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Stochastic aspects of systems have generally been ignored in 

mst system dynamics studies except for purposes of sensitivity testing. 

Yet any model that claims to be more than simply an empirical descrip

tion of a system must treat the underlying stochasticity explicitly in 

terms of its contribution to the dynamics. Recent work in chemical, 

biological and hydrodynamic systems has shown that the aggregation of 

Stochastic effects can lead to novel beh8vior (self-organization in 

dissipative systems). 

In this paper, an analogy between models of these physical sys

tems and system dynamics models is developed,, in which system dynamics 

aodels are seen to be ·an aPPro:rlmation (to lowest order in an expansion 

i.n system size) to a, stochastic model for the system. The implications 

of theoretical results derived for the physical system models are evalu-

ated for their application ··to system dynamics models. . A -uaearch latrate-gy 

to elaborate this approach ·to analyzing systems ia proposed.· 
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System dynamics models are based in part on the principle of 

conservation of flow of materials. A useful technique for the develop

ment of a model is to imagine the various pathways that a unit of ma

terial can take on its passage through the system. It is then general

ly assumed that the. rates-of-flow along these pathways provide an ade

quate description of the system's operation if they respect the prin

ciple of conservation. However, a unit of material has no well-defined 

rate-of-flow so that thia assumption involves the aggregation of events 

at a micro-level to provide a description of the system at a macro-level. 

The transition from one level of description to another has rarely been 

dealt with explicitly in the system dynamics literature; and then only 

sketchily (1,2). What is involved is a specification of the source of 

variability at the micro-level (stochastic effects) and a consistent 

treatment of these effects to determine their dynamic significance. 

Other fields of study have undertaken this kind of analysis and have 

shown that new dynamic behavior may arise in certain criti~l situations. 

Besides the intrinsic interest in clarifying the aggr~gation 

process and the possibility of enlarging the range of models that can 

be used to describe dynamic processes·, the analysis of the Principles 
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of aggregation is of more immediate concern in system dynamics since 

there are a whole range of models currently available which can be class-

ified in a hierarchy of aggregation. One need only consider the sequence: 

World3, the National Model, the Susquehanna River Basin model, the Urban 

Dynamics model and the various Industrial Dynamics models-to see that 

at each level an aggregation of effects and results from lower levels 

has been accomplished at least implicitly. A long-term goal of the a

nalys_:i.s. which is undertaken here will be to establish, if possible, 

methods for performing in a consistent manner the aggreg~tion of micro

level models into macro-level ones. 

In this paper' we discuss briefly the sources of stochastic ef

fects and their representations in system dynamics models and describe 

bow these effects are related ~o the aggregation of micro-systems into 

macro-systems. Methods and results of aggregation analysis from other 

fields of study will be presented along with an evaluation of their 

pertinence for system dynamics models. We conclude with a brief de-

scription of further work to be done in this area, 

Stochastic Effects in System Pynamics Models 

The analysis of the flow of individual elements (products, per-

sons, dollars, orders, etc.) through s system localizes the average 

flows into and out of the relevant levels in a model. At t\.e same time, 

the analysis indicates the two main sources of stochastic effects which 

can be represented in the formulation of the rate equations, namely 

i) esogenous influences on a decision-stream, for example new 

or bard-to-classify information sources, or uncontrollable material in-

flows or outflows, which are added to or subtracted from the average 

flow rate. 
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ii) exogenous influences on a policy-structure, for example va-

riations in the weighting of different components of a ~olicy such as 

the reaction to inventory versus backlog discrepancies, or in the com

bining of production factors, 

These sources of stochasticity can be illustrated in a typical 

rate formulation for Production Rate PR based on Desired Inventory DI, 

actual Inventory I and an Inventory Adjustment Time .IAT as shown in 

equation (1): 

PR • DI I + e 
rAT 

(1) 

