
1 

Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

 
 

Ahmed A. AbdelGawad 
Information and Decision Support Center, the Cabinet 

Cairo, Egypt 
ahgawad@idsc.net.eg 

 
Bahaa E. Aly Abdel Aleem 

Information Technology Institute, 
Giza, Egypt 

baleem@iti.net.eg 
 

Mohamed M. Saleh 
Faculty of Computers and Information, Cairo University 

Cairo, Egypt 
m.saleh@fci-cu.edu.eg 

 
Pål I. Davidsen 

Department of Information Science, Bergen University 
Bergen, Norway 

davidsen@ifi.uib.no 
 

Abstract 

The method presented in this paper allows for an investigation of how model behavior is 
created from the underlying model structure and how this behavior feeds back to change 
the relative significance of the model behavior. The method also allows us to identify the 
dynamics of the relative significance of the various parameters that governs the gains of 
the links and loops of the model. The method has been implemented mathematically using 
Matlab based software developed for the purpose of facilitating an Eigenvalue analysis of 
models representing complex, dynamic systems. This work is based on control theory as 
well as the previous work on eigenvalue analysis in the system dynamics*. It summarizes 
the work by Ahmed AbdelTawab AbdelGawad (2004) and Bahaa E. Aly Abdel Aleem 
(2004) on automating the process of analyzing the structural origin of various modes of 
behavior exhibited by a system dynamics model.  

The method outline and code developed in preparation for this paper is publicly 
available, allows us to analyze the relationship between model structure and behavior 
and may be implemented as par of any simulation package. 

                                                 
* Nathan B. Forrester (1983), Christian C. Kampmann (1996), Mohamed M. Saleh and Pål I. Davidsen 
(2000). 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

2 

Eigenvalue Analysis in System Dynamics 

System Dynamics Models 
In this paper, we outline a method that, based upon the partitioning of model behavior 
over time, linearization and eigenvalue analysis, enable us to identify the dominant beha-
vior modes and the relative contribution to these modes by the structural parameters, links 
and loops that govern the behavior of the model. To that end, we first review briefly how 
we typically may apply linear analysis to non-linear models. 

Linear Models 
A dynamic system is called linear when the principle of superposition holds. Also if cause 
and effect are proportional (Ogata, K., 1997). The model is thus said to be linear, if the 
following condition holds for all equations of its auxiliary variables as well as its net 
rates:  
 1 1 1 1 1 1x x z z u uh N N N N N Nz = a x + + a x +b z + +b z +c u + +c u  (1) 

Where: :i xx i N+∈ ≤ †, :j zz j N+∈ ≤  and :k uu k N+∈ ≤ are the level, auxiliary 

and input‡ variables respectively, :i xa i N+∈ ≤ , :j zb j N+∈ ≤  and 

:k uc k N+∈ ≤ are constants and xN , zN and uN  are the number of level, auxiliary and 
input variables respectively. 
We may express every variable in the model by way of its deviation from a specific ope-
rating point, i.e. replace 1x , … , 

xNx , 1z , … , 
zNz , 1u , … and 

uNu  by: 1 1x xδ+ , … , 

x xN Nx xδ+ , 1 1z zδ+ , … , 
z zN Nz zδ+ , 1 1u uδ+ , … and 

u uN Nu uδ+  respectively. As the 
δ  terms are very small in values, and the symbols with tilde represent the specific initial 
operating point values, then hz may be expressed as h hz zδ+ : 

1 1 1 1 1 1

1 1 1 1 1 1

( )

( )
x x z z u u

x x z z u u

h h N N N N N N

N N N N N N

z z a x a x b z b z c u  c u

a x a x b z b z c u c u

δ

δ δ δ δ δ δ

∴ + = +…+ + +…+ + +…+

+ +…+ + +…+ + +…+
 

Taking into consideration that the originally initial operating point should be selected 
from the behavior trajectory of the hz , i.e. it satisfies the original equation of hz . In 
mathematical terms that is: 
 1 1 1 1 1 1h n n m m l lz = a x + + a x +b z + +b z +c u + +c u  
 1 1 1 1 1 1h n n m m l lz a x a x b z b z c u c uδ δ δ δ δ δ δ∴ = + + + + + + + +  (2) 

Nonlinear Models 
In generally we should not expect systems to be linear and we should, consequently, be 
prepared to develop and analyze nonlinear models (systems representations). Thus we 

                                                 
† The Set of Positive Integers 1, 2, 3, ... , denoted + (Weisstein, E. W. (1999) Concise Encyclopedia of 
Mathematics CD-ROM). 
‡ According to the concept of inputs in the control theory; inputs of the model are these influences 
(variables) that act on the model from outside and are not affected by what happens inside it (Kheir, Naim 
A., 1996), exactly this is the definition of the constants in a system dynamics model. 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

3 

cannot expect equation (1) to hold for all model variables. Rather, we should consider the 
following, more general form of equations: 
 1 1 1( , , , , , , , , )

x z uh N N Nz f x  x  z  z  u  u= … … …  (3) 
Where: (.)f  is a nonlinear function. For most practical purposes, for a model to be suc-
cessfully analyzed, it must be linear. Thus there is a need for transforming a nonlinear 
model to a linear version, yet one that step by step, generates the same behavior as the 
original, non-linear model.  

Model Linearization 
This transformation (model linearization) processes may be accomplished using a Taylor 
Series expansion. 
Taking as our point of departure the nonlinear equation (3), and by expressing all vari-
ables of the model as a deviation from a particular operating point, i.e. by replacing 1x , 
… , 

xNx , 1z , … , 
zNz , 1u , … and 

uNu  by: 1 1x xδ+ , … , 
x xN Nx xδ+ , 1 1z zδ+ , … , 

z zN Nz zδ+ , 1 1u uδ+ , … and 
u uN Nu uδ+  respectively as in the case of the linear model, 

we obtain: 
 1 1 1( , , , , , , , , )

x z uh N N Nz = f x  x  z  z  u  u… … …  

 
1 1

1 1

1 1

( , , ,

, , ,

, , )

x x

z z

u u

h h N N

N N

N N

z z f x x  x x

z z  z z

u u  u u

δ δ δ

δ δ

δ δ

∴ + = + … +

+ … +

+ … +

 (4) 

Equation (4) could be expanded using Taylor Series: 

 

1 1 1

1
1

1
1

1
1

( , , , , , , , , )

    

    

    

    . . .

x z u

x

x

z

z

u

u

h h N N N

N
N

N
N

N
N

z z f x  x  z  z  u  u

f fx x
x x

f fz z
z z

f fu u
u u

H O T

δ

δ δ

δ δ

δ δ

+ = … … …

∂ ∂
+ +…+
∂ ∂

∂ ∂
+ +…+
∂ ∂

∂ ∂
+ +…+
∂ ∂

+

x, z,u x, z,u

x, z,u x, z,u

x, z,u x, z,u

 

Where: 

