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Abstract
We investigate irreversible acceptance dynamics, leading to phenomena typical for paradigm

change not described by widely used reversible and static behavioral models, e.g., multistability,
hysteresis, critical parameter values (tipping points), irreversible state changes. Based on a recycling
model, we explain these phenomena and develop a simple, generic mathematical model describing the
basic traits of acceptance dynamics. Analytical investigations and numerical experiments with this
generic model show reproduction of the above mentioned phenomena. In addition, the generic model
shows the interplay between internal and external forces. The relation of their time constants is shown
to play a crucial role, leading to reversible elasticity dynamics or irreversible acceptance dynamics.
Critical parameter values (tipping points) separating elasticity dynamics from acceptance dynamics can
be deduced from the generic model. We show that some simplifications applied to the waste recycling
model lead to the generic acceptance model. Further, the acceptance model is shown to comprise also
the well-known Bass model describing market diffusion of new products. Finally, we discuss benefits
of the generic model, its possible extensions to include additional phenomena, and its research
implications.

Keywords: multistability, hysteresis, tipping points, critical parameter values,
irreversibility, choice models, recycling model, generic properties, paradigm change,
Bass diffusion model.

1. Introduction
Climate change and energy supply issues are triggering global social

transformation processes that are based on new technologies, such as energy efficient
low carbon vehicle or building technologies. In order to avoid costly, autonomous and
radical change processes induced by market forces, key decision makers envision an
ecological and effectively managed incremental pathway. Therefore, adequate
transition management models are crucial, especially to increase the understanding of
processes that influence the acceptance of new technologies.

We define acceptance as the act of adoption, with approbation being a function of
the attitude, the subjective norm and value system, and the perceived behavioral
control (Ajzen and Fishbein 1980, Ajzen 1991). Acceptance dynamics describes
stabilizing social norm building processes that consolidate observed behavior
patterns, and explains adjustment delays of and efforts for behavioral change
processes. We all know from personal experience that acceptance, either of new
routines or technologies and products, is a complicated process depending on
numerous parameters and being subject to dynamics we normally cannot understand,
sometimes not even when related to our own decisions (for individual decisions see,
e.g., Mathieson 1991). From this point of view, our title acceptance dynamics seems
to address an intractable topic. However, our intention is to model acceptance
dynamics averaged over a large population segment, rather than of single persons.
With this simplifying condition, our problem becomes loosely related to widely used
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decision, choice or marketing models, such as, e.g., logit, probit, or generalizations of
them (K.E. Train 2003). These models approximately describe variations of mean
choices made by a population segment when attributes of products within a given
product assortment change. A simple example would be the choice between different
transportation systems (car, railway, bus, bike) characterized by attributes such as
price, traveling time, number of bus/train connections per day, distance of next
bus/train station, etc. The coefficients needed for these models can be derived from
statistical surveys, from the literature, or from educated guesses. A precondition for
successful applications of these models is constancy of these coefficients, i.e., the
general attitude of people against the transportation systems taken into account does
not change, the investigated overall system remains in the same action paradigm
(Kuhn 1962, Dosi 1982). In this respect, these models are static and reversible: if,
e.g., the price for gasoline (attribute for cars) raises and later-on falls to the previous
level, the number of car users temporarily decreases and reaches again the same
previous level. The state of the system is a function of the attributes only and never
depends on its specific time evolution in the past, in the organizational learning
literature known as single loop learning (Argyris 1992, 1994, 1999, Argyris & Schön
1996). However, if people adapt to the transient situation of high gasoline prices and
learn to value the advantages of public transport, the coefficients change and the
system finds a different equilibrium after relaxation of the gasoline prices to the
previous level (for the transition to innovative drive technologies see, e.g., Janssen et
al. 2006, Struben & Sterman 2006). Such processes are similar to the double loop
learning concept (Argyris 1992, 1994, 1999, Argyris & Schön 1996) and are a weak
form of paradigm shift (Kuhn 1962, Dosi 1982) involving endogenous preference and
value change. Due to the gradual change of the preferences of different already
existing routines, this process is called continuous change. At this point, we leave
pure choice models and enter acceptance dynamics of discontinuous change, as
shown in Fig. 1. In contrast to continuous change, discontinuous acceptance dynamics
comprises phenomena such as multistability, hysteresis, critical parameter values
(tipping points), and irreversibility. It goes beyond already existing (choice-) routines
by involving the establishment of new evaluation processes and behavior patterns.

Fig. 1: Discontinuous accep-
tance dynamics of paradigm
change arises in situations,
where behavior patterns influ-
ence the perceived social norm
that changes the overall
willingness to accept. In con-
trast to the inner perceived
satisfaction loop, which re-
flects a continuous and rever-
sible goal seeking mechanism,
the outer observed behavior
patterns loop explains discon-
tinuous and practically irrever-

sible dynamics, since it can stabilize the system in different states. In order to change
a social norm, new behavior patterns must become obvious, often requiring external
stimulation and inducing transition costs.
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In the present paper, we will investigate the generic dynamics of acceptance, i.e.,
we will abstract from all specific properties of real systems and keep only their
general common structure leading to the above mentioned basic phenomena. A more
detailed explanation of the term generic is given in the discussion (section 8). After a
definition of these phenomena from the viewpoint of nonlinear dynamical systems
(section 2), we will illustrate them within the framework of a waste recycling model
developed by Silvia Ulli-Beer (2006) on theoretical and experimental grounds
(section 3). Based on an abstraction process, we will then deduce the same general
phenomena from a simple mathematical model, describing a familiar physical process
involving a light ball rolling downhill (section 4). With analytical investigations and
numerical experiments, we will discuss the parameters of our generic system
interpreted within the framework of acceptance dynamics (section 5). Among these
parameters, we will find time constants characterizing the typical (endogenous)
system response time (delay effects) and the duration of adjustment processes
established by external (policy) interventions (e.g. subsidies, taxes, etc.). To illustrate
our concept of a ball rolling downhill, we show that the above mentioned waste
recycling model, after some simplifications, can be transformed into the presented
generic acceptance model (section 6). To give a link to the widely used Bass diffusion
model, we show that our generic acceptance model is also able to reproduce this well-
known model (section 7). The understanding of acceptance dynamics in this way
established, we will discuss research implications and conclusions towards the
development of acceptance models (sections 8 and 9).

