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Abstract: The purpose of this document is to demonstrate a new set of algorithms which 
utilize dynamic programming techniques to solve two typical longitudinal statistics for 
aggregate population models. The paper first discussed some significant values of 
longitudinal statistics for system dynamic model calibrations and individual history-targeted 
interventions.  It also addressed the current limitations of people who are facing difficulties 
in order to access the underlying dynamics of individual health patterns within populations. 
A detailed example of how to quantify the hidden trajectories for a basic SIR (non-linear) 
model has been demonstrated in this paper. The future work may involve in developing more 
algorithms to identify the trajectory statistics and implement one or more GUI-based 
software systems to permit application of algorithms. 
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1. Introduction 

When faced with understanding the underlying dynamics of individual health patterns within 
populations, and the impact of health interventions on such populations, the value of 
individual-level longitudinal data has long been recognized. Such data – which provides a 
depiction of individual trajectories over time in the form of successive events– can offer 
great insight into the characteristic patterns of behavior and natural history of conditions in 
individuals. For example, such information can aid in identifying time constants associated 
with behavior change or declining health, and timing separating events such as successive 
infections, treatments and benefits. Therefore, developing the methods to perform the 
longitudinal data analysis will do a great help for improving the performance of the tools that 
are currently available in modeling calibrations, validations and policy design. This paper 
will introduce the new methods for analyzing individual-level longitudinal data for aggregate 
models. It outlines the motivations, objectives, along with a detailed description of how to 
perform and interpret the various algorithms. In addition, the paper will provide a brief 



example showing how to quantify the hidden trajectories for a basic SIR model. The paper 
will conclude with a discussion of the most important tasks ahead, on the prospects of 
algorithms improvements and software implementations in the future, for more widespread 
applications. 

 

2. Background & Motivations 

Traditionally, health interventions and policy designs for system dynamics models are relied 
on cross-sectional data analysis. However, such analysis technique has the limited abilities to 
access the individual behaviors. At the population level, a longitudinal sample – composed 
of follow-up data on many individuals – can offer a far richer picture of the health of those 
individuals than is afforded by cross-sectional data. For example, for an infectious illness, 
researchers limited to using cross-sectional data could experience difficulties in 
distinguishing between situations in which an ongoing low level of prevalence of an 
infection reported at the population level is sustained in a small group of repeatedly infected 
individuals, or whether such infection is maintained instead in a succession of distinct 
individuals (with those individuals much larger in number). For instance, consider selecting 
prenatal Chlamydia screening programs in the following two different cases: (1) over the 
course of 5 years 1% of the population undergoes a suffering of 20 infections each; and (2) 
over the course of 5 years 20% of the population undergoes a suffering of 1 infection each. It 
became obvious to us that cross-sectional data analysis experiences difficulties in 
distinguishing between those two situations. This limitation could in turn translate into large 
uncertainties regarding to the tradeoffs between different interventions. 

The value of longitudinal data in the health research arena is attested to by the heavy 
investment made by agencies in collecting such data. Despite very high costs associated with 
follow-up efforts (relative to those imposed by cross-sectional survey instruments), 
longitudinal datasets remain critical to health research. 

For simulation modelers, the value of longitudinal is especially high. Because those building 
simulation models seek to capture the population dynamics, understanding the dynamics at 
an individual level can be important for building and calibrating an effective model – 
regardless of its level of aggregation. To offer face validity (and corresponding credibility 
with stakeholders), or to properly capture the impact of a given intervention, it will 
frequently be important that a model offers fidelity to the dynamics captured within the 
longitudinal datasets. For example, a modeler may judge it important that the model’s 
depiction of the timing separating two types of events (or transitions), or the model’s 
depiction of the fraction of individuals who experience a certain series of events (e.g. three 
separate relapses of illness prior to clearance) be consistent with those of the underlying data. 
The ability to validate a model such that its estimates agree with estimates from external data 



can add significant consistency checks compared with what can be accomplished with purely 
cross-sectional data. 

While longitudinal data is valuable for model validation and calibration, availability of such 
data offers additional opportunities on the policy design front. Because longitudinal data 
provides a modeler access to information on the distribution of individual histories, it opens 
the capacity for a modeler to prospectively evaluate the tradeoffs between history-informed 
policies. For example, in the health service delivery context, a modeler might investigate 
policies that differentially treat individuals based on past treatment history. In other contexts, 
individuals with particular longitudinal health profiles might be singled out as being at 
unusual risk, and represent candidates for targeted treatment. In some cases, this capacity to 
formulate policies not only based on the current health state classification of an individual, 
but on aspects of their history, can significantly enhance policy effectiveness. 