1

2

xN

x
x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x , 

1

2

zN

z
z

z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

z , 

1

2

uN

u
u

u

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

u  and . . .H O T  is the total amount of the higher 

order terms, taking into consideration that when the δ  terms are infinitesimal, the higher 
order terms beyond the first order terms will have very small values, and may be ignored 
compared to those of the first order terms.  
Also as 1 1 1( , , , , , , , , )

x z uh N N Nz = f x  x  z  z  u  u… … … , the last equation may be reduced to: 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

4 

 
1 1 1

ux z NN N

h i j k
i j ki j k

f f fz x z u
x z u

δ δ δ δ
= = =

∂ ∂ ∂
= + +

∂ ∂ ∂∑ ∑ ∑
x, z,u x, z,ux, z,u

 (5) 

Where: :  x
i

f i N
x

+∂
∈ ≤

∂ x, z,u

, :  z
j

f j N
z

+∂
∈ ≤

∂
x, z,u

 and :  u
k

f k N
u

+∂
∈ ≤

∂ x, z,u

 are all 

constants, and could be replaced by :i xa i N+∈ ≤ , :j zb j N+∈ ≤  and 

:k uc k N+∈ ≤  respectively, resulting in 
 1 1 1 1 1 1x x z z u uh N N N N N Nz a x a x b z b z c u c uδ δ δ δ δ δ δ= + + + + + + + +  (6) 
By comparing equations (3) and (6) – taking into consideration that the δ  terms 
represents a small deviation (change) from the original term; i.e. still expressing the 
original term if the initial value of the original term is exactly known – then the nonlinear 
relation may be replaced by a linear one. 

State Space Form 
At this point, we want to transform the state equations of the linear (linearized) model 
into a general matrix (state space) form for the purpose of analysis. By applying equation 
(5) to the hth element in the net rate vector, the net rate may be expressed as a polynomial 
of the first degree of auxiliary variables: 

 
1 1 1

ux z NN N

h i j k
i j ki j k

f f fx x z u
x z u

δ δ δ δ
= = =

∂ ∂ ∂
= + +

∂ ∂ ∂∑ ∑ ∑
x, z,u x, z,ux, z,u

 (7) 

Taking into consideration the fact that xh N+∈ ≤ , the three summations constitute the 
results of matrix multiplications so that equation (7) can be rewritten to be: 
 δ δ δ δ= + +x,x x,z x,ux, z,u x, z,u x, z,u

x J x J z J u  (8) 

Where: 

1

2

xN

x
x

x

δ
δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x , 

1

2

xN

x
x

x

δ
δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x , 

1

2

zN

z
z

z

δ
δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

z  and 

1

2

uN

u
u

u

δ
δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

u  are the deviations 

in the net rates, level variables, auxiliary variables and the input variables vectors 
respectively.  

Also, ∂
=
∂x,x x, z,u

x, z,u

xJ
x

, ∂
=
∂x,z x, z,u

x, z,u

xJ
z

 and ∂
=
∂x,u x, z,u

x, z,u

xJ
u

, and those J 's are called 

the Jacobian§. 
By applying equation (5) to the gth element in the auxiliary variables vector: 

                                                 
§ Named after the German mathematician Carl G. J. Jacobi (Kreyszig, E., 1993). 

 [ ]( )
[ ]( )

,
,

x x
x y u v

y yu v
u v

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂= = ⎢ ⎥
∂ ∂∂ ⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

J
 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

5 

 
1 1 1

ux z NN N

g i j k
i j ki j k

f f fz x z u
x z u

δ δ δ δ
= = =

∂ ∂ ∂
= + +

∂ ∂ ∂∑ ∑ ∑
x, z,u x, z,ux, z,u

 (9) 

And again, xg N+∈ ≤  so that the three summations constitute the results of matrix 
multiplications again. As a result, equation (9) can be rewritten to be: 
 δ δ δ δ= + +z,x z,z z,ux, z,u x, z,u x, z,u

z J x J z J u  (10) 

Where: ∂
=
∂z,x x, z,u

x, z,u

zJ
x

,  ∂
=
∂z,z x, z,u

x, z,u

zJ
z

 and ∂
=
∂z,u x, z,u

x, z,u

zJ
u

. 

Equations (8) and (10) could be merged into the following form: 

 
δ δ

δδ δ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x,x x,z x,u

z,x z,z z,u
x, z,u x, z,u

x J J x J
uz J J z J  (11) 

As the matrix 
⎡ ⎤
⎢ ⎥
⎣ ⎦

x,x x,z

z,x z,z
x, z,u

J J
J J  relates all the variables of the model to each other using 

their gain values, it is called the System Jacobian (Kampmann, C. E., 1996), or it could 
be called the Full Gain Matrix after the full version of the model – in contrast to the 
Compact Gain Matrix of the compact version of the model (Saleh, M.; Davidsen, P. I., 
2000) – and because it contains the gains of all model links. 
Also, from equation (10); 
 1 1( ) ( )δ δ δ− −∴ = − + −z,z z,x z,z z,ux, z,u x, z,u x, z,u x, z,u

z I J J x I J J u  

By substituting into equation (8), we obtain; 

 
( )
( )

1

1

( )

    ( )

δ δ

δ

−

−

∴ = + −

+ − +

x,x x,z z,z z,xx, z,u x, z,u x, z,u x, z,u

x,z z,z z,u x,ux, z,u x, z,u x, z,u x, z,u

x J J I J J x

J I J J J u
 

By defining 1( )−= + −x,x x,z z,z z,xx, z,u x, z,u x, z,u x, z,u
A J J I J J   

and 1( )−= − +x,z z,z z,u x,ux, z,u x, z,u x, z,u x, z,u
B J I J J J , then 

 δ δ δ= +x A x B u  (12) 
In control theory context, the matrix A  is called the System Matrix, while in a system 
dynamics context; it would be the Compact Gain Matrix as stated previously. The matrix 
B  is called the Input Matrix or Control Matrix. 
We may use the same method as above to identify; 
 δ δ δ= +y C x D u  (13) 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

6 

Where 

1

2

yN

y
y

y

δ
δ

δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

y  is the output** vector.  In a control theory context, C  and D  are the 

Output Matrix and Feedforward Matrix respectively. 

Also, ∂
= =

∂y,x x, z,u
x, z,u

yC J
x

 and ∂
= =

∂y,u x, z,u
x, z,u

yD J
u

. 

Going back to equation (12), and dividing both sides by tδ  that represents a very small 
time change, taking limits on both sides assuming tδ  approaches 0 , 

 
0 0 0

lim lim lim
t t tt t tδ δ δ

δ δ δ
δ δ δ→ → →

= +
x x uA B  

From the definition of differentiation: 
 ∴ = +x Ax Bu  (14) 
At this stage, we assume that A  and B  are constants and do not include any functions of 
time. Under normal model simulation conditions, the u  vector is a constant vector imply-
ing that u  equals 0 . 
 ∴ =x Ax  (15) 
Equation (15) represents a homogeneous system of linear simultaneous differential equa-
tions of the first order. This system may be solved to find some analytical expression for 
the x  vector. To solve such a system we need to find out the characteristic equation and 
the eigenvalues of the system. 

