

Equations and Stock-Flow Diagrams Omitted from the Main Text Due to File Size Limit

Stock-Flow Diagram of the Closed-Loop Supply Chain

Stock-Flow Diagram of the Legislation

Models' Equations

Levels	
init	Collected_Products = 3
flow	Collected_Products=-dt*Products_Accepted_for_Recycling+dt*Collection_Rate -dt*Products_Rejected_for_Recycling
doc	Collected_Products = Products arriving at the collection centers.
unit	Collected_Products = items
init	$Demand_Backlog = 0$
flow	Demand_Backlog = -dt*Demand_Backlog_Reduction_Rate +dt*Demand
doc	Demand_Backlog = Unsatisfied demand served when Distributor's_Inventory is available.
unit	Demand_Backlog = items
init	$Disposed_Products = 0$
flow	Disposed_Products=+dt*Products_Rejected_for_Recycling +dt*Controllable_Disposal
doc	Disposed_Products = Accumulates the controllably disposed products.
unit	Disposed_Products = items
init	Distributors_Inventory = 0
flow	Distributors_Inventory = -dt*Sales +dt*Shipments_to_Distributor
doc	Distributors_Inventory = Distributor's on-hand inventory.
unit	Distributors_Inventory = items
dim	Legislation = $(L=14)$
init	Legislation = $[0.8, 0.87, 0.87, 0]$
flow	Legislation = +dt*Change_in_Legislation
doc	Legislation = The initial values of the environmental legislation in 2003.

1: Collection Percentage 2: Recycling Percentage 3: Recyclability 4: Recycled Content Legislation = (dimensionless) unit Natural_Resources = Initial_Resources init Natural_Resources = -dt*ARRSUM(Procurement_Rate) flow doc Natural_Resources = Inventory of natural resources. Natural_Resources = items unit $Orders_Backlog = 0$ init Orders Backlog=-dt*Orders Backlog Reduction Rate+dt*Distributors Orders flow Orders_Backlog Unsatisfied Distributor's Orders doc served when =Serviceable Inventory is available. Orders_Backlog = items unit init Production_Backlog = 0Production_Backlog=-dt*Production_Backlog_Reduction_Rate flow +dt*Producers Orders Production Backlog = Unsatisfied Producer's Orders served when raw materials doc are available. Production_Backlog = items unit dim Raw Materials Inventory = (R=1..2)Raw_Materials_Inventory = [0, 100]init Raw_Materials_Inventory = +dt*Recycling_Rate +dt*Procurement_Rate flow -dt*Usage_Rate Raw_Materials_Inventory = Inventory of producer's natural resources and doc recycled materials. 1: Non-renewable materials 2: Recycled materials Raw_Materials_Inventory = items unit Recyclable_Products = 0init Recyclable Products = -dt*ARRSUM(Recycling Rate) flow +dt*Products_Accepted_for_Recycling -dt*Controllable_Disposal Recyclable_Products = Inventory of Used_Products that passed inspection and doc can be recycled. Recyclable Products = items unit init Serviceable_Inventory = 0flow Serviceable_Inventory = +dt*Production_Rate-dt*Shipments_to_Distributor Serviceable_Inventory = On-hand inventory of new products. doc Serviceable_Inventory = items unit init $Sum_Disposal = 0$ Sum Disposal = +dt*Products Rejected for Recycling flow

- doc Sum_Disposal = Accumulates the Products_Rejected_for_Recycling, Controllable_Disposal and Uncontrollable_Disposal.
- unit Sum_Disposal = items
- init Uncontrollably_Disposed_Products = 0
- flow Uncontrollably_Disposed_Products = +dt*Uncontrollable_Disposal
- doc Uncontrollably_Disposed_Products = Accumulates the uncontrollably disposed products.
- unit Uncontrollably_Disposed_Products = items