2. Generic acceptance dynamics as self-organized nonlinear phenomenon
The most obvious and outstanding property of biological and social systems, but

also of many abiotic physical and chemical systems, is their capability to produce
macroscopic structures seemingly "out of nothing". Famous examples are hexagons in
the purely physical Rayleigh-Bénard convection (Lorenz 1963, Assenheimer &
Steinberg 1996) that can be observed also in the atmosphere or the Belousov-
Zhabotinskii chemical reaction (Zhabotinskii 1967, Field & Noyes 1974) oscillating
between two states (e.g. a transparent and a colored state). The first example is self-
organization in space and the second in time. In biology, growing, healing, adaptation,
and anastasis are typical aspects of self-organization (Mainzer 1997). In the social
sciences, self-organization gets visible in fashion trends, the evolution of social
norms, value and belief systems, languages, or routines. In the following, we will
define properties of self-organized nonlinear systems that we consider being
important aspects of acceptance dynamics, namely multistability, hysteresis, structural
instability, and abrupt change.

Multistability
A system able to spontaneously organize itself, normally finds different quasi-

stable states for a given set of fixed parameters. This property is illustrated with an
animated simulation of a waterwheel with 12 leaking buckets, a magnetic brake and a
water-supply tub located exactly over the rotation axis (Gassmann 1996). With the
same parameter values (water supply rate, leaking rate, brake strength, moment of
inertia), this waterwheel shows five different quasi-stable states in certain regions of
parameter space: a stationary rotating state clockwise or counter-clockwise, a non-
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stationary clockwise or counter-clockwise rotating state with oscillating velocity, and
a non-rotating oscillating state. The term quasi-stable points to the fact that external
forces can induce phase transitions into another state. In systems with non-moving
quasi-stable states (e.g. a ferromagnet: an iron bar that can be magnetized in one or
the opposite direction by an external magnetic field), these are normally called fixed
points in state space, locally stable equilibrium points or simply local equilibria.
Using the more general term of attractor, we can distinguish three different types of
attractors: point attractors (local equilibria of the ferromagnet), periodic attractors
(waterwheel) and chaotic or strange attractors (Lorenz-attractor). For an illustrative
example in the framework of system dynamics, reference is made to stable and
unstable equilibria in the market penetration process of hydrogen vehicles (Struben
2004, p.27ff.). The entity of all starting points in state space for trajectories leading to
a specific attractor are called basin of attraction for this specific attractor. In simple
cases, the different basins of attraction have smooth boundaries (with a dimension
one unit lower than the dimension of state space). For one variable (i.e. a one-
dimensional state space), these boundaries are isolated points. For a two-dimensional
state space, basins of attraction can be patches reminiscent of different districts on a
town map. In parameter space, stability regions for different quasistable states can
overlap. For one parameter and two possible quasistable states, the overlapping
multistable region consists of an interval limited by two critical parameter values
(also called tipping points according to Sterman 2000, p. 305 ff.). For two parameters,
stability regions for different states are analogous to different layers in a geographical
information system (GIS) concerning, e.g., soil type, district, land use type. Fig. 2
gives an example for a two-dimensional parameter space. If one parameter is held
constant, a one-dimensional parameter space with tipping-points results.

Fig. 2: Two-dimensional
parameter space with over-
lapping stability regions for
three different quasistable
states. Starting at A in state
1, the system will arrive at
B in state 1, 0 and 2 or 0
when paths along the
continuous, dashed and
dotted lines are chosen,
respectively. This shows
that history plays a decisive
role. If parameter p2 is
fixed, the resulting one-
dimensional parameter
space p1 shows three
tipping points P1, P2, P3.
The interval between P1
and P2 (thick line) is the
hysteresis region for vari-
ation of parameter p1 be-
tween C and D (see text).
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Hysteresis
A property immediately following from the existence of several simultaneously

stable attractors is hysteresis, clearly displayed in parameter space (see Fig. 2). Let
our system be in state 1 at point C and consider a slow variation of p1 along the
indicated line towards point D. As soon as p1 meets the tipping point P2, the system
undergoes a phase transition into state 2. If the same path is followed backwards, the
system will change back to the original state 1 at the tipping point P1, i.e., the state of
the system within the multistable region between P1 and P2 is history dependent,
rather than being a function of p1. The physical example coining the term hysteresis is
the ferromagnet (at constant temperature p2), where the parameter p1 is the strength of
an external magnetic field, and the system variable is the magnetization of the
ferromagnet bar. For switching the bar-magnetization from negative to positive, a
positive external magnetic field >P+ is needed. To reverse the magnetization to
negative, a negative field <P- is needed (for symmetry reasons P–= -P+). As long as the
external field is between P- and P+, magnetization of the bar resists the external
magnetic force without changing direction (i.e. without changing state). In other
words, both directions (states) of the bar magnetization are stable for external fields
between P- and P+.

Structural instability
The above explained critical parameter values (tipping points) lead to another

property called structural instability. When a system is operated near stability
boundaries in parameter space, small variations of one or several parameters might
cause the system to change state. For systems with one parameter only, its critical
values can be determined experimentally or theoretically and stable operation of the
system (i.e. robust policies) can be guaranteed by avoiding parameter excursions near
to the critical values. If there are several parameters, more-dimensional boundaries
exist in parameter space, as depicted for two parameters in Fig. 2. In general, a slow
and gradual parameter variation can guide the system near to a boundary, where the
actual state looses stability. In this situation, a small variation of a system parameter
can cause an abrupt phase transition into another state. If we are not aware of the
respective stability boundary, as is normally the case for systems with many
parameters, such a state transition comes as a surprise.