Eigenvalues and the Characteristic Equation  

Eigenvalues 
Eigenvalues†† are a special set of scalars (real or complex numbers) associated with a 
linear system of equations (the linear or linearized system of equations of the model in a 
matrix form – equation (15)). They are also known as the characteristic roots or proper 
values, or latent roots (Kreyszig, E., 1993) (Weisstein, E. W. (1999) (Concise Encyclo-
pedia of Mathematics CD-ROM). The eigenvalues are computed as the roots of the 
characteristic equation. 

The Characteristic Equation 
The characteristic equation (polynomial) is the equation that is solved to find a matrix's 
eigenvalues. From equation (12), the matrix A  is a matrix of a system of linear equations. 
If there is a vector ≠r 0  such that; 
 λ=Ar r  (16) 

                                                 
** Output variables are observable quantities and are measurable (Kheir, Naim A., 1996). In system 
dynamics model this definition is still valid, and outputs are always the choice of the user or the modeler. 
They can be any collection of the variables of the model. 
†† In German it is called Eigenwert, "Eigen" is a German word that means Proper, while "wert" means Root 
(Kreyszig, E., 1997). 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

7 

Where λ  is a scalar value, then λ  is one of the eigenvalues and r  is its corresponding 
right eigenvector (called right because the vector is multiplied to the right of matrix A , 
and it would have been the left eigenvector if the multiplication had been to the left of 
matrix A ). To compute the eigenvalues and their corresponding right eigenvectors, 
equation (16) could be reduced to: 
 ( )λ∴ − =A I r 0  
Using Cramer's Rule, a system of linear equations has nontrivial solutions only if the 
determinant of the system vanishes, so we obtain the characteristic equation (Kreyszig, 
E., 1993): 
 λ− =A I 0  (17) 
This equation has solutions that equal the number of rows or columns of the A  matrix. 
The set of all solutions of equation (17) is the set of eigenvalues. By taking each 
eigenvalue and substituting in equation (16), we obtain its corresponding eigenvector. 

The State Space Form Solution 
The solution of equation (15) could be on the following form (Kreyszig, E., 1993): 
 ( ) ( ) ( )1 0 2 0 0λ - λ - λ -

1 1 2 2
n

x

t t t t t t
n Nc e c e c e= + + +x r r r  (18) 

Where: 1c , 2c , … and 
xNc are constants, 1r , 2r , … and 

xNr  are the right eigenvectors‡‡ of 
the system and 1λ , 2λ , … and λ

xN  are their corresponding eigenvalues. The constant 

term ic  may be computed using the initial conditions at 0t t= , =x x . Note that the x  
vector is very well-known at every time step. Thereafter, at every new time step, the vec-
tor x  is known from the pervious step–, substituting in equation (18): 
 1 1 2 2 x xN Nc c c∴ = + + +x r r r  
The last formula expresses the matrix product of a vector containing all the ic  terms and 

the full right eigenvector 1 2 xN⎡ ⎤= ⎣ ⎦r r r r §§. 

 

1

2 1

xN

c
c

c

−

⎡ ⎤
⎢ ⎥
⎢ ⎥∴ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

r x  (19) 

By utilizing the phasor form of complex number (Edminister, Joseph A., 1972), and 
looking back at the analytical solution of the x  vector, equation (18), we may note that: 
 ( ) ( )( )0 0λ - -i i it t j t te e σ ω±=∵  
 ( ) ( ) ( )0 0 0λ - - -i i it t t t j t te e eσ ω±∴ =  
Equation (18) could be rewritten as: 

                                                 
‡‡ These set of eigenvectors are should be linearly independent or their corresponding eigenvalues are 
different. 
§§ Although r  is a lower case letter, it is used to express the right eigenvectors matrix; because this matrix is 
the arrangement of right eigenvectors beside each other in columns. Also l  would be used ro express the 
left eigenvalues matrix. 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

8 

 ( ) ( )0 0- -

1

x
i i

N
t t j t t

i i
i

c e eσ ω±

=

∴ =∑x r  

Note that 
1

xN

x

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x , also 
1

x

i

i

iN

r

r

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

r , so that we may write only the kth net rate: 

 ( ) ( )0 0- -

1

x
i i

N
t t j t t

k i ki
i

x c e e rσ ω±

=

∴ =∑  (20) 

Where: ic  is a constant and we may multiply it to ir  (that contains constant terms) that 

results in another vector of constants 
1 1

x x

i i i

i i

i iN iN

c r c
c

c r c

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

r : 

 ( ) ( )0 0- -

1

x
i i

N
t t j t t

k ik
i

x c e eσ ω±

=

∴ =∑  (21) 

The behavior of one net rate is a linear combination of terms, where each term is associ-
ated with one of the eigenvalues. This means that all eigenvalues of the system have a 
specific effect on every net rate, characterized by an amplification value. Note that the 
exponential term is the sources of the behavior (dynamics) of the model. 

Identifying the Dominant Eigenvalue 
The entire behavior of a level variable is the sum of the modes of behavior corresponding 
to the eigenvalues of the model, each of which contributes to a fraction of that behavior.  
So that it is possible to specify one eigenvalue (or a conjugate pair of such values if the 
eigenvalue has imaginary part) or more that most predominantly affect the behavior of 
that level variable. 
The identification process of the dominant eigenvalue depends mainly on an experimental 
method suggested by Saleh, M. and Davidsen, P. (2000, 2001). This method relies on 
empirical experiments in which only one eigenvalue is allowed to affect the behavior 
while blocking all the other eigenvalues. Thus one is able to identify the dominant 
eigenvalue. 
This method might be improved by computing the percentage of contribution of each 
eigenvalue to the level under study, a computation that would allow arranging them 
according to their dominance over the level behavior. Thus it would be possible to operate 
with more than only one dominant eigenvalue. Back to equation (21), that may be 
rewritten to say: 
 ( ) ( ) ( )1 0 2 0 0λ - λ - λ -

1 2
nt t t t t t

k k k nkx c e c e c e= + + +  
Or, 
 1 2k k k knx x x x= + + +  

Where ( )0λi t t
ki ikx c e −= , by applying superposition. Note that each kix  presents the effect 

of only the ith eigenvalue λi  on the total kx : 
By integrating both sides of the last equation, there are two cases: 
If λ 0i ≠ : 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

9 

 ( )λ 1
λ

i tik
ki

i

cx e δδ = −  (22) 

If λ 0i = : 
 ki ikx c tδ δ=  (23) 
Where ki ki kix x xδ = − , by calculating the term kixδ  for each eigenvalue, it would be 
possible to distinguish the contribution of each eigenvalue in the behavior of kx , where: 

 contribution ki
ki

k

x
x

δ
δ

∴ =  (24) 

Where: contributionki  is the contribution in the behavior of the kth state due to λi  only, 

also we should note that the term 
1

n

k ki
i

x xδ δ
=

=∑  expresses the total contribution of all 

eigenvalues in the value of the kth state. 
By arranging the values of contribution of each eigenvalue in a descending order, it is 
possible to identify the dominance order of those eigenvalues. In this context primarily 
the most dominant eigenvalue would be considered, - i.e. the eigenvalue with the most 
significant contribution, yet one may test the effect of the second and/or the third and/or 
any higher order dominant eigenvalue on the behavior of a state. 