Rates

- dim Change_in_Legislation = (L=1..4)
- aux Change_in_Legislation=PULSE(MAX(Desired_Collection-Legislation(1),0), Leg_Time,Leg_Time)*Switch1|L=1;PULSE(MAX(Desired_Recycling-Legislation(2),0),Leg_Time,Leg_Time)*Switch1|L=2;PULSE(MAX (Desired_Recycling-Legislation(3),0),Leg_Time,Leg_Time)*Switch1|L=3; PULSE(MAX(Desired_Content-Legislation(4),0),Leg_Time,Leg_Time)* Switch1 | L=4
 doc Change_in_Legislation = Change in the current Legislation. 1: Collection Percentage 2: Recycling Percentage 3: Recyclability 4: Recycled Content
 unit Change_in_Legislation = 1/week
- aux Collection_Rate=MIN(Collection_Capacity,MAX(Used_Products *Collection_Percentage,Used_Products*Minimum_Collection_Percentage))
- doc Collection_Rate = Flow of Used_Products to collection facilities.
- unit Collection_Rate = items/week
- aux Controllable_Disposal=MAX(Recyclable_Products-Recycling_Rate(2) *TIMESTEP,0)/Recyclable_Stock_Keeping_Time
- doc Controllable_Disposal = Flow of surplus stock of Recyclable_Products to prevent the costly accumulation if Recycling_Capacity is not enough.
- $unit \quad Controllable_Disposal = items/week$
- aux $Demand = ((1+0.000791)^{TIME})^{*}NORMAL(13.85, 3.58, 0.01)$
- doc Demand = Demand of the specific firm.
- unit Demand = items/week
- aux Demand_Backlog_Reduction_Rate = Sales
- doc Demand_Backlog_Reduction_Rate = The reduction of the Demand_Backlog due to sales.
- unit Demand_Backlog_Reduction_Rate = items/week
- aux Distributors_Orders = Expected_Demand+DI_Discrepancy/DI_Adj_Time
- doc Distributors_Orders = Orders placed from the distributor to producer.

- unit Distributors_Orders = items/week
- aux Orders_Backlog_Reduction_Rate = Shipments_to_Distributor
- doc Orders_Backlog_Reduction_Rate = The reduction of the Orders_Backlog due to Shipments_to_Distributor.
- unit Orders_Backlog_Reduction_Rate = items/week

dim Procurement_Rate = (R=1..2)

- aux Procurement_Rate=IF(Raw_Materials_Inventory(2)/TIMESTEP <Recycled_Content*Expected_Raw_Materials, MAX(MIN(Natural_Resources /Procurement_Time, Expected_Raw_Materials-Raw_Materials_Inventory(2) /TIMESTEP),0),MAX(MIN(Natural_Resources/Procurement_Time,((1-Recycled_Content)*Expected_Raw_Materials)-((Raw_Materials_Inventory(2)/ TIMESTEP)-Recycled_Content*Expected_Raw_Materials)),0))|R=1;0|R=2
- doc Procurement_Rate = Flow of Natural_Resources to the producer.
 - 1: Natural resources
 - 2: Recycled materials
- unit Procurement_Rate = items/week
- aux Producers_Orders=Expected_Distributors_Orders +SI_Discrepancy/SI_Adj_Time
- doc Producers_Orders = Orders placed from the producer to raw materials' warehouse.
- unit Producers_Orders = items/week
- aux Production_Backlog_Reduction_Rate = ARRSUM(Usage_Rate)
- doc Production_Backlog_Reduction_Rate = The reduction of the Production_Backlog due to Production_Rate.
- unit Production_Backlog_Reduction_Rate = items/week
- aux Production_Rate = ARRSUM(Usage_Rate)
- doc Production_Rate = The firm's production rate (it includes both natural resources and recycled materials as raw materials).
- unit Production_Rate = items/week
- aux Products_Accepted_for_Recycling=MAX(MIN(Collected_Products *Recycling_Percentage,Collected_Products*Recyclability),Collected_Products *Minimum_Recycling_Percentage)/Inspection_Time
- doc Products_Accepted_for_Recycling = Flow of Used_Products that have passed inspection and can be recycled.
- unit Products_Accepted_for_Recycling = items/week
- aux Products_Rejected_for_Recycling=MAX(Collected_Products-Products_Accepted_for_Recycling*TIMESTEP,0)/Inspection_Time
- doc Products_Rejected_for_Recycling = Flow of Used_Products that have not passed inspection and should be disposed.
- unit Products_Rejected_for_Recycling = items/week