The first source is represented by the random variable e which is simply 

added to the.rate indicating a source of variability that is beyond the 

decision-maker's control. The specification of the random variable as 

a Gaussian with given mean and standard deviation by use of NORHRN is 

often used as is a smoothed Gaussian in an attempt to include auto-

correlated 'error' effects(3), We vill return to this source in the 

discussion below, 

The second source can be represented by considering IAr to be 

. a random variable thereby modeling a case where the application of a 

policy for production rate is perturbed by the effects of environmental 

or other exogenous forces so that the gap between desired and actual 

inventory is closed more, or less rapidly. This source of·stochasticity 

has not been studied in system dynamics in any detail except, after a 

fashion. in certain sensitivity_analyses(4). However in these cases, 

the stochastic nature was represented by a sample from an ensemble of 

models. The relationship to the behaviour of a model with variable 

coefficients· requ:lr<!s an ergodic theorem which does not at presl!11t esist. 
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In most system dynamics models these sources of stochasticity 

are treated by replacing the stochastic variable by its average and ig-

noring the higher moments in the distributions of system variables, 

Typically one takes 

e • 0, ffi • IATN 

~~ere the overbar Indicates an average over the relevant unconditional 

distribution, Other models may be based on combinations of these two 

sources. When modeling the behavior of individual decision-makers taken 

as a group, each decision-maker makes his decisions based on the infor-

maticn available to him, and both the information and the evaluation 

of it may vary over the population of decision-makers. A consistent 

aggregation over such a population would account for the auto-correla-· 

tion of both sources of stochasticity1• 

Without exaggerating the importance of a proper treatment of 

stochastic effects and their aggregation, it must be recognized that 

the choice of level of aggregation and hence the specification of the 

kind and importance of stochastic effects touches two issues of some 

interest to model builders and users. The first concerns the re4lism 

of the relationships in the model and the generality or extent of the 

results of the model. More specific treatment of discrete, random events 

in a model increases the conformity of the model to the system at the 

expense of making each run of the model less significant, more peculiar," 

Renee the recent interest in the 'classical', discrete-event simulation 

literature for means to analyze in global terms the masses of data 

generated by that approach, an aggregation ~posteriori(5). The second 

issue concerns the possibility of generating new dynamic behavior modes. 

A number of studies in chemical kinetics(6) and cytology(7) as well as 
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the well-known results in hydrodynamics and plasma physics(B) show clear

ly that motions of aggregates may differ in novel ways from the motions 

of components, even in a deterministic framework. When stochastic ele

ments are joined to a deterministic model, as Allen does in a study of 

mutation and extinction of populations(9), more new behavior modes, other

wise inaccessible to analysis in a purely d~terministic approach, are 

found. Evidently new behaviour raises the question of new policy, i.e. 

in What sense or to what extent are policy prescriptions changed by a 

proper· treatment of. stochastic effects, eit~r aggregated or disaggre-

gated. 

In what follows we will deal with the first source of stochas-

tTC:icywliicTi"; rn·-tne- form· _shown in· equation- (1) has come to be known 

in ·the ph~sical sciences as the Langevin approach for including stochas-
I 

tic effects. This approach is somewhat ad .!!2£. since no attempt is made 

to explain the stochasticity in terms of more fundamental mechanisms 

and hence the precise form of th~ distribution and the integration of 

the resulting stochastic differential equation in a rigorous way are 

open to a certain amount of arbitrariness. Van Kampen has shown that 

the arbitrariness in the method of integration is relatively unimportant 

but that the'proper inclusion of stochastic effects is crucial(lO,ll}. 

It is to ·a summary of a more adequate approach and of the main results 

from it that we now turn. 