The Dominant Eigenvalue Elasticity 
The aim of the analysis process is to identify the leverage points in the model structure. 
Therefore, the aim of this section is to relate the dominant eigenvalue to the links (i.e. 
relationships) of the model using the concept of eigenvalue elasticities as suggested by 
Forrester, N. (1982). 

The Eigenvalue Sensitivity 
For a link that starts from a level variable jx  and ends at the net rate of another level 
variable ix , the kth eigenvalue sensitivity to the gain of that link kijs  is defined as the 
change in the kth eigenvalue due to the change in the gain of that link: 

 λk
kij

ij

s
a
∂

=
∂

 (25) 

Or, in matrix form, 

 λk
k

∂
=
∂

S
A

 (26) 

The matrix kS , can be directly computed (Saleh, M., 2003); 
 T

k k k=S l r  (27) 
Where kl  and kr  are the left and right eigenvectors of the kth eigenvalue respectively. 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

10 

The Eigenvalue Elasticity 
For a link that starts from a level variable jx  and ends at the net rate of another level 
variable ix , the kth eigenvalue elasticity for the gain of that link kijE *** is defined as the 
relative change in the kth eigenvalue to the relative change in the gain of that link (Saleh, 
M., 2003): 

 λ λk k
kij

ij ij

E
a a

δ
δ

=  (28) 

 λ1
λ

k
kij ij

k ij

E a
a

δ
δ

∴ =  

Using the definition from equation (25); 

 1
λkij kij ij

k

E s a∴ =  (29) 

Or, in matrix form; 

 1
λk k

k

∴ = ∗E S Ai
††† (30) 

Where kE  is the kth eigenvalue elasticity matrix for the compact version of the model. 

The Dominant Eigenvalue Elasticity Values of the Links of the Compact 
Model 
By applying equation (30) to compute the dominant eigenvalue elasticity values of the 
links of the compact model we may relate the system behavior to the links of the compact 
version of the system dynamics model, i.e. the links between state variables and net rate 
variables. 
At this point an interesting property of the eigenvalue elasticity measure  –  noted by 
Forrester, N. - should be restated: The eigenvalue elasticity values is like electric current, 
that is, all eigenvalue elasticity values entering a variable in the model should leave that 
variable as well (Forrester, N. B., 1982). This property was proven to exist by Saleh, M. 
(Saleh, M., 2003) –like: Kirchoff Current Law, in Electric Circuits (Edminister, Joseph 
A., 1972). This interesting property greatly helps distributing the dominant eigenvalue 
elasticity value of the link between two variables in the compact version of the model, 
among the links between the same two variables, in the full version of the model. 

                                                 
*** The paper's normal mathematical symbolic notation would be contradicted for the elasticity matrix 
elements; upper case letters would be used instead of lower case letters, in order not to confuse the reader 
with the exponent function. 
††† The symbol ∗i  is the Mathworks' Matlab notation for array multiplication operator (each element from 
matrix to the left of the operator is multiplied by the corresponding element from the matrix to the right of 
the operator). 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

11 

The Dominant Eigenvalue Elasticity Values of the Links of the Full Model 

Returning to equation (11), the full gain matrix is , ,

, ,

x x x z

z x z z

⎡ ⎤
⎢ ⎥
⎣ ⎦ x,z,u

J J
J J , for any two variables 

linked in the model, the full gain matrix has a corresponding element that has a value that 
equals the gain between those two variables, taking into consideration that this element 
column number is the number of the variable that the link starts from, and that the ele-
ment row number is the number of the variable that the link ends up at, provided that the 
variables of the model are numbered. The other elements of the full gain matrix that do 
not correspond to links in the model take values equal to zero. 
In Graph Theory; such a matrix is called a digraph (directed graph) or an adjacency 
matrix. Various well-know exhaustive search algorithms may be applied on that digraph 
to find paths between two variables or to find loops, - the details of which are out of this 
scope of this paper‡‡‡. 
Considering the compact gain matrix and its corresponding computed dominant eigen-
value elasticity values matrix, in the compact version of the model, only variables that 
have a nonzero element in the compact gain matrix, have a corresponding nonzero ele-
ment in the compact dominant eigenvalue elasticity values matrix and vice versa; i.e. only 
variables that has a gain characterizing the relationship between them, have a dominant 
eigenvalue elasticity value. This is valid because if there is a gain between two variables 
in compact model, this means that there is a direct or indirect link or links between those 
two variables in the full version of the model. A zero gain, on the other hand, means that 
there is no link between the two variables, and thus there would be no dominant eigen-
value elasticity value between them (equation (29)). 
Suppose that the kth eigenvalue is the dominant eigenvalue. Using equation (29) we may 
compute the dominant eigenvalue elasticity value of the link between the level variable 

jx  and the net rate of the level variable ix , i.e. kijE , to the level variable ix  directly 
rather than to the net rate of the level variable ix , and it would be more simple to drop 
the level variable statement and directly say jx  and ix . 
Using one of the path identification algorithms to extract paths from the full model, it 
would be possible to identify the direct and indirect paths that starts from jx  and ends at 

ix , excluding paths that pass through other states because the gains and the dominant 
eigenvalue elasticity values of those paths that pass through other states are included 
within their original paths. Taking them into consideration within this computation leads 
to erroneous redundancy. Let those identified paths be 

1jiP , 
2jiP , … and 

NjiP  where N  is 
the total number of paths that starts from jx  and ends at ix , excluding paths that pass 
through other states: 
 { }1 2

, , ,
Nji ji ji jiP P P P= …  

                                                 
‡‡‡ The interested reader might refer to "Graph Theory" (Diestel, R., 2000), "Advanced Engineering 
Mathematics" (Kreyszig, E., 1993) and the "Digraph toolbox" (Bahar, M.; Jantzen, J., 1995) 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

12 

Let the gains of those paths be 
1jiPg , 

2jiPg , … and 
jiNPg  respectively. And let their domi-

nant eigenvalue elasticity values be 
1jikPE , 

2jikPE , … and 
jiNkPE  respectively. Note that 

the sum of the gains and the sum of the dominant eigenvalue elasticity values of those 
paths together equals ija  and kijE  respectively (Saleh, M.; Davidsen, P. I., 2000). 

 
s

s ji

ij P
P P

a g
∈

= ∑  

 
s

s ji

kij kP
P P

E E
∈

= ∑  

The gain of each individual path i.e. the values of 
1jiPg , 

2jiPg , … and 
jiNPg  could easily 

be computed by multiplying the gains of the elements 
r

g  (links) of each path 
individually from the full gain matrix (Kuo, B. C., 1995) and (Ogata, K., 1997).  
 

ji rs
r jis

P
P

g g
∈

= ∏  

To compute the dominant eigenvalue elasticity value of each path individually (Saleh, M.; 
Davidsen, P. I., 2000): 

 
ji Ps jis

kij
kP

ij

E
E g

a
=  (31) 

Or, by utilizing equation (29): 

 
λji jis s

kij
kP P

k

s
E g=  (32) 

Where 
jiskPE  is the dominant eigenvalue elasticity value for the path 

sjiP . Note that, 

jiskPE  is also the dominant eigenvalue elasticity value for every element in the path 
sjiP . 