Abrupt change
The different quasi-stable states in most nonlinear systems exclude each other and

therefore, a mixture of states is impossible. For the nonlinear waterwheel, no
combination of stationary rotation and chaotic movement is possible. In contrast, for
the linear system of oscillating strings, superposition of different oscillation modes is
possible, giving a music instrument its characteristic sound. As different states in
nonlinear systems cannot be combined, simple and short or long and complicated
transitions between two such states arise. The short transitions are called abrupt
transitions to indicate that a state (e.g. chaos) suddenly ceases and is replaced by
another state (e.g. stationary rotation). The long transitions are called transient chaos,
because their trajectories and lengths are highly unpredictable. The waterwheel shows
transient chaos in several regions of parameter space. Interestingly, in specific
regions, these chaotic transients can be shortened by several decades with the
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application of irregular (noisy) disturbance of a variable or parameter (Gassmann
1997a). In our context of acceptance dynamics, abrupt transitions seem to be the rule,
rather than transient chaos. For chaotic systems see also System Dynamics Review
1988 and Rasmussen et al. 1985.

The impossibility of causal analytic investigations
The basic structure of self-organizing systems includes at least one feedback-loop.

In most systems, many interaction-chains form closed loops and therefore, we find the
notion circular causality to be more adequate than feedback (see also Mainzer 1997).
Especially in biological systems with myriads of chemical substances intricately
linked to each other by innumerable chemical reactions, speaking of causes for certain
effects (e.g. illness, mental disorder) is a radical simplification in many cases. Which
parameter combination (e.g. stress, nutrition, bacteria, etc.) is pushing a system over
which unknown boundary in parameter space is subject of speculation in all but a few
clear situations (e.g. attack of an aggressive virus). In social systems, there might be a
fewer number of interactions when compared to biological systems, but still enough
to lead to the same conclusions. Inadmissible simplifications can lead to mental
models suggesting counter-productive actions and unintended consequences. To avoid
such mistakes, models can help to better understand systems with circularly causal
interaction chains (Dörner 1980, 1993, Gassmann 1997b).

3. The example of waste recycling
To illustrate the above mentioned properties of nonlinear systems, we present a

model developed by one of the authors (Ulli-Beer 2006) to simulate waste separation
and recycling by citizens with a garbage bag charge imposed. A special weight was
put on the formulation of the decision process guiding citizens' behavior to separate
by addressing interactions between contextual and personal factors (Kaufmann-Hayoz
& Bättig et al. 2001). It was assumed that people decide once to separate or not and so
initiate a new routine (see e.g. Dahlstrand & Biel 1997). This implies that people can
be divided into two main groups: a group x willing to separate and a group 1-x not
willing to separate. In each group, subgroups were distinguished mediating the
transition of individuals between the main groups. Fig. 3 shows the main structure of
the model resembling an electronic flip-flop, i.e., the basic bistable device of
computers. If the majority of people are willing to separate (x near to unity), the
perceived social norm exerts a pressure on the remaining fraction 1-x of non-recyclers
and motivate them (lower processes in Fig. 3). These processes stabilize the system
on the recycling side (x≈1). Analogously, if the majority of people are not willing to
separate (x near to zero), the perceived norm will drive remaining recyclers to loose
their motivation to continue and so stabilizes the system on the non-recycling side
(x≈0). The garbage bag charge helps to stabilize the recycling state of the system by
compensating time investments in separating activities and other inconveniences (e.g.
unattractive collection points because of crowding) imposed by recycling.
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Fig. 3: Structure of the model to simulate waste separation and recycling. Changes in
citizen's willingness to separate lead to stabilization of the system either on the
recycling side or the non-recycling side (ep: experienced people, iep: inexperienced
people, wiep: willing inexperienced people, nwep: not willing experienced people).
From S. Ulli-Beer (2006, p. 96).

The above described generic properties of nonlinear systems can be found in this
waste separation and recycling model in the following way:

® Multistability: The model has two locally stable states: Nearly nobody
recycles (x≈0) or almost everybody does it (x≈1).

® Hysteresis: Investigating transients from state x≈0 to state x≈1, we find a
critical parameter value P1 (tipping point) for separation time cost, enabling
the system to perform the transition to x≈1, describing a successful
recycling initiative. In social systems, the reverse process is of minor
interest, and the critical parameter value P0 for the reverse transition is not
important. Nevertheless, the hysteresis region P1...P0 exists.

® Structural instability: P0 and P1 are the critical parameter values. If we do
not know them or are even not aware about their existence, the phase
transition from x≈0 to x≈1 comes as a surprise, turning a recycling
initiative in a mere trial and error adventure.

® Abrupt change: As soon as a certain critical mass xcrit is reached resulting
from the applied external force (garbage bag charge), the system changes
fast, creating a fast growing amount of recovered waste, because the
applied force (garbage bag charge) and the internal dynamics (social norm
building process) mutually support each other.

If we abstract from all details of the stabilizing processes, we can understand the basic
features of the dynamics by imagining two adjacent valleys with their floors at x≈0
and x≈1. The system state is represented by a light air-inflated ball rolling over this
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orography. External forces (garbage bag charge) drive the ball and might induce a
transition from one to the other valley floor. A mathematical model for this generic
process will be developed in the next section. We will show that this metaphor
captures the essence of acceptance dynamics.

4. The mechanical light-ball model as a metaphor
The main generic features defined in section 2 and illustrated in section 3 are found

in multistable systems with two or more local equilibria. The physical, social,
biological or ecological processes stabilizing these local equilibria can be of very
different nature. In vegetation dynamics, interactions between neighbors lead to
quasistable patterns with two or more plant types (Gassmann et al. 2000, 2005)
reminiscent of patterns formed in multicultural cities. In biological systems,
symbiosis is an important stabilizing process based on the production and use of
mutually useful substances. In closed physical systems, minimization of their total
energy is the governing process in many cases.