The Master Equation 

Underlying the system dynamics approach is the idea of state

sp~e models, i.e. that a sufficiently complete description of a system 
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can be made in terms of the values of certain variables (levels} at any 

point in time, joined to the relations describing the rates of change 

of these variables. In a generalization of equation {1) we can write 

(2) 

where ~ is a nonlinear vector function of the state vector ~· ! is a 

(possibly nonlinear) matrix function of ~· and ~ is a stochastic variable, 

usually taken to be Gaussian white noise2• As a representation of 

stochastic effects we interpret the term in ~ as giving little pulses 

to the value of i· An alternative representation is in terms of differ-

entials 

(3) 

If ~does not depend on ~· ~(!.>=.!!a• equation (2} with a fixed initial 

value determines a unique stochastic process ~(t}. This is a Markov 

process ~~ose transition probability,P(~,t/~,t0)d~,from value~ at t
0 

to the interval ~·.:+"d~ at t obeys the Fokker-planck equation 

(4) 

The solution of this equation is a Gaussian distribution.whose peak moves 

in the space~ according to the solution for the deterministic (so-. 

called 'macroscopic' 3} equat~Qns and whose variance is determined by !• 

In this case, and this case only, the usual treatment of type (i} sto-

chasticity in system dynamics models (whether linear or nonlinear) is 

justified. It is evident that the assumption that ! is independent 

of ~ is highly restrictive and unlikely to be true in real systems since 

it means that stochastic effects are of constant magnitude no mat.ter 

the magnitude of ~ 4 • 

Van Kampen(lO) remark$ that,in the general case that the influ~ 

euce of stochastic effects depends on the value of the state variable, 
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'equation' (3) as it stands makes no sense as a definition of a stochas

tic process, ~· since the jumps or p~lses due to the stochastic process 

change the value of the state which simultaneously determines the size 

and direction of the pulses. To resolve the ambiguity, an appeal to 

a micro-level description of the source of stochasticity is made and two 

ea~ea are distinguished: 

i) The stochasticity is external to the system in that it can 

in principle be removed ot 'turned off'; 

ii).The stochasticity is internal or intrinsic to the system 

in that it is due to the interactions of elements in the system and 

cannot be removed even in principle. 

In the case of external stochastic sources which are connected 

to the system by the matrix!(~), it is possible to define a process 

for which the auto-correlation time tc is non-zero (this makes the pro

cess non-Harkavian) and "take the limit" tc ~ 0 to determine the appro

priate interpretation of equation (2) 5• If ~e can ~ that the mo

tion of the system is described by 

when the noise is turned off, the first term in the series corresponds 

to equation (2) with the value of !C!.> determined as one-half the sum 

of the values of! before and after the 'jump' imposed by the stochastic 

impulse. This is the so-called Stratonovic;h interpretation, or approach 

to the integration of stochastic differential equations
6

• 

In the case of internal sources of stochasticity, no precise 

definition of a determW:ist:l.c equat:l.on (5) can be determined and the 

stochastic process ~ must be analyzed as such. If we can ~ that 

the process~ is Markovian, then we can establish an equation for the 
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probability distribution of~. P(~,t) which has the general form· 

J..!. • J(w(y~')P(!,.' ,t) - W(~' /!_)P(~,t2J:I:s.' (6) 
c\t 

This is the so-called Master Equation describing the '·gain' and 'loss' 

of probabilty P in terms of the transition probability function W(!/!_') 

such that 

W(y~')t.t • probability that the system mov7s from ~· to x 
in the time interval t,t+dt 

All of the dynamics of the. system is contained in the specification of 

W (which is just a'local'description of P), For many systems W··and P 

are discrete distributions in ~ so that the integral in (6) reduces to 

a (generally finite) sum of t:erms. 