Also, it is important to note that one link r  could be a member of more than one path in 
the full version of the model and each of those paths has its distinct dominant eigenvalue 
elasticity value. In this case, its dominant eigenvalue elasticity value of that link is the 
sum of all dominant eigenvalue elasticity values of all paths that pass through this link 
(Forrester, N. B., 1982) and (Saleh, M., 2003). 
 

{ }
r jis

ji rs

k kP
P

E E
⊃

= ∑  (33) 

The dominant eigenvalue elasticity values for all links of the full version of the model 
could be computed using equation (33), i.e. the Full Dominant Eigenvalue Elasticity 
Value Matrix. 
Also by utilizing the eigenvalue to gain sensitivity definition, we can find the dominant 
eigenvalue sensitivity for all links in the full the model: 

 
λ

r

r rk k
k

g
E s=  

From equation (32), (33) and as previously indicated; 
ji vs

v jis

P
P

g g
∈

= ∏ : 

 
{ }{ }

λ
r v

ji r v ji rs s

kij
k k

P P ij

E
s g

a⊃ ∈ −

⎛ ⎞⎛ ⎞
⎜ ⎟∴ = ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∏  (34) 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

13 

The Dominant Eigenvalue Elasticity for the Inputs 
To fully benefit from the knowledge of the dominant eigenvalue elasticity values of the 
system dynamics model links, it should be possible to change the gains of those links so 
as to change the dominant eigenvalue, i.e. changing the gain of a link so that the eigen-
value and thus the system behavior would change in a desirable way. 
As already stated, the model inputs or constants or parameters are the controllable part of 
the model. Thus it should be possible to compute the dominant eigenvalue elasticity 
values for the model inputs. Utilizing the following relationship (Saleh, M., 2003); 

 λ λ
q

k k
ku

i q

E
u u

δ
δ

=  (35) 

Where 
qkuE  is the dominant eigenvalue elasticity value for the input qu . 

By rearranging the terms of equation (35); 

 λ1
λq

k
ku q

k q

E u
u
∂

∴ =
∂

 

Applying the Chain Rule (Kreyszig, E., 1993), yields; 

 
1

λ1
λ

r

q

r

N
k

ku q
rk q

g
E u

g u=

⎛ ⎞∂∂
= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∑  

Where N  is the number of all links in the full model. 

From the definition of the eigenvalue to gain sensitivity λ
r

r

k
ks

g
∂

=
∂

: 

 
1

1
λ

r

q r

N

ku k q
rk q

g
E s u

u=

⎛ ⎞∂
∴ = ⎜ ⎟⎜ ⎟∂⎝ ⎠

∑  (36) 

Where 
rks  can be computed directly using equation (34). 

The Dominant Eigenvalue Elasticity for the Loops 
The loops of a model are among the most meaningful building blocks in system dynam-
ics. As already stated, the full gain matrix is a digraph, and could be searched to find 
paths between two variables, and loops by identifying paths that starts from a variable and 
ends at the same variable. By identifying loops, their gains and dominant eigenvalue 
elasticities may be identified. 

A.1.1.1 Identifying Loops in the Model 
Kampmann, C. E. (1996) suggested a binary matrix that relates the links with the loops: 

 

1 1

2 2

N N κ

κ
κ

κ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

C  (37) 

Where iκ  expresses the ith loop, j  expresses the jth link. N κ  and N  are the number of 
all loops and all links in the model respectively. The matrix C  would be a non-square 
binary matrix: 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

14 

 ijc⎡ ⎤= ⎣ ⎦C  

Where ijc = 1 if the link j  is a component in loop iκ , 0  otherwise. 

A.1.1.2 Linearly Independent Loops and their Dominant Eigenvalue Elasticity Values 
As stated above, Forrester, N. B. (1982) discovered the similarity between eigenvalue ela-
sticity and an electric current. Also Kampmann, C. E. (1996) suggested equation (37), but 
he stated that solving this equation in its form would not be possible. Moreover, he added 
(from the graph theory) that, for this equation to be solvable, the set of all loops should be 
replaced by a smaller set of (total number of links – total number of variables + 1) loops. 
Note that this is exactly the number of any selected linearly independent loop set. 
So that in equation (37), by replacing the C  with a smaller matrix rC , to relate the 
eigenvalue elasticity values of links with that of a linearly independent loop set of loops. 

 

1 1

2 2

N N

k k

k k
r

k k

E E

E E

E E
κ

κ

κ

κ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

C  (38) 

Where 
ikE κ  and 

jkE  express the dominant eigenvalue elasticity values of the ith loop 
and the jth link respectively. 
Or, in matrix form: 
 k r k κ=E C E  (39) 
Equation (39) could easily be solved for k κE  using least squares solution. But the real 
problem is how to select the matrix rC  from the rows of the matrix C , in other words; 
how to select the linearly independent loops set. 

“The rank of a matrix A is the maximum number of linearly independent columns 
of A; or it is the order of the largest nonsingular matrix contained in A.” 
–Kuo, B. C. (1995). 

This makes it easy to find identify rC , knowing that it is not unique for the model, i.e. 
there could be more than one linearly independent loops set (Kampmann, C. E., 1996). Al 
Also Kampmann suggested that the user should select the most significant set for his 
model from the user's point of view. 
Referring to a simple yeast cells model, - by computing the rank of the matrix C ; it 
equals 4. This is while the total number of links equals 10 and the total number of 
variables equals 7, so that the number of linearly independent loops set, should be 10 – 7 
+ 1 = 4, which is the same result of the rank. This also means that all loops in the model 
are linearly independent, i.e. rC =C . 
Thus by substituting into equation (38) and solving it for the eigenvalue elasticity values 
of the loops, this system of equations constitutes an over determined system; i.e. the 
number of equations is greater than the number of unknowns. But it is still a consistent 
system that could be solved and give exact values to the unknowns. 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

15 

Appendix: 
Eigenvalue Analysis: Computer Implementation 

Introduction 
This chapter focuses on the implementation of the functions of the Simulation package§§§ 
and Analysis package**** using the programming language of Mathworks Matlab 
mathematical package. 
The Simulation package functions deal directly with the model file –in Powersim 
constructor text file format; parse the model, arrange its equations and simulate, then give 
their outputs to the Analysis package. 
The Analysis functions aim at applying the eigenvalue analysis steps on system dynamics 
model parsed and simulated using the Simulation package, and print out its outputs into a 
text file. 
Shown in figure 1; the context level diagram of both packages together, which declares 
the relation among the main entities and both packages as a single process. While in 
figure 2; the data flow diagram (DFD) level zero of them both too; which declares the 
relation and data flow between them in more details. 

