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ABSTRACT 

Based on ~~r study o-f synergetics and dissipative structure theory, by 
means o.f ~&athe~~~atics, in terms o.f the viewpoint o.f system dynamics, 
this paper concentrates on the study o.f chaos in system dynamics: we 
analyze the nature o.f chaos phenomenon and the characteristics o.f 
syste. dyna•ics, put .forward the viewpoint that chaos testing should 
be included in ..:x:lel testing o.f S.D.; we investgate several necessary 
conditions o.f chaos; we creat a model to question a .fa•ous sufficient 
condition of chaos; then, we shed some light on the way toward which 
chaos will occur. At last, we successfully apply our theoretic study 
to a standard nuclear spin generator model. 

1. CHAOS AND SYSTEPt DYNAHICS 

System dyna.ics is a pDNerful tool to study the complex social and 
econa.ic syste.a. This ca.plexity results from nonlinearity, high-order 
and multy loop of syste.s. One character o.f such complexity is that, 
though the systea is deterministic, at certain point, its behavior is 
like stochastic. Apart froa this, the systme is extre.ely sensitive to 
the inital value. This strong sensitivity makes two trajectories which 
are very close in the beginning become quite different from each 
other in ti.e. That is to say, the system will show chaotic behavior. 

To a nonliear dynamicist, a chaos system is one on which long-term 
predication o.f the system•s state is impossible because the 
omnipresent uncertainty in determining its initial state and because 
the error of initial value grows exponentially fast in time. 

So, it is of great significance to study chaos characteristics of S. 
D. models in order to make the model be .are reliable. 

Fortunately, System Dynamics has paid lots of attention to model 
testing. So, we recommend that chaos testing be included in 
sensitivity analysis while we do model testing. 

Now, let us see the mechnics of chaos. 

First, we classify all macro states in the world into Table 1. 
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Table 1. 

in-bet.een state 

stable 

~inal state 

a. equilibrium 
b. periodical 
c. quasiperiodical 
d. tend to limitlessness 

unstable e. sometimes limited 
sometimes limitless 

~. always limited 
stochastic 

What classcia'i theories study are 
process a, b, and c; process d and 
what we call chaos: 

the stable processes, namely, 
e are divergent; process "f" is 

De-f. 1. A state which is always limited and which is not equilibrium, 
not periodical, and not quasiperiodical {s named chaos. 

From the above discussion, we easily get: 

Theore. 1. unstable, aperiodical, bounded and extremely sensitive to 
inital value are the necessary conditions o~ chaos. 

In the ~allowing, we will concrete theorem 1. 

For generality 
dX/dt 
dY/dt 
dZ/dt 

and transfer ability, this paper focuses on system <1>: 

Set q <X, y • 
dq/dt 

2. BOUNDED 

P<X, Y, Z> 
= O<X, Y, Z> 
= R<X, Y, Z> 
Z>, then, system <1> becomes 
= N(q) -----------------------

(1) 

(2) 

Def. 2. If existing a costant H, q<t> is the solution of system (2), 
we have: 

lim sup q<t> < H ----------------------- <3> 
Then, we ~afl system <2> is dissipative ([11>. 

Theorem 2. Suppose q(t) = <X<t>, Y<t>, Z<t>> is the solution of system 
<1>, if <q<t>, dq(t)/dt> < 0, then, system (1) is dissipative. 

Proof: take 

then (q<t>, dq(t)/dt) < 0 

< 
< 
< 

======> X * dX/dt + Y 
======> S * dS/dt < 0 

=====> ds/dt < 0 

--------------------- (4) 

* dY/dt + Z * dZ/dt < 0 
< since S > 0 > 

So, system <1> is dissipative. 

Example 1. 
dX/dt - bX + Y 
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dY /dt. = - X - bY ( 1 - k Z > ------ C5> 
dZ/dt = b [a < 1 - Z > - k Y*Y l 

Mhere a, b,k > o. Ne can verify <q, dq/dt) < 0 ([21>. 

