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Abstract

Constructing the reference modes is a critical step in system dynamics modeling. Estimat-
ing rates from sparse time series presents a unique problem. Specifically, as the counts per unit
time approach zero, the time series start to look increasingly like discrete stochastic variables,
i.e., not continuous, even though one might in some situations reasonably hypothesize an un-
derlying continuous variable. Smoothing techniques are commonly used to identify patterns
in noisy data, but introduce and remove features that could mislead the modeler. There has
been considerable research on optimal smoothing techniques for noisy time series. This paper
presents initial work toward different approach that side steps the question of optimal smooth-
ing and takes advantage of the emphasis in system dynamics of good models being expected to
perform well over a range of conditions.

Having rich numerical data to support reference modes can be a critical element of successful
system dynamics model testing and confidence building (Homer, 1997). While numerical data
typically represent only a small portion of stakeholders’ knowledge of a problem (Forrester, 1980),
numerical data that are available should be included. Social services agencies typically maintain
one or more case or client level databases, which often include information on dates of key events
like opening and closing of cases, and referrals to other agencies, counseling sessions. These event
dates can be used to estimate rates such as the number of new cases per day and levels such as
the client caseload. When phenomena are “large” relative to the time constants of interest, the
number of events per unit time can be reasonably approximated as a continuous variable (Sterman,
2000). Such variables may have noise and require smoothing in order to see the general trends
(Forrester, 1961/1999; Randers, 1980). Smoothing, however, is a tricky affair as there is always
the risk introducing or removing time series features. Nonetheless, smoothing can help modelers
see general patterns, and there is a large body of research into various techniques and the selection
of the best approach for various problems. But such approaches, however valid, create special
difficulties when considering sparse time series. That is, time series where the frequencies are so



low that the estimated number of events per unit time becomes more discontinuous and discrete.1

This is likely to be the case with small social service agencies like domestic violence shelters,
group homes, small public health clinics, and other situations involving small populations. One
might be tempted to abandon the construction of numerical reference modes if faced with sparse
time series and rely on hypothetical or qualitative reference modes as an alternative. Doing that,
however, would be to ignore important information that already exists. So the question becomes,
how might one approach the representation of sparse times series for the construction of numerical
reference modes involving rates?

1 Numerical time series

Dates variables can be aggregated over time intervals to produce numerical time series of rates
(e.g., number of events per unit time). When preliminary inspection of data sets reveal that the time
constants are short relative to the level of aggregation, one is forced to consider shorter time period
or aggregation bins. There is a limit, however, to how short the aggregation bins can become before
one runs into the problem of sparse time series. Moreover, as the rates (frequency per unit time)
gets smaller, the aggregation becomes increasingly sensitive to both the origin of the aggregation
bins and the width of the aggregation bins relative to the time constant. (Härdle, 1990).

2 Illustration of sparse time series

The impact of smaller rates on the sensitivity of aggregations to bin size and their origin can be
seen through a series of simulations where the expected number of events per unit time decreases.
Figure 1 shows three simulated time series of the rate or expected number of cases per day with
respective overall means of 100, 10, and 1 (note that, going from left to right, the vertical scaling
decreases by a factor of ten for each graph).

The number of events per unit time is always an integer value equal to or greater than zero.
This is typically modeled as a Poisson distribution. One can generate a simulated time series of
observations by randomly sampling one case per unit time from a Poisson distribution with the
expected rates corresponding to the time series shown in Figure 1. Specifically,Om(t) = P(λm(t))
where,Om(t) is the observed value at timet, P(λm(t)) is a random value sampled from the Poisson
distribution with a rate ofλm(t). The rateλm(t) is a function of time and the mean expected value
m such thatλm(t) = m+0.1·m·sin(t ·2π/1461), wherem is the overall mean (i.e.,100, 10, or 1)

The resulting noisy time series are shown in Figure 2. Asm gets smaller, the effects of the
distribution being bounded at zero become more pronounced. Figure 2a would typically be seen
as a noisy but continuous time series. But asm gets smaller, the result is something that looks
much more discrete with quite a few days with zero cases. Figure 2c would be a good example of
a sparse time series.

When the number of events per unit time is relatively high, aggregating the noisy time series
over quarters results in a reasonable approximation of the original expected values, but not so

1This paper will specifically discuss the problem with estimating rates as continuous time series from sparse time
series, although the general approach could also be considered for the problem of estimating stocks from noisy time
series data.