The Main Function 
The starting point of the script is the "main" function. This function is called with the 
following command: 
 
main( inFileName , outFileName , initialTime , finalTime , timeStepLength ) 
 
The "main" function has five input arguments: 
The "inFileName" which specifies the model's equations file name, a Powersim model 
saved as equations, which is normally a text file. 
 The "outFileName" which specifies the file containing the results of applying the script 
to a certain model. The output file is created by the script and it is normally a text file too. 
 The next three arguments specify the simulation start time, the simulation end time and 
the simulation time step respectively; these three parameters are used by the simulation 
module.  
 

                                                 
§§§ The Simulation package was implemented by Bahaa El-Din Ali Abdel-Aleem as a technical part of his 
master thesis – Bergen University (2004). 
**** The Analysis package was implemented by Ahmed AbdelTawab AbdelGawad as a technical part of his 
master thesis – Bergen University (2004). 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

16 

Input File Output File

User

0

Main
Model Equations Analysis Results

U
ser C

hoices

C
hoices

 
Figure 1: The Context Level Diagram of Both Simulation and Analysis Packages Together 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

17 

3

Analyze

2

Simulate

D8 constantsValuesVector

Input File Output File

User

D7 constantsVector

D6 modelObjectsStructVector

D9 modelObjectsValuesMatrix

D10 netflowsValuesMatrix

D3 initialTime

D4 finalTime

D5 timeStepLength

1
Enter Input
Arguments

D1 inFileName

D2 outFileName

D11 levels2Study

D12 inputs2Study

D13 internalSteps

D14 loops2Study

checkpoints
Files

4
Display

Information
and Choices

Figure 2:  The Data Flow Diagram (DFD) Level Zero: Simulation and Analysis Packages 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

18 

The Simulation Package 

The Parsing Process 
In this part we will describe the model parsing module. The input to the parsing module is 
a Powersim model equations file, which is a Powersim model file saved in text format. 
Powersim model files when saved in text format have one general structure. If we take a 
closer look into that structure we will find that the file consists of four main sections. 
These sections are: 
Ranges. 
Independent Variables. 
Dependent Variables. 
Flows. 
Next, we will show how the parsing module handles these files and what the form of its 
output is. 
The whole parser module is written on the form of a single function. This function takes 
the model's text file name as its input argument and it returns an array of three vectors as 
its output. 
 
[ modelObjectsStructVector , constantsVector , constantsValuesVector ] =  
parser( inFileName ) 
 
These three vectors, modelObjectsStructVector, constantsVector and constantsValuesVector, are 
used in the simulation module as well as the analysis module.  
To understand how the parser module generates its output from the model's text file. We 
have to study the three variables returned by the parser function first. The first of the 
variables returned by the parser function is the modelObjectsStructVector. The 
modelObjectsStructVector is an array of vectors which holds the state and auxiliary variables 
of the model, each in a separate vector: 
 
modelObjectsStructVector = [levelsStructVector, auxiliariesStructVector] 
 
Each of the levelsStructVector and the auxiliariesStructVector is an array of structures with the 
following member variables: 
name: an array which holds variables' names. 
equation: an array which holds variables' equations. 
value: an array which holds variables' initial values. 
state: a flag that takes the value 0 or 1. It distinguishes the state from non state variables. If 
the variable contained in the structure is a state variable, it takes the value 1; otherwise it 
takes the value 0. 
Thus, the levelsStructVector, holds the names, equations and values of all stock variables of 
the model, each in a separate array. The names of the stock variables are stored in the 
"levelsVector" array, the equations of state variables are stored in the "flowsVector" array and 
finally the values of the state variables are stored in the "levelsInitVector" array, which 
holds only the numeric stock initial values. If a stock is initialized with a relation not a 
numeric value, this value is stored in the value member variable of the auxiliaries 
StructVector explained below. 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

19 

Also, the names, equations and values of all the auxiliary variables of the model are each 
stored in a separate array inside the "auxiliariesStructVector". Names of the auxiliaries are 
stored in the "auxiliariesVector" array; equations of the auxiliaries are stored in the 
"auxiliariesEquationsVector" array, and finally values of the auxiliaries are stored in the 
"auxiliariesEquationsVector" array. Note that values and the equations of the auxiliaries are 
the same, since the values aren't evaluated until the simulation is performed. It should be 
noted here that auxiliaries mean all variables of the model, other than levels and constants 
The next two variables returned by the parser function, namely: constantsVector, 
constantsValuesVector are two vectors holding the names of the model's constants and the 
values of the model's constants respectively. 
Thus, the parser function reads the model's file and outputs all the variables in a way 
convenient for other parts of the script to use. 

The Equations Arrangement Process 
The arrange module does two main functions: It first arranges the variables of the model 
to put them into the right sequence for simulation; so that there are no unknowns in any 
certain step of simulation. Second, it calculates the values of all variables at the initial 
time of simulation so that the simulation can begin correctly. 
 
modelObjectsStructVector = arrange( modelObjectsStructVector , constVector , 
constValVector , initialTime ) 
 
The above line of code shows the header of the arrange function. The function takes four 
input arguments; the three vectors returned by the parsing module normally they contain 
all the model variables and the fourth argument represents the initial time of the 
simulation. That is because the arrange function will need to calculate the whole model at 
the initial time of simulation. It returns the modelObjectsStructVector – described earlier - 
containing the model's variables arranged.  

The Simulation Process 
As in the previous parts of the script, and generally the formal method for coding, the 
simulation module is written as a function. 
 
[ modelObjectsValuesVector , netflowsValuesMatrix ] = simulate( 
modelObjectsStructVector , constVector , constValVector , initialTime , finalTime , 
timeStep ) 
 
The purpose of the simulation module is to:  

 Perform the simulation correctly. 
 Generate, at all time steps, the numerical values of all variables of thy system. 
 Calculate the slope vector of the system at all time steps. 