For example, consider a stock, x
1 

which receives units at an 

average rate of a units per time period (a is constant), and from which 

deliveries are made at an average rate' a11x1 per t.p. In a stochastic 

model we identify elementary transition events between states xi and x1 

(addition of one unit, delivery of one unit, no change in the number 

of units). Then we determine the probability of occurrence of each e-

vent, here taken to be equal to the average rate of change (inflow, a, 

or out:flow, a11xp times a time increment At. which is short enough that 

!E_ ~ one transition event can occur, Taking the events and their 

probabilities as shown in Table 1, we can establish an expression for 

P(~ ,t) in terms of !' at time t - ~t(the Markovian assumption) and then 

by standard arguments(l2) we derive an equation for P equivalent to 

equation (6) namely 

~ • aP(x1-l,t)-{a+a11x1)P(x1,t}+a11cx1+l)P(x1+l,t) (7) 
c\t 
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State Event Probability 

xl-1->xl a ~t(l-a11x1 ~ t)P(xcl,t- At) 

XCtxl (1-a t.t)(l-allxl At)P(x1,t-bt} 

~+1 xl+l->xl (1-a At)a
11

x
1 
~tP(x1+l,t-At} 

Table 1: Elementary transition events and 
probabilities for the one-level stock model 

Introducing the generating function 

f(a,t} • ~axlP(x1 ,t) , /s/~1 
:>e,=o 

we can transform (7} to an equation for f(a,t}: 

~f • -a
11

(a-l}_li + a(a-l)f 
Tt as 

At steady state, 

ao,tl!.at 

(a-1} r~.f_ -.!. .i'\ - 0 
(JB all j 

f (a) • f(O)exp(as/a11> 
ll• 

and since 

ve hav!! 

80 that 

10 

f(l,t) • ~P(x1 ,t} • 1 
"'t•O 

p (~ ,t) • (a/all/lexp(-a/a11) 
.sa .. xl! 

The corresponding deterministic model is simply 

(8} 

(9} 

(10} 

(11) 

80 that the steady-state distribution of the number of units.in stock, 

, , given by (10) is seen to be Poisson with a peak at the average value 

a/a which is the steady-state solution of the deterministic (or'm.acro-
11 

scopic') model. This rewlt and its de~ivation and generalization to 
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more complex linear systems are classical results in the chemical kine-

tics literature(l3,14) and their only interest here is to exemplify a 

new way of looking at system dynamics models8• 

The real power of this approach derives from more recent results 

for nonlinear systems. A formal expansion of the Master Equation (6) 

is performed in a consistent manner, recognizing that stochastic effects 

may be 'small' by introducing a scale parameter f-1':1, where ..Q.is a 

measure of the size of the system relative to the stochastic fluctuations 

(11,15,16){for example, if the total number of units in a stock is large 

compared to the variations in order quantities). The 'local' nature 

of fluctuations is represented in the Master Equation by rewriting (6) as 

J.! • J[w(,!-6_!, 6..!}P(,!-6_!,t)-W(,!,A!)P(,!,t)J dZ.! (12) 
dt 

Introducing scaled variables by means of the relations 

! . .n <r-..n:-112~ 
..O..dP(,!,t) • 'i'Cz+D...-l/2.!_,t) 

p(.!_,t) - rt-1/2 'I' 
[d-dimension of state-space] 

(13) 

we can derive the expansion(l5): 

-r£.12± ..h 
dX 

ti'O 

• n2.cr-nf~.!. (-._1_\n Cn(zl"ll-l/2~p(.!_,t) 
•~• nl ~ d.!.} • 

where en(~ ·Id.O.,!w(!,A!)(A!)n 

(14) 

(15) 

By choosing the function z(which is so far undetermined) so that terms 

of order r(;/2 are cancelled we get 

(16) 

which is the generalization to nonlinear systems of the determiniatic 
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equation, here representing the motion along the most probable path. 