To describe generic features of acceptance dynamics, according to our previous
considerations in chapter 3, we basically need a bistable system allowing transitions
from one stable state to another stable state, which are induced by external forces. To
explain the generic behavior of systems with different equilibria (i.e., stable or
unstable states), the metaphor of a ball rolling in a bowl or other nonlinear orography
is often used in physics, chemistry, or biology, because it demonstrates a very basic
phenomenon in a way everybody is able to relate to personal experience from
everyday life (e.g., in Sterman 2000, p. 351, this metaphor is used for the explanation
of path dependence). So, the light ball system discussed in the following is not
directly related to acceptance, it is just another interpretation of the mathematical
equations we use to describe a bistable system. We consider a light air-inflated plastic
ball with mass m moving downhill with velocity u. Its dynamics can be formulated
with the notion of potential energy V(x) (in the physical literature, V(x) is called
gravitational potential) in the following way:

  

† 

V x( ) = m ⋅ g ⋅h(x)

m ⋅
du
dt

ª -
dV
dx

- a ⋅u

u ≡
dx
dt

(1)

where g is the gravitational acceleration, t is time, and h(x) describes the height of an
imagined orography with one horizontal dimension x. Multiplication of the slope
dh/dx by -mg gives the force -dV/dx accelerating the ball downhill*. The term -a·u
describes the frictional braking force of the air (according to Stokes' law, this
frictional force is proportional to velocity u). Our experience tells us that such a light
ball, after a short initial acceleration phase, rolls downhill at a constant speed, only

                                                  
* Relations (1) are an approximation for small slopes. For an infinite slope, the force according to (1) becomes infinite, in

contrast to the physical force for the free fall being -mg. However, this discrepancy for steep slopes does not disturb our
metaphor, because in real applications, slopes are normally small.
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depending on the slope. To simplify our dynamics (1), we neglect therefore the inertia
term by setting

  

† 

m ⋅
du
dt

= 0 (2)

and find the approximative dynamics:

  

† 

u = -
dV
dx

(3)

The parameter a has been set to unity because it does not affect the character of the
solutions of (3). In the physical literature, this approximation is called overdamped
limit, because the respective system approaches an equilibrium point gradually rather
than with damped oscillations. This property can be demonstrated, e.g., for the
equilibrium point in a  quadratic potential V=x2 situated at x=0. Introduction of this
most simple nonlinear potential into (3) gives

  

† 

u ≡
dx
dt

= -
d
dx

x2 = -2x (4)

with the solution

  

† 

x(t) = x0e
-2t (5)

where x0 is the initial position of the ball and t is time. (5) describes a trajectory
approaching the equilibrium point x=0 gradually, without oscillations.
Mathematically, the ball would need infinite time to reach x=0, but for practical
applications, t=3 is already enough, giving a distance to zero of less than 1% of the
initial value x0.

For a multistable system, we need at least two stable equilibria, described by a
double-well potential V(x) in form of a polynomial of 4th order:

  

† 

V(x) = ax2 x2 - 2m2{ }

-
dV
dx

= -4ax x2 -m2{ }
(6)

To prevent the ball escaping to infinity, we assume a≥0. At x=0 we find an unstable
equilibrium, and two locally stable equilibria are located at x=±m. Combined with (3),
we get the following dynamics:

  

† 

dx
dt

= -4ax x2 -m2{ } (7)

To assign simple meanings to the two parameters a and m, we define two new
parameters t and h (their meanings will be explained below):

  

† 

t =
1

8am2

h = am4

(8)

and write the dynamics (6, 7) with these new parameters:
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† 

dx
dt

=
x

2t
1-

x2

8th

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

+ F(t)

V(x) =
x2

8t
x2

8th
- 2

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

(9)

In addition, an external force F(t) has been introduced. The stable equilibria (with
F=0) are now located at

  

† 

xs = ± 8th

The parameter h is the height of the "activation potential" (e.g. the unstable
equilibrium) with its top at xu=0 lying in between the two stable equilibria at xs, as can
easily be verified:

  

† 

V(xu) - V xs( ) = 0 -
8th
8t

8th
8th

- 2
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

= h (10)

t is the endogenous time constant of the system near its stable equilibria xs. This
can be verified by linearization of the dynamics around xs. To this purpose, we
replace x by the new coordinate x being the distance from xs:

  

† 

x = x - xs (11)

After introducing (11) into (9), we linearize the dynamics for small x and get the
approximative differential equation for the trajectory in the neighborhood of the stable
equilibria

  

† 

dx
dt

ª -
1
t

x (12)

with the solutions

  

† 

x t( ) ª x0e
-

t

t (13)

x0 is the initial position of the ball at t=0. By definition, t is the time constant for the
relaxation of the system to its equilibrium point x=0, what had to be shown.

Fig. 4: Potential V(x) accor-
ding to (9) for t=h=1. The
stable equilibria are at
xs=±2.828, the unstable
equilibrium is at xu=0. The
potential is symmetric
against the axis x=0.

xs

h
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The potential V(x) according to (9) is shown in Fig. 4 in graphical form. To illustrate
one of the basic phenomena arising from such a double-well potential, namely
hysteresis, we investigate the trajectory resulting from a periodic sinusoidal force F(t)
= F0sin(2pt/T) with period T and amplitude F0. After an initial aperiodic sequence, the
system will find a periodic trajectory, i.e., the system state x(t) will be a (bivalent)
function of F(t). An example of such a hysteresis curve for a slowly varying force
F(t) is shown in Fig. 5. "Slowly varying" means that the period of the external force
(T=60) has been chosen much longer than the internal time constant of the system
(t=1), resulting in a quasi-stationary hysteresis curve, i.e., the system is in many time
points t near the equilibrium it would settle in when the variation of the external force
would be stopped at time t, i.e., F(t')=F(t) for all t'>t. The verification of this behavior
in Fig. 5 is especially simple for F(t)=0: The two cutting points of the hysteresis curve
with the vertical axis (F=0) indeed lie very near to the stable equilibria xs=±2.828 (see
Fig. 4). As soon as the external force is able to move the system past the steepest
slope of V(x), halting this force would drive the system to the vicinity of the
equilibrium point xs lying ahead of the trajectory. According to the first inequation of
(17), the critical force is ±0.544, i.e., the force-intervals from -0.544 to +2 (=+F0), and
from +0.544 to -2 (=-F0), indicated in bold in Fig. 5, are the quasi-stationary parts of
the hysteresis curve. The remaining dynamical (steepest) parts of the hysteresis curve
cannot be understood by stationary reasoning. The force range between ±0.544 is the
bistable region, i.e., for forces within this interval, two different stable equilibria exist.