The above outputs of the simulation module are the main inputs to the analysis module. 
As stated before, the modelObjectsStructVector is returned by the arrange module with the 
variables arranged in the right sequence for simulation and with all values of the variables 
known at the initial time. 
Thus, at the initial step of simulation, the values (from the value field) of the 
modelObjectsStructVector are substituted into the modelObjectsValuesVector. 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

20 

 
modelObjectsValuesVector( 1 , : ) = double( [ modelObjectsStructVector.value ] ); 
 
Also, the netflowsValuesMatrix is calculated by substituting into it from the flowsVector.  
 
netflowsValuesMatrix( 1 , : ) =  double( subs( flowsVector , { 
modelObjectsStructVector.name } , { modelObjectsStructVector.value } ) ); 
 
Now, before the simulation loop, in which the values of all variables are calculated 
through the whole time span of simulation step by step, the values of all constants (since 
they don't change throughout the simulation) are stored into memory to be available 
through the simulation time. 
 
for I = 1 : length( constVector ), 
eval( [ char( constVector( I ) ) '=' num2str( constValVector( I ) ) ';' ] ); 
end 
 
Since the following rule holds true: 
Any step variable t+1 = state variable t +net flow * ∆t   (1) 
Thus, in order to calculate the values of the state variables: 
The netflowsValuesMatrix is first evaluated: 
 
netflowsValuesMatrix( TIME + 1 , : ) = double( subs( flowsVector , { 
modelObjectsStructVector.name } , { modelObjectsStructVector.value } ) ); 
 
Then, all the states of the system are calculated according to equation (1) 
 
temp = num2cell( modelObjectsValuesVector( TIME , 1 : numStates ) + timeStep 
* netflowsValuesMatrix( TIME + 1 , : ) ); 
[ modelObjectsStructVector( 1 : numStates ).value ] =  deal( temp{ : } ); 
modelObjectsValuesVector( TIME + 1 , 1 : numStates ) = [ 
modelObjectsStructVector( 1 : numStates ).value ]; 
 
Accordingly, the rest of the model is calculated for the next time step. The simulation 
loop continues until the specified time span ends. By the end of the simulation module we 
have its two output vectors modelObjectsValuesVector and netflowsValuesMatrix ready to be 
used in the analysis module. 

The analysis Package 
The Analysis function is the backbone function of the Analysis package. It calls all other 
functions of the package to complete the eigenvalue analysis of system dynamics model. 
 
Analysis( modelObjectsStructVector , constantsVector ,  constantsValuesVector , 
modelObjectsValuesMatrix , netflowsValuesMatrix , initialTime , finalTime , 
timeStepLength , outFileName ); 
 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

21 

Follows another question to the user to decide the time steps to do the analysis process at, 
which is stored as a vector called internalStep. 

User-Interactions Processes  
The function needs user-interaction to make decisions. The function needs the user to 
decide the level variable he/she wants to study its behavior. So it prints a list of all level 
variables to the user, and waits for a choice, this choice is the number of the level to study 
form the list and it is stored in level2study. 
Also, the function needs the user to decide his/her set of inputs out of the set of all 
constants in the model. So it prints a list of all constants to the user, and waits for a 
choice, this choice is a vector containg the numbers of the constants to study form the list 
and it is stored in inputs2study. 
Another question has to be given to the user to decide the time steps to do the analysis 
process at, which is stored as a vector called internalStep. 

Building the Full Gain Matrix 
The Full Gain Matrix of the model is built in a symbolic form matrix 
symbolicFullGainMatrix, in the beginning. After that, through the analysis process a 
substitution is done and the Full Gain Matrix is in a numeric form matrix 
numericFullGainMatrix. 

Computing the Numeric Full Gain Matrix 
The numericFullGainMatrix is not computed till we reach what we call the TIME loop, 
this loop is the one that loops to make the analysis each element of the internalStep. 
 
tempSymbolicFullGainMatrix = subs( symbolicFullGainMatrix , sym('TIME') , ( 
TIME * timeStepLength ) + initialTime ); 
numericFullGainMatrix = double( subs( tempSymbolicFullGainMatrix , 
modelObjectsNamesVector , modelObjectsValuesMatrix( TIME , : ) ) ); 
 
The numericFullGainMatrix is computed by substituting all variables' names with its 
corresponding simulation values at a specific time step, in the symbolic matrix 
symbolicFullGainMatrix. 

Computing the Compact Gain Matrix 
The numericGainMatrix is computed directly after the numericFullGainMatrix is 
computed. 
 
A12 = numericFullGainMatrix( 1 : numStates , numStates + 1 : end ); 
A21 = numericFullGainMatrix( numStates + 1 : end , 1 : numStates ); 
A22 = numericFullGainMatrix( numStates + 1 : end , numStates + 1 : end ); 
numericGainMatrix = A12 * inv( eye( size( A22 ) ) - A22 ) * A21; 

Computing the Eigenvalues 
After the numericGainMatrix is computed. Its Eigenvalues are computed using the 
Matlab built-in eig function. 
 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

22 

[ rightEigenVector , diagonalEigenMatrix ] = eig( numericGainMatrix ); 
 
As appears form the code lines, not only the Eigenvalues are computed and place on the 
diagonal of diagonalEigenMatrix, but also their corresponding right Eigenvector 
rightEigenVector. 
Directly in the next step, we compute the Eigenvalues corresponding left Eigenvector: 
 
leftEigenVector = inv( rightEigenVector ).'; 

Identifying the Dominant Eigenvalue 
The dominant Eigenvalue identification is done in another function dominant, the same 
way stated in the Mathematical Background: 
 
[ dominantEigenVector( TIME , : ) , dominantEigenPositionVector( TIME , : ) , 
dominancePercentageVector( TIME , : ) ] = dominant( rightEigenVector , 
leftEigenVector , diagonalEigenMatrix , netflowsValuesMatrix( TIME , : ).' , 
netflowsValuesMatrix( TIME + 1 , : ).' , timeStepLength , level2study , TIME ); 

Computing the Dominant Eigenvalue Compact Elasticity Values Matrix 
The cmpElastMat performs the task of computing the dominant Eigenvalue compact 
elasticity values matrix. 

Computing the Dominant Eigenvalue Full Elasticity Values Matrix 
The cmpElastMat –the same function of the last section– does the task of computing the 
dominant Eigenvalue full elasticity values matrix. 

Computing the Dominant Eigenvalue Inputs Elasticity Values Vector 
Computing the dominant Eigenvalue parameters elasticity values is done using a function 
called cmpParamElastVec. 

Identifying all Loops 
This section and all the following sections come after the end of TIME loop. 
The loops in the model are identified using a function called indCycles.  
 
[ allCyclesVerticesMatrix , independentCyclesVerticesMatrix , 
independentCyclesEdgesMatrix ] = indCycles( modelAdjacencyMatrix , 
modelAdjacencyMatrix2Edges , modelObjectsNamesVector ); 
 
The indCycles function uses an exhaustive search algorithm to find the paths that starts 
at some vertex in a digraph and ends at the same vertex; this algorithm is utilized by using 
a function called allcycsn (please, refer to the Mathematical Background Chapter and 
Appendices). 

Selecting a Set of Independent Loops 
The independent loop set is selected through the running of indCycles function. 
The first task done in this context is to find the Binary expression of the loops matrix. 



Identifying Dominant Behavior Patterns, Links and Loops 
Automated Eigenvalue Analysis of System Dynamics Models 

23 

The independent loop set is not unique (refer to the Mathematical Background), but the 
function tries to select the most suitable set, by asking the user to select the most 
important loops –from his point of view–, out of the all loops set.  