dim	Recycling_Rate = $(R=12)$		
aux	Recycling_Rate = $0 R=1$; MIN(Recyclable_Products/TIMESTEP,		
	Recycling_Capacity) R=2		
doc	Recycling_Rate = Flow of Recyclable_Products through the recycling facilities.		
	1: Natural resources		
	2: Recycled materials		
unit	Recycling Rate = items/week		
GIIIt	roof oning_rate rooms, wook		
911 V	Sales - MIN(Demand Backlog Distributors Inventory)/Delivery Time		
doc	Sales – Sales according to demand and Distributor's Inventory		
uoc	Sales – Sales according to demand and Distributor s_inventory.		
um	Sales – Items/week		
	Chinesente (c. Distributor MINI(Comicoshla Largentera Ordera Deslater)		
aux	Snipments_to_Distributor=MIN(Serviceable_Inventory,Orders_Backlog)		
1	/Snipment_lime		
doc	Shipments_to_Distributor = Shipments_to_Distributor according to distributor's		
	orders and Serviceable_Inventory.		
unit	Shipments_to_Distributor = items/week		
aux	Uncontrollable_Disposal = MAX(Used_Products-Collection_Rate,0)		
doc	Uncontrollable_Disposal = Flow of Used_Products to disposal due to limited		
	Collection_Capacity.		
unit	Uncontrollable_Disposal = items/week		
	•		
dim	Usage Rate = $(R=12)$		
aux	Usage Rate=MIN(Raw Materials Inventory(1)/TIMESTEP.		
	Accomplishable Production Rate-MIN(Accomplishable Production Rate		
	Raw Materials Inventory(2)/TIMESTEP))R=1·MIN(Accomplishable		
	Production Rate Raw Materials Inventory(2)/TIMESTEP) $ R-2$		
doc	Usage R_{2} = The usage rate of raw materials		
uoc	1: Natural resources		
	2. Desculed meterials		
	2. Recycled materials		
unit	Usage_Rate = items/week		
Auxilia	aries		
aux	Accomplishable_Production_Rate=MAX(MIN(Production_Capacity,		
	Production_Backlog/TIMESTEP),0)		
doc	Accomplishable_Production_Rate = Ancillary variable for the formulation of		
	Production_Rate.		
unit	Accomplishable_Production_Rate = items/week		
aux	Availability_of_Resources = Natural_Resources DIVZ0 Initial_Resources		
doc	Availability_of_Resources = Fraction of Natural_Resources to		
	Initial_Resources.		
unit	Availability of Resources = (dimensionless)		
-			
aux	AvrLandfill = DELAYINF(Landfill Availability.a L.1 Landfill Availability)		
doc	AvrLandfill = Forecast of Landfill Availability obtained using exponential		
	smoothing.		
	0.		

- unit AvrLandfill = (dimensionless)
- aux AvrResAv=DELAYINF(Availability_of_Resources,a_AR,1, Availability_of_Resources)
- doc AvrResAv = Forecast of Availability_of_Resources obtained using exponential smoothing.
- unit AvrResAv = (dimensionless)
- aux Collection_Percentage = Legislation(1)
- doc Collection_Percentage = Take-back obligations.
- unit Collection_Percentage = (dimensionless)
- aux Desired_Collection = GRAPH(AvrLandfill,0,1,[1,0"Min:0;Max:1"]) *Tactics(1) +GRAPH(AvrLandfill,0,0.1,[1,0.6,0.34,0.22,0.16,0.12,0.1,0.08,0.06,0.03,0 "Min:0;Max:1"])*Tactics(2) +GRAPH(AvrLandfill,0,0.1,[1,0.99,0.97,0.93,0.89, 0.82,0.74,0.64,0.51,0.33,0"Min:0;Max:1"])*Tactics(3) +GRAPH(AvrLandfill,0, 0.1,[1,0.74,0.63,0.55,0.52,0.5,0.48,0.45,0.37,0.26,0"Min:0;Max:1"])*Tactics(4) doc Desired Collection = Desired change in current Collection Percentage.
- unit Desired_Collection = (dimensionless)
- $\begin{array}{ll} aux & Desired_Content = GRAPH(AvrResAv,0,1,[1,0"Min:0;Max:1"])*Tactics(1) + \\ & GRAPH(AvrResAv,0,0.1,[1,0.6,0.34,0.22,0.16,0.12,0.1,0.08,0.06,0.03,0 \\ & "Min:0;Max:1"])*Tactics(2) + GRAPH(AvrResAv,0,0.1,[1,0.99,0.97,0.93,0.89, \\ & 0.82,0.74,0.64,0.51,0.33,0"Min:0;Max:1"])*Tactics(3) & +GRAPH(AvrResAv,0, \\ & 0.1,[1,0.74,0.63,0.55,0.52,0.5,0.48,0.45,0.37,0.26,0"Min:0;Max:1"])*Tactics(4) \\ \end{array}$
- doc Desired_Content = Desired change in current Recycled Content.
- unit Desired_Content = (dimensionless)
- aux Desired_DI = Expected_Demand*DI_Cover_Time
- doc Desired_DI = Desired distributor's inventory.
- unit Desired_DI = items
- aux Desired_Recycling = GRAPH(Rec_Ratio,0,1,[1,0"Min:0;Max:1"])*Tactics(1)+ GRAPH(Rec_Ratio,0,0.1,[1,0.6,0.34,0.22,0.16,0.12,0.1,0.08,0.06,0.03,0 "Min:0;Max:1"])*Tactics(2) +GRAPH(Rec_Ratio,0,0.1,[1,0.99,0.97,0.93,0.89, 0.82,0.74,0.64,0.51,0.33,0"Min:0;Max:1"])*Tactics(3) +GRAPH(Rec_Ratio,0, 0.1,[1,0.74,0.63,0.55,0.52,0.5,0.48,0.45,0.37,0.26,0"Min:0;Max:1"])*Tactics(4)
- doc Desired_Recycling = Desired change in current recycling activities.
- unit Desired_Recycling = (dimensionless)
- aux Desired_RM = Expected_Producers_Orders*RM_Cover_Time
- doc Desired_RM = Desired natural materials' inventory.
- unit Desired_RM = items
- aux Desired_SI = Expected_Distributors_Orders*SI_Cover_Time
- doc Desired_SI = Desired serviceable inventory.
- unit Desired_SI = items