Figure 1: Original Expected Rate of Cases per Day

Time

C
as

es
 p

er
 d

ay

1998 1999 2000 2001 2002

90
95

10
0

10
5

11
0

(a) Mean = 100

Time

C
as

es
 p

er
 d

ay

1998 1999 2000 2001 2002

9.
0

9.
5

10
.0

10
.5

11
.0

(b) Mean = 10

Time

C
as

es
 p

er
 d

ay

1998 1999 2000 2001 2002

0.
90

0.
95

1.
00

1.
05

1.
10

(c) Mean = 1



Figure 2: Noisy Time Series
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for sparse time series. Figure 3 shows the result of aggregating the counts over quarters. The
thick solid line shows the original expected values, the thin solid line shows the aggregated counts
over quarters (divided by the number of days per quarter to standardize the values), and the thin
dashed line shows the effect of offsetting the origin of the bins by as little as nine days.2 Figure
3a illustrates how aggregating the number of cases per day on quarters results in a reasonable
approximation of the original expected values and is insensitive to minor variations in the origin
of the aggregating bins. However, asm gets smaller, the aggregated time series does a worse job
of approximating the original time series and becomes more sensitive to variations in the origin
of the bins. Figure3b might still be a reasonable approximation, but one would be hard pressed to
identify the original time series in Figure 3c. Figure 3c also shows how even a small change in the
origin of the bins of only nine days can affect quarterly totals, especially the first, second, and third
quarters of 2000.

Figure 3: Quarterly Aggregated Time Series
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2The choice of offsetting the origin by nine days is arbitrary. The main point is that the offset is small relative to
the width of the bins.



The effects of small time series on aggregated values get worse as the size of the aggregating
bins get smaller. Figure 4 shows the results of aggregating the number of cases over months which
are, again, divided by the width of the aggregating bin to standardize the values. While Figure 4a
still appears to be a reasonable approximation of the original time series, Figure 4b is starting to
become questionable and showing more effects from varying the origin of the bin size. Figure 4c
is unrecognizable.

Figure 4: Monthly Aggregated Time Series
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2.1 Conventional approaches to handling noisy data

Approaches to handling noisy time series fall into three general classifications: filtering, smooth-
ing, and prediction (Anderson & Moore, 1979). Filtering works in real time, trying to recover the
original value from the noisy signalO(t) at timet. The tuner on a radio or television is a classic
example of a filter. Smoothing uses a range of values,(t−∆t, t +∆t), to estimateO(t). There are
many approaches to smoothing, but perhaps the most familiar is a moving average. Prediction uses



a set of past values,(t−∆t, t), to estimateO(t) for a set of future values,(t, t +∆t): for example,
by fitting an equation to past values in order to predict future values.

When generating reference modes from real data, one is generally concerned with identifying
trends and working with time series spanning the entire time horizon. That is, for each point in time
t, one can use information coming both before and aftert to estimate some value att. Thus, one
is generally looking to select a method for smoothing noisy time series. If one knows a priori the
underlying probability distribution of a given time series, then one can apply regression techniques
to estimate the parameters of the underlying distribution. Some variables in this study might fit one
of the many available parametric probability distributions. But this cannot, in general, be assumed
because of the nature of feedback.

One possibility is the use of non-parametric techniques to estimate the density distribution
(Härdle, 1990; Scott, 1992). Such techniques do not assume a specific underlying distribution, but
rather, are based on the empirical distribution of a given time series. However the application of
smoothing techniques introduces some problems. Smoothing always distorts oscillations in time
series in one or more ways. Frequencies may be entirely eliminated, peaks flattened out, and delays
introduced. Smoothing also introduces the problem of truncating the first and last parts of a time
series since most procedures use an interval of values to estimate a given point. Thus, one is often
not sure whether or not some important features have been removed by smoothing the time series,
or whether the features that one is trying to model are in fact, not just artifacts of the smoothing
algorithm.