Computing the Dominant Eigenvalue Independent Loops' Elasticity Values 
The dominant Eigenvalue independent loops' elasticity values are computed by calling 
cmpIndCycElast function. 
 
independentCyclesElasticityMatrix = cmpIndCycElast( 
independentCyclesEdgesMatrix , numericLinkElasticityMatrix ); 
 
The cmpIndCycElast function, finds a least squares solution for the equation relates the 
independent loop set dominant Eigenvalue elasticity values vector and the links' dominant 
Eigenvalue elasticity values (please, refer to the Mathematical Background Chapter). 
 
Cr = independentCyclesEdgesMatrix.'; 
independentCyclesElasticityMatrix = Cr \ numericLinkElasticityMatrix; 

Printing the Results 
The last step in the implementation of the Eigenvalue analysis function is to print the 
results to a file; to give the user the chance to make further analysis on those results. 
The printing task is done using a function called printAll. 
 
printAll( level2study , modelAdjacencyMatrix , internalStep ,  timeSteps , 
dominantEigenVector , dominancePercentageVector , numericLinkGainMatrix , 
numericLinkElasticityMatrix , numericParameterElasticityMatrix , 
independentCyclesElasticityMatrix , allCyclesVerticesMatrix , 
independentCyclesVerticesMatrix , modelObjectsNamesVector , constantsVector 
, outFileName ); 
 
This function nearly takes all the needed outputs to print out, and it returns nothing, just it 
gives out a file that has the name stored in outFileName. 
It prints the following: 
All Eigenvalues and Their Dominance Percentage  
Links’ Gains 
Links’ Dominant Eigenvalue Elasticity Values 
Links’ Dominant Eigenvalue Elasticity Values (Sorted) 
Inputs’ Dominant Eigenvalue Elasticity Values 
Inputs’ Dominant Eigenvalue Elasticity Values (Sorted) 
All Loops 
User-selected Linearly Independent Loops 
User-Selected Linearly Independent Loops’ Dominant Eigenvalue Elasticity Values 
User-Selected Linearly Independent Loops’ Dominant Eigenvalue Elasticity Values 
(Sorted) 



References 

24 

References 
Abdel Aleem, Bahaa E. Aly. 2004. An Automated System to Analyze System Dynamics 
Models - Case Study: Commodity Production Cycles, Bergen: University of Bergen. 
AbdelGawad, Ahmed A. 2004. An Automated System to Analyze System Dynamics 
Models, Bergen: University of Bergen. 
Bahar, M. and J. Jantzen 1995). Digraph toolbox. 
Belikov, B. S. 1986. General methods for solving physics problems. Moscow, Mir 
publishers. 
Beltrami, E. 1998. Mathematics for Dynamic Modeling, Academic Press. 
Bowman, C. F. 1994. Algorithms and Data Structures an Approach in C. New York, 
Oxford University Press Inc. 
Deif, A. S. 1982. Advanced Matrix Theory for Scientists and Engineers, Abacus Press. 
Diestel, R. 2000. Graph Theory. New York, Springer-Verlag. 
Dorf, R. C. and R. H. Bishop 2000. Modern Control Systems, Prentice Hall. 
Edminister, J. 1972. Schaum's Outline of Electric Circuits, McGraw-Hill. 
Forrester, J. W. 1968. Market Growth as Influenced by Capital Investment. Industrial 
Management Rev. MIT. 9: 83-105. 
Forrester, J. W. 1975. Market Growth as Influenced by Capital Investment. Collected 
Papers of Jay W. Forrester. Cambridge MA, Productivity Press. 
Forrester, J. W. 1978. Market Growth as Influenced by Capital Investment. Managerial 
Applications of System Dynamics. E. B. Roberts. Cambridge MA, Productivity Press. 
Forrester, N. B. 1982. A Dynamic Synthesis of Basic Macroeconomic Theory: 
Implications for Stabilization Policy Analysis, M. I. T. 
Forrester, N. B. 1983. Eigenvalue Analysis of Dominant Feedback Loops. Intl. System 
Dynamics Conf., Chestnut Hill, MA. 
Friedland, B. 1987. Control System Design, McGraw-Hill Book Company. 
Gopal, M. 1993. Modern Control Theory, Wiley Eastern Limited. 
Gordon, G. 1989. System Simulation. New Delhi, Prentice-Hall of India. 
Grantham, W. J. and T. L. Vincent 1993. Modern Control Systems Analysis and Design, 
John Wiley & Sons, Inc. 
Hanselman, D. C. and B. R. Littlefield 1997. Mastering MATLAB 5: A Comprehensive 
Tutorial and Reference, Prentice Hall. 
Kampmann, C. E. 1996. Feedback Loop Gains and System Behavior. 1996 International 
System Dynamics Conference, Cambridge, Massachusetts, System Dynamics Society. 
Kendall, K. E. and Kendall, J. E. 2002. Systems Analysis and Design. Upper Saddle 
River, NJ, Prentice-Hall Inc. 
Kheir, N. A. 1996. Systems Modeling and Computer Simulation. New York, Marcel 
Dekker Inc. 
Kreyszig, E. 1993. Advanced Engineering Mathematics. New York, John Wiley & Sons, 
Inc. 
Kuo, B. C. 1995. Automatic Control Systems. Englewood Cliffs, NJ, Prentice-Hall, Inc. 
Nise, N. S. 1994. Control Systems Engineering, John Wiley & Sons, Inc. 
Ogata, K. 1997. Modern Control Engineering. Upper Saddle River, NJ, Prentice-Hall Inc. 
Palm, W. J. 2000. Introduction to Matlab 6 for Engineers, McGraw-Hill 
Science/Engineering/Math. 
Richardson, G. P. and A. L. Pugh, III 1981. Introduction to System Dynamics Modeling 
with DYNAMO. Cambridge MA, Productivity Press. 



References 
 
 

25 

Saleh, M. 1998. An Object Oriented Approach to Automate System Dynamics Model 
Optimization, Department of Information Science, University of Bergen, Norway. 
Saleh, M. 2002. The Characterization of Model Behavior and its Casual Foundation, 
Department of Information Science, University of Bergen, Norway. 
Saleh, M. and P. I. Davidsen 2000. An Eigenvalue Approach To Feedback Loop 
Dominance Analysis In Non-Linear Dynamic Models. 18th International Conference of 
the System Dynamics Society, Bergen, Norway, System Dynamics Society. 
Saleh, M. and P. I. Davidsen 2001. The Origins of Business Cycles. The 19th 
International Conference of the System Dynamics Society, Atlanta, Georgia, System 
Dynamics Society. 
Sterman, J. D. 2000. Business Dynamics : Systems Thinking and Modeling for a 
Complex 
World. Boston, Irwin/McGraw-Hill. 
The Mathworks 2002. Using Matlab Version 6, The Mathworks, Inc. 
The Mathworks 2002. Using Simulink Version 5, The Mathworks, Inc. 
Weisstein, E. W. 1999. Concise Encyclopedia of Mathematics CD-ROM. 
White, J. 2004. System Dynamics (22.554 and 24.509). 
 