aux doc	DI_Discrepancy = MAX(Desired_DI-Distributors_Inventory,0) DI_Discrepancy = Discrepancy between the desired distributor's inventory and the actual distributor's inventory
unit	DI_Discrepancy = items
aux	Expected_Demand = DELAYINF(Demand,a_D,1,Demand)
unit	Expected_Demand = Exponential shooting of Demand. Expected_Demand = items/week
aux	Expected_Distributors_Orders=DELAYINF(Distributors_Orders,a_DI,1, Distributors_Orders)
doc	Expected_Distributors_Orders = Exponential smoothing of Distributor's orders.
unit	Expected_Distributors_Orders = items/week
aux	Expected_Producers_Orders=DELAYINF(Producers_Orders,a_SI,1, Producers_Orders)
doc	Expected_Producers_Orders = Exponential smoothing of Producer's_orders.
unit	Expected_Producers_Orders = items/week
aux	Expected_Raw_Materials=Expected_Producers_Orders- Expected_Recycling_Rate+RM_Discrepancy/RM_Adj_Time
doc	Expected_Raw_Materials = Ancillary variable for the formulation of Procurement_Rate.
unit	Expected_Raw_Materials = items/week
aux	Expected_Recycling_Rate=DELAYINF(Recycling_Rate(2),a_RR,1, Recycling_Rate(2))
doc	Expected_Recycling_Rate = Exponential smoothing of Recycling_rate.
unit	Expected_Recycling_Rate = items/week
aux	Landfill_Availability = MAX((Initial_Landfill_Availability-Disposed_Products -Uncontrollably_Disposed_Products),0) DIVZ0 Initial_Landfill_Availability
doc	Landfill_Availability = Reflects how much the available landfills have shrunk concerning the Initial_Landfill_Availability.
unit	Landfill_Availability = (dimensionless)
aux	Limit_of_Recyclability = Legislation(3)
doc	Limit_of_Recyclability = Legislative recyclability.
unit	Limit_of_Recyclability = (dimensionless)
aux	Limit_of_Recycled_Content = Legislation(4)
doc	Limit_of_Recycled_Content = Legislative recycled content.
unit	Limit_of_Recycled_Content = (dimensionless)
aux	Rec_Ratio = AvrResAv*AvrLandfill
doc	Rec_Ratio = Product of AvrLandfill and AvrResAv.
unit	Rec_Ratio = (dimensionless)