Based on theore. 2, Me can construct a kind of syste~aS which are 
dissipative. 

Theoret~~ 3. In system <1>, if P,Q,R satisfy: 

a> dq/dt A<q> + S<q> + H 
b) <q, A<q> > > 0 
c) <q, S<q> > = 0 
d) S<O> = 0 

then <q, dq/dt) < 0. <When q is big enough> 

3. UNSTABLE 

In order to study unstableness, we introduce Lyapunov exponent. 

De-f. 3. Suppose dqCtl/dt = L<t> q<t> ------------ <b> 
L<t> = (aijCt>>, if existing B > 0 J sup /aij(t)/ < B 

then, for the solution vectory qi <t> of systeta (6), we define: 
Zi = J.!.l sup < <1/t) * ln qi <t> > <7> 

Zi are called generalized characteristic exponents. One special case 
of generalized characteristic exponent is so-called Lyapunov exponent. 

SUppose qo<t> is a solution of systet~~ <1>, sq<t> is a disturbence, 
then, 

q<t> = qo<t> + sq<t> 
Put CB> into <2>: 

N<qo<t> + sq<t>> 

<B> 

dqo(t)/dt + dsq<t>ldt 
<=====> dqo<t>ldt + dsq<t>ldt = N<qo<t>> + <dN<qo<t>tdt*sq<t> + 

<____;_> dsq (t) /dt 
o<sq<t>> 

[dN<qo<t>ldt>+sq<t>l (9) 

Def. 4. The generalized characteristics exponents of equation (9) are 
called Lyapunov exponents. 

Haken in [31 asserts that, if the three Lyapunov exponents of system 
(1) are (+, 0, ->, then, system is chaotic. In our study, we find 
this assertion is not correct. 

Theoret~~ 4. If qo<t> = qo then lyapunov exponents are the eigenvalues 
of N (qo). 

Proof: Since qo<t> = qo , N<qo> is a constant matrix. So, equation 
(9) is a linear diffential equation. 

Suppose A1,A2,A3, are the three eigenvalues of equation 
/AE-N<qo>l = 0, Vl, V2, V3 are relative eigenvectors. since 

AiEXP<Ait>Vi=N CqO>EXP<Ait>Vi<===>N CqO>Vi=AiEVi<===><N <qO>-AiE>Vi=O 

then, EXP<Al*t)V1,EXPCA2*t>V2,EXP<A3*t>V3 are solutions of (9). 

From Def. 3• 
Bi = lim sup {1/t * ln /exp(Ai•t>Vi/ } 
J~ s6Jj0 {(Ai*t)/t + ln /Vi/ /t} = Ai 

So, Lypunov exponents = eigenvalues. 
where /C/ is the absolute value of C. 
Example 2 
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dX/dt bX + Y 
dY /dt X -bY + bkYZ ( 10) 
dZ/dt b - cZ - bkY*Y 

b , cl , k > 0. We have proved that system <10) is dissipative. 

Theore. 5. Cl = <O, O, b/C), C2,3 = {±<1/b*b*k)4-SQR[ (b*b*b*k­
c(1+b*b))/bl,±(1/b•>k•SQR[(b*b*b*k-c(1+b*b))/bl,<1+b*b)/b*b*k} 

are three equilibrium points o+ system <10). 

Theore. 6. Take C = (b*b*b•k>l<l+b*b> ------------ <11> 
===> A1=0 And A*A+<b-1/b+c)*A+(bc-c/b)=O,A2,3=0.5[(1/b-b-

c>±SQfU <b-1/b+c>•<b-1/b+c>-4<bc-c/b) l 
-for b <1,=>A2•A3<0 then, Lyapunov exponents a+ system <10> are 
(1/b-b , 0, -c) = (+, 0, ->. So, system (10> satisfies Haken·s 
conditions. It should be chaos. But our study finds that syste. <10> 
has periodical solutions and it is not sensitive to intial values 
( [2]). 