Thus it is only in the limit Sl.~«> that the motion of the system 

can be adequately-represented by a £possibly nonlinear) state-space mo-

de~. It is evident from equation (15) that knowledge of a model for 

the most probable path is not sufficient to specify the stochasti~ dy

namics (w~,l>!}) uniquely9• However, the expansion does allow us.to 

see how new dynamic behavior may arise by providing an expression for 

the distribution of fluctuations about the most probable path and con

diJ;ioned by it.. To· the next order in n(i.e. r'f!>, we have the Fokker

Planck equation for p(.!_,t): 

(17) 

where Kij <z.> • .,1_c~<z.> 
. ~yj 

(18) 

Dij <z.> • c/j <z.> 
"which give the drift regression·and diffusion of the distribution of 

fluctuations in state-space. From this approximate Master Equation 

we can derive equations for the motion of a fluctuation ~.l. 

(19) d. {I - !<z.> St • g.z.(O) "' .!!. 
ilt -

·and for the first and second moments of the fluctuation distribution 

)-t. sd!P(!:,t)~ ~- id_!J)(.!_,t)il 

namely J. U.. • !<z>M
Tt' - .,... 

J.. ~·_!.c,r+ ("f~)T +_E. 
Jt- --- -- -

(20) 

In equation (20), #(0) • .Q. in our approximation, however as equation 
10 

(19) shows, if there is a fluctuation then it evolves according to !<z.> • 

In particulilr, equation (19) may show limit-cycle behavior and ~quation 
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(17) including diffusion terms may show development of 'state-spatial' 

structures .due to a balancing of diffusion (,!!) and convection (!)terms. 

Both sorts of behavior have been seen_in physical systems and studied 

by the Brussels group (Prigogine, Nicolis and colleagues) under the 

general heading of "dissipative structures"11• 

One important result of this work has been to show that the 

variance of the fluctuations (cr) may diverge and that relaxation to 

the steady-state may be slower than exponential. Both effects depend 

on the behavior of eigenvalues of ! near critical points and are not 

due to the stochasticity(25). More recently several' authors have pro

posed similar stochastic models for the diffusion of technology(l7) and 

the extension of the principle of balancing 'convective' and 'diffusive' 

behavior to establish a hierarchy of models of large systems(l8). These 

remain to be investigated in more detail. 

The above discussion has shown that a proper treatment of sto

chastic effects can lead to 

i) deterministic system dynamics models for the most probable 

evolution of the state variables as the lowest order approximation in 

the limit of large syst~ size, equation (16), 

ii) equations for the evolution of fluctuations around the most 

probable state, equation (19), 

iii) equations for dissipative structures capable of generating 

new behaVior not contained in the deterministic model, by means of 

equation (17) • 

The Master Equation-Reservations 

The previous results must be treated with the usual caution due 

any modeling effort. Just. as there is no unique state-space model for 
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a system, there is no unique stochastic model for a system. The sto

chastic argument cannot select which model is best in a given situation, 

ho.vever it can occasionally provide a means to determine from observa

tions and analysis the values of some parameters and the structural 

form of relationships(23). 

A more serious reservation is the justification for the Markov

ian assumption. The most general form of the Master Equation is non

Ma~kovian for reasons suggested in the discussion of external and inter

nal sources of stochasticity, namely finite autocorrelation times for 

re~ processes(l9) • However, aggregation {or equivalently, smoothing

in-time in many systems) permits the use of the Markovian assumptioo 

for the analysis of micro-level behaviour whose time-scale is longer 

than the autocorrelation time of 'sub-micro'-level events. Thus the 

Markovian assumption is valid for analyzing interactions of people as 

consumers in the expression of their utility functions but not the pro

cesses of formation of these utility functions. 

A final reservation about the stochastic approach concerns the 

possible inconsistencies that may be implicit in the final model when 

written in the Master Equation form (6). An example is provided by the 

work of Malek-Mansour. and Nicolis(20) who analyzed a simple nonlinear 

chemical reaction for one intermediate reactant (one state variable, X). 

They showed that the steady-state solution of the Ha~ter F4uation was 

the trivial one x-o, i.e. extinctiOn of the reactant (and the reaction). 