Fig. 5: Quasi-stationary
hysteresis curve for the
potential given in Fig. 4
with T=60>>t=1. The
simulation started at
(0/0), giving an aperio-
dic initial trajectory,
before the system res-
ponse is periodic. Note
the ordinate intersection
points (0/±2.828) show-
ing that the system is
able to follow the vari-
ation of the external
force F(t). Only the bold
portions of the hyster-
esis curve are quasi-

stationary. Halting the force on the other portions of the curve would drive the system
to the respective stationary part, as indicated by the dashed arrow for F=0.8. The
interval of forces between ±0.544 is the bistable region (double arrow), i.e., for forces
within this interval, two different stable equilibria exist.

For fast varying external force F(t) with period T in the order of t, the hysteresis
curve changes shape: The system cannot longer follow the variation of F(t) and
oscillates around one of the stable equilibria as shown in Fig. 6. The important

F(t)bistable
region

x
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message is that a force of the same strength (F0=2) as applied in Fig. 5 does not
induce a state transition when it varies at a time scale comparable to the system's
internal (endogenous) time scale, because the internal time constant acts as a kind of
inertia keeping the system near its actual equilibrium point.

Fig. 6: Dynamic hysteresis
curve with F0=2, T=4, t=h=1
showing oscillation around
the equilibrium point at
x=+2.828. The trajectory cir-
cles around the positive
equilibrium of the potential
V(x), because it started at
x=0 with the force increasing
from zero to positive values.

To induce transitions between the two equilibrium states, a fast varying force has
to be much larger as shown in Fig. 7.

Fig. 7: Repetition of the
simulation shown in Fig. 6
but with the force increased
tenfold (F0=20, T=4, t=h=1).
The resulting dynamical hys-
teresis curve is different from
the quasi-stationary curve
shown in Fig. 5, because the
system follows the variation
of the external force F(t) with
a non negligible delay resul-
ting from its internal time
constant t=1 being in the
same order of magnitude as
the period of the external
force T=4.

5. Generic acceptance model
The simulations presented in the previous section illustrate the generic dynamics of

a light ball in a double-well potential submitted to periodic external forces. For the
investigation of acceptance dynamics, we are not interested in periodic trajectories.
Rather, we ask for aperiodic trajectories representing state transitions beginning in the
left equilibrium point and leading to the right one. First, we apply a small constant

x

x
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force F0 and ask for the deviation d from the force-free equilibrium point at position
xs=–(8ht)1/2:

  

† 

d = x + 8th (14)

We substitute x in (9) by d according to (14) and ask for the stationary solution by
setting the time derivative to 0. This leads to the following relation between F0 and d:

  

† 

d d2 - 3d 8th +16th{ } = 16t2hF0 (15)

For small d , the bracket in (15) reduces to the constant term and we get
approximately:

  

† 

d ª F0 ⋅ t (16)

An example for a dynamical simulation with F0=0.1 is given in Fig. 8. Realize that the
bracket of (15) reads for t =h=1 and d =0.1: {0.01 - 0.85 + 16}. Obviously, the first
two terms are negligible against the constant third term!

Fig. 8: Trajectory begin-
ning at the left equilibrium
(xs=-2.828) for a constant
external force F0=0.1 in the
time interval t=0...10. For
t>10 F0=0. A new equi-
librium position is found
after a few t (t =1) with a
distance d from the stable
force-free equilibrium point
of approximately F· t =0.1.
The simulated distance
between the two equilibria
is about 0.105 as indicated
by the double arrow.

In the social sciences, the reaction of a social system on small variations of prices,
taxes, subsidies, etc. are often described by elasticities e, i.e., the variables are
supposed to be related by a power law y=cxe. Our relation between force F0 and
deviation d is linear, equivalent to an elasticity e=1, and our constant t is the
proportionality coefficient (c in the relation y=cxe). Note that in our light-ball model,
t describes also the endogenous relaxation time, i.e., t is at the same time a system-
internal time constant and a proportionality coefficient for the limit of small forces.
This is a generic result, because every potential V(x) can be approximated by a
polynomial of order 2 around each equilibrium point: V(x)=x 2/(2t) with x being the
distance from the respective equilibrium point xs. From this approximation, both
meanings of t follow immediately, without recurrence to our full 4th order potential.
Realize also that the system always relaxes to the original equilibrium (here to

d
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xs=–2.828) when all external forces are relieved, i.e., the system does not learn nor is
there any paradigm change in this fully reversible case.

For large forces, the above explained approximation does not longer hold and
analytical calculations become difficult due to the non-linearities of V(x). Here,
simulations come into play and help us to understand the basic dynamics of the
system. By imagining a light ball pushed by an external force over the central hill of
the potential V(x) (see Fig. 4), it is obvious that a transition from the negative to the
positive attractor (reminiscent of a paradigm change, acceptance, double-loop
learning) cannot happen unless the external force F brings the system at least to the
local maximum of the potential at x=0. From there, the internal dynamics drives the
system downhill to either attractor without any force applied. To reach x=0 by
application of a constant force F0 during a time interval T, two conditions must be
fulfilled: F0 must exceed the largest opposing force exerted by the potential V(x) and
T must be long enough to let the system reach x=0. The respective necessary
conditions are the following:

  

† 

F0 > max
dV
dx

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

=
8h
27t

F0T > 8th

(17)