 

3. Model Structure 

While longitudinal data can offer great insight into system structure and policy tradeoffs, 
different model types offer different capacities to work with such information. Individual-
based models (including agent- based models, or individual-level models created using 
traditional System Dynamics modeling packages) generally offer great flexibility in 
accumulating history information. For example, an agent-based model might maintain 
information on (i.e. a counter for) the number of times an individual has experienced re- 
infection, or maintain a detailed record of past treatments rendered (Axelrod, 1997). Such 
information could be used to tailor treatment strategies prospectively, or used in model 
calibration or validation via comparison with similar data from the population being modeled 
in the real-world system. However, in large-scale models with perhaps hundreds of state 
variables with thousands of individuals, the individual-based models approach shows 
significant limitations. There is a practical upper limit to the size of the parameter space that 
can be checked for robustness, and this process can be extremely computationally intensive, 
thus time consuming (Ferrer, 2008). Although computing power is increasing rapidly, the 
high computational requirement of individual-based models remains a limitation when 
modeling large systems. Furthermore, individual-based models can be more difficult to 
analyze, understand and communicate than traditional analytical models (Grimm, 1999), as it 
is difficult to provide detailed descriptions of the inner workings of such models. 

By contrast, aggregate models traditionally offer limited ability to reason about longitudinal 
trajectories. For example, while aggregate models can readily capture simple discrete history 
information on model population members by disaggregating the population according to 
their history characteristic into different sets of stocks (e.g. often best captured via 
subscripting), this strategy scales poorly when multiple aspects of history must be 



maintained. For example, while we may readily stratify a model according to a mother’s 
dichotomous glycemic status during pregnancy (diabetic vs. non-diabetic), or by the count of 
her past bouts of gestational diabetes, the computational effort and space required to 
represent such models rises geometrically with the number of pieces of history information 
so maintained. It can also be highly expensive to maintain many discrete categories pieces 
(as might be desirable for approximating continuous history information, e.g. birthweight). 
Moreover, it is complex or infeasible to maintain arbitrarily large amounts of history 
information. 

Other types of statistics summarizing history information can in principle be derived from 
aggregate models, but traditionally remain very difficult to access. For example, given a 
fixed mean residence time in an “aging chain” of model stocks, the time separating entry to 
one stock and to another can be readily calculated. However, this calculation grows more 
complicated in the presence of multiple outflows and (especially) dynamic per-individual 
transition rates. Other questions require more care even for relatively simple models, and 
involved calculation for complex models: During the operation of a model, what fraction (or 
count) of individuals traverse a given path of one or more (possibly repeated) stocks? During 
a specified period of time, what fraction (count) of individuals enter (exit) a stock through 
inflow (outflow) X vs. (outflow) inflow Y? These and similar questions have well-defined 
answers (for a given scenario), and knowing the answers would be valuable for validating a 
model and when designing policies. 

 

4. Methods 

In this contribution, we describe the design of a software system that will allow System 
Dynamics modelers to pose queries regarding statistics on model trajectories, such as those 
given above. The user can request longitudinal metrics to assess for a scenario, and the 
pieces of the model and time horizon over which those metrics are to be estimated. 
 
In addition to providing retrospective use (using previously run scenarios), the system is 
being designed so as to allow a model in operation to change its behavior based on reported 
statistics accumulated from the run currently in operation. We anticipate the usefulness of 
such information for at least two purposes. Firstly, such information could be used during 
model calibration to evaluate closeness of fit between statistics on longitudinal progression 
within the model with those obtained from the external world. For example, during 
calibration, parameters sets could be favored according to how closely the times separating 
re-infection derived from the model matched those in the observed data. 
 



Secondly, such information could be accessed during model operation in order to change 
model behavior. While it is not in general possible for an aggregate model to directly capture 
the effects of performing differential policies based on detailed information on an 
individual’s trajectory (e.g. based on the number of times that individual has previously been 
infected), the capacity to access statistics on such information could be helpful for policy 
analysis. For example, a model that sought to investigate the impact of policies targeting 
individuals with certain history characteristics might compute what fraction of individuals 
share such characteristics. While the model would not directly reify the set of individuals 
with such characteristics (as is possible in an individual-based model), the information 
gained from the system presented here could be used to attempt to approximate the impact of 
differential treatment by applying a certain assumption concerning the effectiveness of the 
policy on those with that history characteristic, and on those without that characteristic. 