This solution corresponds to the (unstable) steady-state solution of 

the macroscopic equations. Yet the Master Equation for the same system 

near equilibrium (i.e. thermodynamic equilibrium) admits a Poisson dis

tribution as the unique steady-state solution, with mean value given 
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by the (asymptotically stable) steady-state solution of the macroscopic 

equation. The problem arises from trying to apply the Msster Equation 

(6) in conditions far from thermodynamic equilibrium where the expansion 

in equation (17) breaks do~n. Related difficultiess were shown in a 

similar case(6) to lead to fluctuations that did not agree with thermo-

. dynamic principles. The solution is to use the consistent expansion 

(17) and recognize explicitly the possibility that in critical regions new 

behavior may arise that, at a macroscopic level is not consistent with 

thermodynamic principles, while remaining so at a microscopic level. 

That is, macroscopic fluctuations need not obey the same entropy con-

atraints as microscopic fluctuations in a system far from equilibrium. 

The interest of this argumaent for system dynamics models is 

to suggest that principles of optimization on a micro-level may be broken 

on a macro-level and that it is the aggregation of stochastic effects 

vhich may permit this 'symmetry-breaking' behavior to show up. This 

remains a fruitful area for further research in view of the history of 

development of such aggregate models as the National Model and Coa12. 

Other Aggregation Results 

The previous discussion was restricted to models in which sto-

chastic effects only of type (i) were considered. A few ~esults exist 

for the case of tjpe (ii) stochasticity, i.e. when the parameters in 

the model are stochastic. In a long paper on the n-species Lotka-Vol-

terra equation{21), Goel ~ .!!_. develop some general results for cases 

in which the parameters of the interaction between species (the quadra-

tic terms) are random variables with finite or infinitesimal correlation 
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times. They find that in the first case, the steady-state population 

distribution is Poisson while in the second case it is not. This result 

is derived by assuming a Master Equation of Fokker-Planck form and esti

mating the drift and diffusion coefficients directly. As van Kampen has 

shown, this procedure is inconsistent in general but the derivation of 

a· consistent result (i.e. the specification of the transition probabili-

12 
ty, w) remains to be done • 

In a different vein, a brief paper by Athans.!!_ .!!_.(22) discussed 

the control of a s~le system (in discrete time) 

x(t+l) • a(t)x(t) + b(t)u{t) (21) 

in which a and b were assumed to be constants or white noise processes. 

They found that in the cas·e of b.;,b, the Kalman filter factor (used to 

calculate the cost of control) depends only on the variance of a and 

hence, even if the mean value of a is less than 1, optimal control over 

an infinite horizon could be impossible. As the authors remark, this 

feature is related to stochastic stability with state-dependent noise, 

i.e, it is related to the proper treatment of stochastic effects due to 

internal sources as mentioned above
13

• 

.Conclusions 

This brief sketch of some aspects of stochastic effects in sys

tem dynamics is intended to indicate some of the main results developed 

in other fields for problems similar to those arising naturally in sys

tem dynamics models, namely the proper treatment of stochasticity in the 

aggregate in dynamic, nonlinear systems. Although these issues have re

ceived little attention in the past from the system dynamics community, 

it is appropriate at this conference to propose a research program that 
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could build on previous work in system dynamics in an effort to genera-

lize and deepen the foundations of the field. 

One of the positive attributes of system dynamics is the large 

variety of models developed to study specific problems. As shown above, 

it should be possible to derive from these models more general stochas

tic models ~~ich could be studied with a view to establishing more rigo-

rous methods of estimating parameters(23), better understanding of the 

regions within which some aggregate models are valid(lO), and better un-

derstanding of the generation of new behavior modes(6). To this end a 

research strategy would be to identify a number of generic structures 

gleaned from the experience of the past twenty years and to analyze 

these structures in depth using the methods sketched here. A preliminary 

list of candidate models would include: 