The second condition represents the fact that for a flat potential (V(x)=0), the system
state x would have to be shifted over the distance Dx=(8th)1/2, i.e., from the left
equilibrium point to zero. As u=F0 for this simplified system with V(x)=0,
Dx=uT=F0T. Due to the opposing force for a system with non-zero potential, F0T must
be larger than Dx as formulated in (17). Fig. 9 shows the simulated product F0·T
(called transition cost, because it is the product of the applied force, e.g., subsidies,
taxes, with the time during which the force must be active) as a function of the
applied force that is necessary to bring the system to the critical point x=0. The graph
clearly indicates when the relations (17) are good approximations: The minimum
force necessary to induce a transition, described by the first inequality, holds for
small forces (for this case, the second inequality gives far too low transition costs).
For large forces, the potential gets negligible and the zero-potential limit (second
inequality in (17)) becomes a good approximation (in this case of large forces, the
first inequality is fulfilled anyway). Fig. 9 clearly demonstrates that the cheapest way
(i.e. resulting in lowest cost) to induce a transition is to apply large forces
(realistically around 4 to 6 times the minimum force). As soon as the critical point of
the system (at x=0) is passed, its internal dynamics will drive it into the second
equilibrium, and no external force is needed any more.
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Fig. 9: Transition cost (F0·T) versus force (F0) for t=h=1 necessary to bring the
system to the critical point x=0. The broken vertical line shows the first and the
broken horizontal line the second condition of (17). To induce a state transition, a
minimum force of about 0.5 is needed; the lowest transition cost of nearly 3 is
approximated when large forces are applied.

6. The generic acceptance model as a simplified waste recycling model
To illustrate the realization of our potential V(x) within the framework of a

„normal“ system dynamics model, we simplified the waste recycling model (cf.
section 3) by lumping all functionally related parameters and reduced the number of
groups from 4 to 2: adopters x and non-adopters y. The structure of this simplified
model is shown in Fig. 10.

Fig. 10: Structure of
the simplified version
of the waste recycling
model presented in
section 3. Underlined
text refers to parame-
ters.
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The 50 parameters and 33 nonlinear functions of the original model have been
reduced to the two parameters P and t, and the two functions f(x) and g(y) with the
following meanings:
P = overall population
t = time to adjust
f(x) = influence of the adopters’ norm on non-adopters
g(y) = influence of the non-adopters’ norm on adopters
The dynamical equations of the simplified model are

( ) ( )

( ) ( )y,xpy,xq
dt
dy

y,xqy,xp
dt
dx

-=

-=
(18)

with the condition
yxP += (19)

and the two functions being defined by

( ) ( )

( ) ( )
x

P/yg
y,xq

y
P/xf

y,xp

t
=

t
=

(20)

The two dynamical equations (18) for the two population groups x and y, together
with the condition (19), can be expressed by one dynamical equation for x, describing
the balance of the adoption rate p(x,y) and the frustration rate q(x,y). These two rates
are defined symmetrically with the functions f(x) and g(y), and involve the time
constant t (20). The influence f(x) of the adopters’ norm on non-adopters vanishes for
x=0, because there is no adopters’ norm established without adopters. With only a few
adopters, their influence is still negligible, suggesting a horizontal tangent f’(0)=0.
With an increasing number of adopters, however, their influence gets important. The
most simple functions f(x), and analogously g(y), that fulfill the three conditions, are
quadratic polynomials:

( )
( ) 2

2

2
1

yyg

xxf

⋅n=

⋅n=
(21)

The two new parameters n1 and n2 describe the strength of the effect of the adopters’
norm and the non-adopters’ norm, respectively. We apply the following normalization
to further simplify the equations:

22

11

P

P

x1
P
y

y

P
x

x

n⋅=n¢

n⋅=n¢

¢-==¢

=¢

(22)
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With the substitutions (22), the dynamical equations (18) take a simple form. For
convenience, the dashes are omitted in the following:

  

† 

dx
dt

=
n1 + n2

t
x 1- x( ) x -

n2

n1 + n2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ (23)

Equation (23) can be transformed into the form of our generic acceptance model
(without external force F0)

( )
dx

xdV
dt
dx

-= (24)

giving

  

† 

V x( ) =
1

12t
x2 6n2 - 4 n1 + 2n2( ) x + 3 n1 + n2( ) x2{ } (25)

This double-well potential (a polynomial of fourth order) has the following extremes:
( )

( )

( )21

3

21

2

21

2

12

2
12

1
V

12
1V

00V

n+n˜̃
¯

ˆ
ÁÁ
Ë

Ê

n+n

n

t
=˜̃

¯

ˆ
ÁÁ
Ë

Ê

n+n

n

t

n-n
=

=

(26)

The first two extremes at x=0 and x=1 are stable minima and the third is an unstable
maximum in between them. In general, the potential (25) is asymmetric, because the
minimum at x=1 is above or below the x-axis, if n2 is larger or smaller than n1,
respectively. We find the symmetric situation investigated in the previous section for
n1=  n2= n. For this special case, the simplified waste recycling model becomes
identical with the generic acceptance model (with the exception of a non-important
linear transformation of the x-coordinate) with the following choice of its parameters:

  

† 

tg = t / n

hg =
1

32 t / n

(27)

Symbols with subscript g refer to the generic model described in the previous section.
(27) shows that the effective time constant t/n is the only relevant parameter for this
special symmetric case of the simplified waste recycling model. For the more general
asymmetric case, the minimum of the potential at x=1 (waste is recycled) gets higher
(i.e. less stable than the minimum at x=0, staying at V=0), and the "hill" separating
the two minima increases and moves towards x=1, with growing n2. This is plausible
because, with increasing effect of the non-adopters’ norm n2, the recycling mode gets
less stable and harder to achieve, and so it would need a larger external force (garbage
bag charge) to reach and stabilize the recycling mode.

Our transformation of the waste recycling model into the generic form, that can be
interpreted as the dynamics of a light ball rolling over a potential V(x), has shown that
the minima of V(x) are created by stabilizing feedback-loops. In our case, the
perceived social norm, involving the parameters n1 and n2, is the process shaping the
potential: If most people separate waste, the non-separators are motivated to do so
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(n1); if most people do not separate, the separators loose their motivation and stop
separating their waste (n2).