According to the distributions of aggregate models on longitudinal statistics, we are able to 
identify a way to calculate the fraction of individuals with some history characteristic for a 
given model structure. Typically, longitudinal statistics are shaped by a large number of 
possible time-transition paths; calculating statistics by exhaustively enumerating all possible 
paths is typically infeasible. Intuitively, based on the memoryless character of stocks and the 
tremendous common substructure, we can compute shared structure only once and piece 
together a full computation out of these pieces.  

4.1 Algorithms   

In general, there are many techniques that can be used for calculating the longitudinal 
statistics, among those techniques, memorizations and dynamic programming could be the 
simple and time efficient solutions. In the following section, we are going to demonstrate a 
dynamic programming solution that can be used for finding the longitudinal statistics for  
nonlinear aggregate models, such as the average time or the fractions of people, who start in 
state A and reach state B over a certain period of time.  

Assume there is a directed graph G which represents the aggregate model that has n states. 
The nodes of the graph are the state in the model, and each state has the private fileds named 
fraction. The edges of the graph represent the transition paths in the model from one state to 
the other, and each edge has the private field named flowRate, which stores the transition rate 
for such model. Here is a pseudocode version of the algorithm that computes the fraction of 
population, who starts in the state Source and ends in the state Sink at a given time step:  

Algorithm 1:                                             ____________________________________   __ 
 FIND-FRACTION-HELPER (G, Source, Sink) 
    1  Let Q be the queue   
 2  Q.push( Sink ) 
 3 do until the Source.fraction has been calculated 



4     CurrentNode := Q.pop() 
5     Q. push( all the nodes in G that pointed to CurrentNode ) 
6     for each node N in Q 
7  N.fraction := CurrentNode.fraction * EdgeNtoCurrentNode.flowRate + 

                N.fraction *  (1 – Σ all outflow rates associated with N)      
 _________________________________________________________________________   

 
Similarly, if each state in G has the private fields named b_factor and aveTime, we can also 
develop the algorithm that computes the average time taken for the populations, who start in 
state Source and travel to the state Sink at a given time step:   
 

Algorithm 2:____________________________________________________________   __ 
 FIND-AVERAGE-TIME-HELPER (G, Source, Sink) 
    1  Let Q be the queue   
 2  Q.push( Sink ) 
 3 do until the Source.aveTime has been calculated 

4     CurrentNode := Q.pop() 
5     Q. push( all the nodes in G that pointed to CurrentNode ) 
6     for each node N in Q 
7         N.b_factor := N.b_factor * (1 – Σ all outflow rates associated with N)  

    + Σ all outflow rates associated with N   
    - EdgeNtoCurrentNode.flowRat 

8         N.aveTime := {EdgeNtoCurrentNode.flowRate * (1 + CurrentState.aveTime) 
   + [(1 – Σ all outflow rates associated with N)  – N.b_factor] 
    * ( 1 + N.aveTime) }  
   / (EdgeNtoCurrentNode.flowRate + rateOfStay – N.b_factor)      
________________________________________________________________________ 
  

In the main procedure COMPUTSTAT(), it will take the specified startTime and endTime. 
The detailed algorithm is shown below. Based on the step time interval, it will call the above 
algorithms n times, as indicated in line 1, where nSteps = (finish time – start time) / (time 
interval for each step). AnalysisMethod is a user defined method. Based on the users’ 
specifications, the structure of the mode will be constructed as a type of AnalysisFrontier. 
For more detailed interface structures about AnalysisMethod and AnalysisFrontier, please 
refer to Section 4.3. Line 3 performs the initializations for the model, so that it is ready for 
the analysis. For each time step (line 4), the model will load the useful data from the external 
simulation tool, can calculate the result at the certain time step.   