'i) 'first-order delay (27) 
ii) third-order delay (2 7) 
iii) logistic curve or 'S-shaped' growth(27) 
iv) two-species Lotka-Volterra model (21) 
v) three-species Lotka-Volterra ~del(21) 
vi) two-level Inventory-Workforce model 
vii) three-level commodity cycle model(27) 
viii) Mass' Inventory-Workforce model(3) 
ix) two-level 'World' model 

The objective of the analyses would be to give some rigor to the concept 

of generic structures and to develop some principles for the use of ge-

neric structures in different situations, for the aggregation of generic 

structures and fo.r the analysis of complex systems. Such a strategy, 

Vhile somewhat abstract compared to the historical strategy of emphasi

zing model development. could provide a theoretical underpinning unique 

to system dynamics. 
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l. It is a common error to include stochastic effects of type (i) by 

adding a noise term independent of DT to a rate equation. In the im-

plied limit DT~O this procedure is equivalent to using a noise source 

of zero power. As shown in the text, for certain cases this error is 

not important to the average or most probable motion. 

2. Gaussian white noise refers to the stochastic process e{t) with 

3. 

i)E( e(t)] • 0 
ii)E[ e(t )e{t2)] • S Ct1-t2) 
iii) hig~er moments are given by the rules of Gaussian processes. 

Odd moments are identically zero and even moments are sums of pro
ducts of terms like (ii)(24). 

The terminology 'macroscopic' comes from the chemical kinetic li-

terature on the subject (see References 6, 7, 10) in which deterministic 

equations for chemical reaction ratessare assumed to be based on micro-

scopic, inter-molecular reaction equations whose stochastic ~ffects are 

represented by a Langevin-type term. 

4. This is the same as the .homoscedasticity assumption in estimation 

theory. 

5. Since the result of this procedure is an asymptotic series with 

parameter//'!jltc<<l, the limit does not exist. 

6. It is interesting to note that DYNAKl integrates stochastic differ

ential equations according to the (non-physical) ItB rule in which the 

value of.!!,<.!,) is that value just before the occurrence of the stochastic 

pulse, The difference between the two rules is non-trivial conceptually 

and is the subject of a future Research Note. 

7. This'definition' of W is valid to order o(.6t). 

8. In Reference 13. it is shown that the generating function at any 

time is f(s,t)•exp(x1{t)(s-l)} where x1 (t) is the solution to equation (11) 

so that the ·distribution P(~,t) is Poisson and its peak (and average 
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value) moves like x1(t). Thus in this case we recapture the result based 

on the Langevin approach where the stochastic input is independent of x
1

• 

In general, the solution differs from the Langevin result, contrary to 

Portnov and Kitahara's comment(25). These authors cast the asymptotic 

expansion solution into a Langevin-type equation but fail to specify the 

necessary interpretation of the resulting stochastic differential equation. 

9. We cannot simply add a term to equation (16) as in the Langevin ap-

proach since no matter hov the resulting stochastic differential equation 

is integrated, the fluctuations contribute terms of order tt-l to the 

'macroscopic' motion. The higher order fluctuations cannot be modeled 

by a Langevin approach
1
and there is no need to since the Master Equation 

contains the full stochastic model(lO). 

10. Thus control of fluctuations to order ~O depends on the sensitivity 

matrix! as does estimation, by duality. Note that no assumption has 

been made about the distribution v(E,~!>· 

11. We note that 'dissipative structures' arise in critical regions of 

atate apace where the expansion breaks down. However existence and lo-

cation of these regions can be studied by means of equation (17). Recent 

vork by Malek-Mansour and Nicolis has extended the analysis of the crt-

tical region by use of renormalization group methods(26). 

12. We remark that the case of finite autocorrelation time makes the 

problem non-Markovian. 

13. Note that the 'uncertainty threshold' is due to the fact that the 

stochasticity is internal since the control u is taken proportional to x. 

Also note that the problem arises in a discrete-time model and hence has 

nothing to do vith the formal question of how to integrate a stochastic 

differential equation. 155 
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