Our analysis shows further, that at least one of the two functions f(x) and g(1-x),
describing the effect of the perceived social norms, must be nonlinear to be able to
lead to two simultaneously stable minima of the potential V(x). If both functions are
assumed linear, the respective potential is a third order polynomial having only one
global minimum at x=0 or at x=1 for the slope of f being smaller or larger than the
slope of g, respectively. For this case with linear functions f and g, the basic character
of the system would be different: As soon as the effect of the adopters’ norm would
have a larger slope than the effect of the non-adopters’ norm, the system would
undergo a transient from x=0 (not recycling) to x=1 (recycling), without any external
force (garbage bag charge) needed. For the case that the slope of the effect of the
adopters’ norm would be smaller compared to the one of the non-adapters’ norm, a
garbage bag charge would push the system towards x=1, but no paradigm change
would occur, stabilizing this state: As soon as the charge would be relieved, the
system would fall back to x=0. This analysis demonstrates, that one of the most
important decisions during the modeling process is the choice of the shape of the
norm-functions f and g. In the model validation process, observational evidence
suggesting linear or nonlinear norm-functions would therefore be of prime
importance.

A last remark concerns the discrepancy of the numbers of parameters and functions
between the full model and the generic model. In every model useful for practical
purposes, a large number of parameters are needed, because the important effective
parameters (in our case t, n1 and n2) must be related to practically relevant input
parameters. The strength of the generic model, however, is not its application to
simulate observed processes, but to help us understand its basic behavior and to give
us an idea of its solution manifold. It contains only a very limited number of effective
parameters and functions, and so shows us the relevant combinations of parameters
and functions defining the trajectories to be expected.

7. The Bass model as a simplified acceptance model
Generic models can be useful to detect common properties of seemingly unrelated

models. We demonstrate this property of generic models by showing that our generic
light-ball acceptance model comprises, e.g., the widely used Bass model (Bass et al.
2000). We define our system state x as the number of items sold until time t and
concentrate on the portion of the potential V(x) between x=0 and x=xs+F0t
(xs=positive stable equilibrium for F0=0). The system dynamics with small external
force F0>0, according to (9), is the following:

  

† 

dx
dt

=
x

2t
1-

x2

8th

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

+ F0 (28)

For small x, (28) reduces to dx/dt=F0 leading to a linear growth of x. At larger x, for
x2<<8th and F0<<x/(2t), we find approximately an exponential growth of x with time
constant 2t:
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† 

x(t) ª x0e
t

2t (29)

For xm with maximum slope of V(x), F0 can be neglected and we find:

  

† 

xm ª
8th
3

dx
dt

ª
8h
27t

(30)

Finally, for x near the equilibrium xs+F0t, we find an exponential approximation with
time constant t according to (12).

The Bass model is generally presented in the following form:

  

† 

f(t)
1-F(t)

= p + qF(t) (31)

where f(t) stands for the sale rate of a product and F(t) for the total amount of items
sold until time point t. p is called coefficient of innovation and q is the coefficient of
imitation. If we use the relation f=dF/dt, we can write the Bass model in the form:

  

† 

dF
dt

= p + qF( ) 1-F( ) (32)

For small F (near t=0), the dynamics reduces to

  

† 

dF
dt

≡ f ª p (33)

giving a constant sale rate f=p and a linear increase of the total amount F of items
sold. For a time interval, where qF>>p and F<<1, the approximate dynamics is

  

† 

dF
dt

≡ f ª qF (34)

leading to an exponential growth of both, F and f with time constant 1/q:

  

† 

F(t) ª F0e
qt

f(t) ª qF0e
qt

(35)

The maximum slope of F (maximum selling rate f) is found from (32) at Fm lying near
50% of the ultimate market potential (which is normalized to 1) for the majority of
situations characterized by p<<q:

  

† 

Fm =
1
2

1-
p
q

Ê 

Ë 
Á 

ˆ 

¯ 
˜ ª

1
2

fm ª
q
4

(36)

For F near to unity, we find from the approximated dynamics

  

† 

dF
dt

ª q 1-F( ) (37)

the trajectory
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† 

F(t) ª 1- e-qt (38)

i.e., an exponential approximation of the ultimate market potential with a time
constant 1/q.

With the above stated relations (28)-(38), it is straightforward to bring our light
ball model into approximative coincidence with the Bass model for p<<q. We identify

® the normalized number of items sold with the system state: F = x
and the selling rate with the velocity of the ball: f = u = dx/dt

® xs+F0t with the ultimate market potential set to 1:
  

† 

h ª
1-F0t( )

2

8t
This condition follows from (28) and (16).

® the coefficient of innovation with the external force: p = F 0

® the coefficient of imitation
with the inverse of the internal time constant: q = 1/ t

With these equivalences, the constant sale rate (33) for small t gets identical in both
models. This linear growth of the normalized number of items sold is followed by an
exponential growth in both models with the only difference, that our ball model (29)
has a time constant twice as large as compared to the Bass model (35), i.e., the ball
model grows more slowly than the Bass model. The position of the maximum slope
gets 1/31/2≈0.58 in the ball model (30), which is slightly larger than in the Bass model,
where the maximum slope is found near 0.5 (36). This difference affects maximum
sale rates: Comparison of (30) and (36) shows that maximum sale rates are 271/2/4≈1.3
times smaller in the ball model than in the Bass model. For the market saturation
phase (i.e. F=x near to unity), both models show an exponential approximation of the
ultimate market potential with the same time constant q=1/t (comparison of (12) and
(38)). Fig. 11 shows respective trajectories for both models for p=0.01 and q=0.1.

Fig. 11: The ball model (thin line) is
compared to the respective Bass
model (thick line) for p=0.01 and
q=0.1. As explained in the text, the
ball model is somewhat lower after
the initial linear growth phase.