4. APPLICATION 

Exa~le 2 shows that it is a+ little possiblity to be chaotic directly 
at equilibriu. points. Chaos is a dynamic process. The probable way 
tONard lolhich chaos may occur is: 

a) change parameters to make equilibrium points be limited 
cycles. 

b) go on changing parameters to let limited cycles bifurcate 
into cycle 2,4,8 •••••• 

c) at last, go to chaos. 
In step a, we have: 
Theorem 7. Suppose W is a open set, 0 beiongs to W, W is included in 

R*R*R, 
-f: W*<-ao,ao > --> R*R*R 
dX/dt = -f <x ,a ) < 12> 

fCO, a) = 0, -for any •an 
The eigenvalues of Df<O, O,> are +ib(O),-ib(O),S<O>,S<O><O, 

bCO) > 0, Mhen a=O, co, o, o,> is stable, a>O. 
<O,O,O> lost stable. 

Then, -for saall enough a, equation <12) has a 
trajectory near <O, o, O>. 

stable closed 

So along this road, we delve into a nuclear spin generator model. 
~xa~le 3. <system 13> 

qj. 
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This is a •·hree levels, seven loops, nonlinear S.D. IIIOdel. It comes 
from nuclear physics ([4]). 

Theora. B. Exa.ple 3 is dissipative. 

Theora. 9. Nhen b 1, k = 22, example 3 is chaos. 

Our result are: 
1. In example 1, Ne have proved that syste. (5) is dissipative. 
2. C1 = <O, O, 1>; C2,3 = (±SQR[(k-1)*b*b-1l/k*b*b, ±SQR[(k-1>*b*b-

1l/k*b, (1+b*b)/k*b*b ) 
are the equilibrium points of system (5). 

3. At point C=<0,0,1> 

H = [=~ -!<1-k> ~1 
0 0 -b 

====>A1=-b<O, A2,3=0.5[b(k-2l±SQR(b*b*k*k-4)l 
A1,A2,A3 are Lyapunov exponents, or eigenvalues. 
a> k < 2, (k - 1>b*b- 1 < 0 ====> Re<Ai> < o, i = 1, 2, 3 

At this, C1 is stable, C2,3 have not nteaning yet. · 
b) k < 2, <k 1> - 1 > 0 ==> C have got meaning. A2*A3 < 0. 
Proo·f: notice SQR<b*b*k*k-4) > /b(k-2)/ 

<====> (k-1)*b*b-1 > 0 
c) k > 2, <k-l>*b*b - 1 < 0 ==> A2,A3 > 0. 
d) k > 2, <k-U*b*b - 1 > 0 ====> A2*A3 < 0. 
Under the condition of <k-1l*b*b -1 > o, C2,3 have meaning; the 

eigenvalue of C1 are <-, +, ->, <-, -, +). 

4. At C2,3, 

H =[=! 1 
1/b 
y2 

~~] 
-b 

yl = +SQR( ) 

y2 = -2SQR( ) 
==> u1 = -b, u2,3=1/2{(1/b -b)±SQR[(b-1/b> <b-1/bl-B*[<k-1>* 

b*b-1]} 
According to theoreca 6, take b = 1, then 

u2,3 = ±SQR2*<SOR<k-2>>i, (k > 2> 
At this time, at C1,A2,3 < 0; at C2,3, u2,3 = ±{5QR[2(k-2)l}i 

5. At b = 1, 
dA/db = f[4<k-1ll/SQR[2(k-2>l 

Therefore, this is a bifurcation point. So, go on. 

Based on the above analysis, we simulated system (13): 

a> b 0.7, k 1.5 ===> ~ 
b) b 2/3, k 3.0 => 

c> b 4.0, k 1.1 => "---------
d) b 0.5, k 6.0 ==> 
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When b = 1, k = 22 => Chaos. 
In plactice, people do find that the nuclear spin generator system will 
shaM irregular behavior. But they can not explain this phenomenon. now 
our chaos study successfully shed light on it. 
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