2.2 Solution to the sparse time series problem

In system dynamics modeling, one is generally concerned with identifying and studying the un-
derlying structure generating a particular pattern of behavior over time. One uses numerical time
series, not to identify the system of equations as one might in traditional time series modeling, but
to test the model’s behavior against real data. The purpose of such a test is generally not to see
whether or not the model yielded the precise values of the observed data, but whether the overall
behavior pattern is realistic. That is, one can make a distinction in system dynamics between the
real numeric valuesandrealistic numeric valuesof a variable. The real numeric value of a variable
is the actual value that the variable takes on at a given point in time. If the variable is the number
of warrant requests on a given day, then there is a real theoretical numeric value for the expected
number of warrant requests on that day. The problem of estimating the density distribution of the
number of warrant requests per day is concerned with estimating that numeric value, and it is this
distribution that is sensitive to the particular technique used to smooth the time series. A realistic
numeric value, however, is something more general. For any point in time, there can be many
values that would be realistic, only one of which is the real numeric value of that variable at that
time.

A good robust model should be able to describe the dynamics over a range of situations. Given
a variety of inputs, the model should be able to reproduce corresponding outputs that are realis-
tic. In system dynamics, we frequently test our models using a variety of inputs to explore the
model’s behavior over extreme conditions, oscillations, random perturbations, and so forth (For-
rester, 1961/1999, 1971; Forrester & Senge, 1980; Richardson & Pugh, 1986; Sterman, 2000).
Careful inspection of the outputs and feedback loop behavior often reveals structural flaws or im-
portant insights into the model’s behavior. These inputs are typically idealized in some form as step



functions, pulses, sine waves, or random samples from a parametric distribution. But there is no
reason why a robust model should not also be able to handle a much wider range of inputs, includ-
ing the results of not just a specific smoothing algorithm, but the results from an entire collection
of smoothing algorithms.

More specifically, a robust system dynamics model should be able to produce reasonable ap-
proximations of smoothed numeric time series outputs given corresponding smoothed numeric
time series for an input, provided that both the input and output numeric time series have been
smoothed using the same algorithm. That is, a robust system dynamics model should be able to
reproduce the qualitative behavior of two different time series, each smoothed using a different
algorithm or with different smoothing parameters, provided that the model’s input (if there is any)
was also smoothed using the same algorithm and smoothing parameters.

3 Procedure

The basic procedure for such an approach is first to generate a reasonably diverse family of time
series for each rate variable of interest. This can be done by varying parameters of a smoothing
algorithm (e.g., the order of an exponential smooth and/or the delay). But, the family of time series
could also include the results of different types of smoothing algorithms. The main point is that
one is generating a family of numeric time series to drive and test the model such that the model’s
response should be realistic. This can be stated more formally.

Let Sα be a function that smoothes a given numeric time series such thatPα,i(t) = Sα(Oi(t)),
whereOi(t) is the i-th observed time series andPα,i(t) is the resulting smoothed time series from
applying the functionSα(·) to Oi(t). Then one selects and applies a family of smoothing algo-
rithms,F , with various parameters such thatα ∈ F . If O1(t) represents an input used to drive the
system andO2(t) an observed dependent or endogenous variable, then the claim is that a good
model should be able to reproducePα,2(t) when driven byPα,1(t) over the family of smoothing
algorithms whereF . If the models behavior toPα,1(t) to Mα,2(t), thenMα,2(t) should be a realistic
representation ofPα,2(t) over the entire family of smoothing algorithmsF .

4 Limitations

There are clearly a number to this approach. First and foremost, speaking of sets of time series
for a single variable could easily make stakeholders more weary and suspicious of the modeling
effort. This is a serious problem if the purpose of including numeric time series is to help ground
the model in stakeholders’ perception of their problem. Second, there is the problem of trying
systematically evaluate the results. That is, one is now faced with the problem of having to reduce
all of these comparisons in some way that meaningfully relates the comparison to variations in
smoothing parameters or algorithms. This could be partially resolved by using reducing Theil
(1966) inequality statistics to a single index. For example, by taking the product of (a) the root
mean square error, and (b) the angular difference between the observed and desired inequality
statistics. Third, there is a heavy computation requirement in generating these families of smoothed
time series, simulating the model, and analyzing the results. Fourth, the approach really only
works in cases where one is driving one part of the model with real data and studying the model’s



response.

5 Conclusion

Considering the resulting smoothed numerical time series as a family of curves for the reference
mode takes advantage of the system dynamics emphasis on sensitivity analysis and robust model-
ing. The procedure described in this paper is being used with some success to identify key features,
calibrate and test the models, and make subsequent refinements to both the structure of the data and
the model. There are clearly a number of limitations, so such an approach should not be considered
without careful consideration of the underlying phenomena being studied.
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