We would like to add that the two models could be made exactly identical by
replacing the 4th order potential V(x) of the ball model by the 3rd order potential

  

† 

V(x) =
x
t

x2

3
-

x
2

1-F0t( ) -F0t
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

(39)

Here, F0 would not any longer be an external force, but an additional parameter
shaping the potential V(x). (39) is proven to be correct by the substitutions x––>F,
1/t––>q, F0––>p and comparing dF/dt=-dV(F)/dF with (32).
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8. Discussion and research implications
We realized that the term generic is associated with somewhat different meanings

in different scientific communities. Our interpretation of a generic model throughout
this paper is compatible with Paich 1985 and states that it should give the basic
qualitative properties of a phenomenon by abstracting from all less important specific
properties. However, the separation of important from less important properties
cannot be made by a procedure based on first principles and always includes some
subjective freedom or "grey zone". We would like to illustrate our point of view with
the example of dancing steps. On the most basic level, dancing can be described by
*****....*, where * stands for a group of steps. On the next level, * can be structured
in the following way, L and R referring to the left and right foot respectively:

® * = LR generic March
® * = RLRLRL generic Waltz
® * = RLRLRLRL generic Tango
® * = LRL0RLR0 generic Salsa (0 stands for a pause or a "tip" with the 

foot that follows)
We show with this example that generic can be understood on different levels. The
higher the level is the more realistic, the more interesting and colorful the description
becomes, but also the more different types arise. The differentiation process can be
continued leading to a tree-like structure. On each higher level, more and more
specific descriptors will be necessary. For the example of Salsa, the next level would
consist of generic Salsa puertorriqueña, generic Salsa cubana, etc. The characteristic
feature of this differentiation is an ever growing difficulty to distinguish between the
different types the higher the level is. From a certain level on, we speak of experts
that are still able to distinguish between different types. As we all know, also the term
expert is relative and can be attributed to persons attaining different levels. Our
dancing-example is intended also to be reminiscent of the basic structure of scientific
thinking. This remark should make clear that the question towards generic models lies
at the very heart of modeling science and helps structuring the "modeling landscape".
We would like to remember that this same idea was expressed by Jay W. Forrester at
the end of his banquet talk at the 1989 System Dynamics Conference at the University
of Stuttgart (Germany): "Whether we think of pre-college or management education,
the emphasis will focus on generic structures. A rather small number of relatively
simple structures will be found repeatedly in different business, professions, and real-
life settings."

Another open question concerns our choice of a physical model (a light ball rolling
downhill) to describe a social phenomenon. It is a fact (but also an unanswered
philosophical question) that most simple mathematical equations can be used to
describe a physical phenomenon. As it is a good modeling practice to start with a
simple model for acceptance dynamics, it is of no surprise that such an approach can
be interpreted in a physical way. The advantageous side of this circumstance is our
deep understanding of light-ball behavior based on our experience gained from
childhood, which helps us to directly understand the solution manifold of the
differential equation defining our acceptance model. It is this understanding that
helped us to conjecture the basic equivalence of the Bass diffusion model with our
generic acceptance model.
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The physical analogy helps us even further, namely, to extend the presented model
to include additional phenomena. A natural extension would be to introduce the
acceleration term of the Newtonian equation, m·du/dt, that was neglected for a first
version of the model. This term would allow overshoot and damped oscillations and
the physical analogon would be a heavy sphere rolling downhill. Another extension
would be the introduction of a stochastic external force or noise (in the physical
literature, this would be called a "coupling to a heat bath with temperature T" defining
the variance of the fluctuations). This extension would replace the description of an
average population by the description of an ensemble of individuals being subjected
to numerous external influences pushing into all directions (see, e.g., Rahn 1985).
Again, physics would guide our intuition to anticipate the range of phenomena we
could expect by this extension. Among other effects, we would expect the following
phenomena (for an overview on noise phenomena see the introduction of Gassmann
1997a):

® noise-induced state transitions: a part of the population (expressed by a
probability) would "cross the hill towards the other state" even in the
absence of a constant external force F. Within the innovation theory, this
part is called "innovators". In chemistry, this generic effect leads to
chemical equilibria (mixture of educts and products of a reaction) which
depend on temperature. The (light or heavy) ball analogy makes this
dependence plausible and understandable without first deducing it from the
mathematical equations. We understand, e.g., that the fraction (probability)
of the population sitting in the lower valley would be higher than the
fraction in a higher positioned valley (for the case of an asymmetrical
potential V(x)): The chemical reactions run from higher internal energy to
lower internal energy, the height of the activation potential (i.e., the hill
separating the two valleys) together with temperature defining the reaction
rate (Arrhenius-law). In the framework of social behavioral models, noise
would establish a link to choice models as, e.g., the well-known logit
model.

® noise-induced oscillations: in the heavy ball model, noise would activate
the system to oscillate in its eigenfrequency around a stable equilibrium.

® stochastic resonance: The effect of a small external force is amplified by
the presence of noise. This counter-intuitive effect makes some marine
animals hear very weak sound signals in the presence of large background
noise produced by wave-induced turbulence (Sutera 1981, Dykman et al.
1995).

The above given examples for natural extensions of our generic acceptance model
show some far reaching effects resulting from the introduction of simple new terms
into the governing equation. Further research will show which extensions make most
sense for applying them within a socio-economic framework.
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9. Conclusions
We have shown that the simple dynamics dx/dt=-dV(x)/dx+F, representing a light

ball rolling over a double-well potential V and being influenced by an external force
F, is able to describe

® the linear reaction of the system resulting from small forces
® the hysteresis-behavior resulting from large periodic forces
® the acceptance-behavior resulting from large transient forces
® the dependence of transition cost on the magnitude of the force
® the waste recycling model of Ulli-Beer (2006)
® the Bass diffusion model

and helps to make the class of acceptance phenomena turn into a more tractable issue.
In the discussion we made clear that this generic model can be extended to higher
levels of detail. It has the potential to inspire model development and to generate new
research questions, e.g., for the systematic investigation of acceptance dynamics in
innovation systems, leading to a better understanding of technological change
processes.
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