers = 900

OUTFLOWS:

Customer__Recruitment = Marketing_Spend*Productivity

Effect on Productivity = Potential Customers/INIT(Potential Customers)

Marketing_Spend = Revenue*Marketing_Spend_Fraction

Marketing_Spend_Fraction = 0.08

Productivity = 0.05*Effect_on__Productivity

Revenue = Customers*Revenue_per_Customer

Revenue_per_Customer = 50

(Introducing another loop - Customer Loss)

Customers(t) = Customers(t - dt) + (Customer__Recruitment - Customer_Loss) * dt INIT Customers = 100

INFLOWS:

Customer__Recruitment = Marketing_Spend*Productivity

OUTFLOWS:

Customer_Loss = Customers*Ave_Customer_Loss

Lost__Customers(t) = Lost__Customers(t - dt) + (Customer_Loss) * dt

INIT Lost__Customers = 0

INFLOWS:

Customer_Loss = Customers*Ave_Customer_Loss

Potential__Customers(t) = Potential__Customers(t - dt) + (- Customer__Recruitment) * dt

INIT Potential__Customers = 900

OUTFLOWS:

Customer__Recruitment = Marketing_Spend*Productivity

 $Ave_Customer_Loss = 0.05$

Effect_on__Productivity = Potential__Customers/INIT(Potential__Customers)

Marketing_Spend = Revenue*Marketing_Spend_Fraction

Marketing_Spend_Fraction = 0.08

Productivity = 0.05*Effect_on__Productivity

Revenue = Customers*Revenue per Customer

Revenue per Customer = 50