aux	Recyclability = MAX(DELAYMTR(Limit_of_Recyclability, Redesign_Time, 3, Minimum_Recyclability), Minimum_Recyclability)
doc	Recyclability = If a product can be recycled. Recyclability = (dimensionless)
um	Recyclability – (dimensionless)
aux	Recycled_Content=MAX(Limit_of_Recycled_Content, Minimum_Limit_of_Recycled_Content)
doc	Recycled_Content = Percentage of recycled materials to be used in producing goods
unit	Recycled_Content = (dimensionless)
aux	Recycling_Percentage = Legislation(2)
doc	Recycling_Percentage = Legislative recycling percentage.
unit	Recycling_Percentage = (dimensionless)
aux	Residence_Time = NORMAL(16.444,4.1995,0.29)
doc	Residence_Time = Distribution of residence time of refrigerators.
unit	Residence_Time = year
aux	RM_Discrepancy=MAX(Desired_RM- (Pany_Materials_Inventory(1)+Pany_Materials_Inventory(2))(0)
doc	RM_Discrepancy = Discrepancy between the desired raw materials' inventory
unit	RM_Discrepancy = items
aux	SI_Discrepancy = MAX(Desired_SI-Serviceable_Inventory,0)
doc	SI_Discrepancy = Discrepancy between the desired serviceable inventory and the actual serviceable inventory
unit	SI_Discrepancy = items
911 V	Used Products - DELAVMTR(Sales Residence Time*50.20.10)
doc	Used Products – Products in use
unit	Used_Products = items/week
Cart	
const	$\frac{ms}{2}$ AP = 25
doc	$a_A A B = Smoothing factor used for the estimation of AurBesAu$
unit	a $AR = week$
	_
const	$a_D = 2$
doc	a_D = Smoothing factor used for the estimation of Demand.
unit	$a_D = week$
const	a_DI = 2
doc	a_DI = Smoothing factor used for the estimation of Distributor's_Inventory.
unit	a_DI = week
const	a_L = 25

a_L = Smoothing factor used for the estimation of AvrLandfill. doc a L = weekunit const $a_RR = 25$ a_RR = Smoothing factor used for the estimation of Raw_Materials_Inventory. doc unit a RR = weekconst $a_SI = 2$ doc a_SI = Smoothing factor used for the estimation of Serviceable_Inventory. a SI = weekunit const Collection_Capacity = 1000Collection Capacity = Capacity of the collection facilities. doc Collection_Capacity = items/week unit const Delivery_Time = 2Delivery_Time = Time needed to transfer products from distributor to end users. doc Delivery_Time = week unit const DI_Adj_Time = 1 DI_Adj_Time = week unit const DI Cover Time = 2DI_Cover_Time = week unit const Initial_Landfill_Availability = 1800 Initial_Landfill_Availability = The value of the landfill availability at the doc beginning of the simulation period. Initial_Landfill_Availability = items unit const Initial_Resources = 90000000 Initial_Resources = The value of Natural_Resources at the beginning of the doc simulation period. unit Initial_Resources = items const Inspection Time = 1Inspection_Time = Time needed for the inspection process. doc Inspection Time = week unit const Leg Time = 6*50Leg_Time = Time needed for new environmental regulations. doc Leg_Time = week unit const Minimum_Collection_Percentage = 0.2 Minimum Collection Percentage = The minimum value of collection doc percentage. unit Minimum_Collection_Percentage = (dimensionless)

const Minimum_Limit_of_Recycled_Content = 0.2 Minimum_Limit_of_Recycled_Content = The minimum value of recycled doc content. Minimum_Limit_of_Recycled_Content = (dimensionless) unit const Minimum Recyclability = 0.2Minimum_Recyclability = The minimum value of Recyclability. doc Minimum_Recyclability = (dimensionless) unit const Minimum Recycling Percentage = 0.2Minimum_Recycling_Percentage = The minimum value of recycling doc percentage. Minimum Recycling Percentage = (dimensionless) unit const Procurement Time = 2Procurement_Time = Time needed for the supply of Natural_Resources. doc Procurement_Time = week unit const Production_Capacity = 1000doc Production_Capacity = Capacity of the producer's facilities. unit Production Capacity = items/week const Recyclable_Stock_Keeping_Time = 2 Recyclable_Stock_Keeping_Time The doc = maximum time that Recyclable Products remain unused in the recycling facilities. Recyclable_Stock_Keeping_Time = week unit const Recycling_Capacity = 1000 Recycling_Capacity = Capacity of the recycling facilities. doc Recycling_Capacity = items/week unit const Redesign_Time = 12+5*50Redesign_Time = Redesign time. doc Redesign_Time = week unit const RM Adj Time = 1 $RM_Adj_Time = week$ unit const $RM_Cover_Time = 2$ RM Cover Time = week unit const Shipment_Time = 2doc Shipment_Time = Time needed to transfer products from producer to distributor. Shipment_Time = week unit const $SI_Adj_Time = 1$ unit SI_Adj_Time = week

const SI_Cover_Time = 2 unit SI_Cover_Time = week const Switch1 = 0 doc Switch1 = Switch that it can be either 0 or 1. unit Switch1 = (dimensionless) dim Tactics = (LB=1..4)

- const Tactics = [0, 0, 0, 1]
- doc Tactics = Political tactics introducing new regulatory measures.
- unit Tactics = (dimensionless)