Main Algorithm:______________________________________________________   
COMPUTESTAT (Pair<Double, Double> Time, Pair<Node, Node> State, 
                AnalysisMethod specifiedMethod) 
1 int nSteps = askVensim (Time) 
2 AnalysisFrontier M = specifiedMethod.contructModel() 



3 specifiedMethod.init(M, State) 
4 for int t = (nSteps – 1) to 1 
5  M.loadNewData(t +1) 
6  specifiedMethod.calculate(M, State) 
7 return specifiedMethod.result() 
_____________________________________________________________________	  

4.2 Visual Examples - SIR Model 

In the following section, we will have a close look on how the algorithm works for a simple 
non-linear SIR model (Epstein, 2007), which contains three states, namely the susceptible 
(S) state, infected (I) state, and recovered (R) state. As a variant, the R state can also stand 
for “removed” state if people die from a disease. This simple model can represent various 
diseases. For example, in most cases, chicken pox fits the category of Susceptible – Infected 
– Recovered. Since the person who contracts this disease will become immune to future 
infections after recovery, Recovered state will be a terminated state in this model.  HIV, on 
the other hand, fits the category of Susceptible – Infected – Removed, due to most people 
dying from contracting the disease. For some diseases, it is possible for the person who is in 
recovered state to get back to susceptible state again. The SIR model can be represented 
mathematically as a set of ordinary differential equations. If a constant population is under 
observation, the deterministic form of the SIR model is: 

dS/dt=-cβS(I/(S+I+R))+δR 

dI/dt=-µI+cβS(I/(S+I+R)) 

dR/dt=-δR+µI 

Where: 
• c is the average number of contacts per person unit time. 
• β is the probability that any one such contact will transmit infection. 
• µ is the rate of recovery/removal. 
• δ is the rate of susceptible. With removed state or immune cases, ! = 0. 
• t is time, the unit of measurement for the rate of change of S, I, and R. 



 

Figure 4.1 - SIR (non-linear)Model  

Based on the model above, we can use a simulation tool such as Vensim to simulate the 
following situation: Consider a constant initial (t=1) population of size 10000 that is 
partitioned into 9000 susceptible, 1000 infected, and 0 recovered. The number of 
susceptibles per unit time to whom one such infective person will transmit infection when 
surrounded by susceptibles is !" = 0.5; the rate of recovery is ! = 0.8; and the rate of 
waning immunity is ! = 0.2. The algorithms must be built on the actual simulation run from 
external software. After a simulation performed for six unit times, we can obtain the 
following table of transition rates for each path at each time step. Based on those 
information, we will attempt to answer the following questions by using our algorithms. 

 Table 4.1: The Simulation Results of an SIR Model 

 

Problem: What is the fraction for those people who start in state S at Time 1 and get to state 
R by no later than Time 6? 

Assume there are t time steps, and n states. The time complexity for exhaustive analysis is a 
combination of t and n. The corresponding space complexity should be O(nt). Obviously, 
solving this type of problems by exhaustively enumerating all possible paths is typically 



infeasible. So we would like to propose a solution using our dynamic programming 
algorithms. The following figures demonstrated all the possible paths for exhaustive 
analysis.  

Table 4.2 Paths for Exhaustive Analysis  

  

Solution via Dynamic Programming:  COMPUTESTAT() will start analyzing the model at 
Time 6. For those people who is in state R6 , 100% of them will reach state R by ! = 6; 
similarly for people in state of Rn where ! = 5,4, 3, 2,1. In the meantime, the people who are 
in states I6, S6, can never reach the state of R by  ! = 6. Hence, 0% of those people will reach 
state R.  

After we set up the conditions at ending Time 6, let us have a close look at how we find the 
fraction associated with each state at Time 5 by applying algorithm 1. Before the algorithm 
start, it will load the model information at Time 6 to construct SIR Model.  

Time 5                                                        ____________________________________   __ 
 FIND-FRACTION-HELPER (SIR Model, S, R) 
    1  Let Q be the queue   
 2  Q.push(R) // Q = {R} 
 3 do until the S.fraction has been calculated 

4     CurrentNode = Q.pop()  // CurrentNode = R 
5     Q.push(I)  // Q = {I} 
6     for each node N in Q 
7  I.fraction = R.fraction * 0.8 + I.fraction *  (1 – 0.8)  
       = 100% * 0.8 + 0% * 0.8 = 80%       

 3 do until the S.fraction has been calculated 
4     CurrentNode = Q.pop()  // CurrentNode = I 
5     Q.push(S)  // Q = {S} 
6     for each node N in Q 
7  S.fraction = I.fraction * 0.005 +  S.fraction *  (1 – 0.005)  
       = 0% * 0.005 + 0% * 0.995 = 0%       

__________________________________________________________________________ 
 



Similarly, we will be able to find the fraction associated with each state at Time 4, 3, 2 and 
Time 1 respectively. The information in Table.2 should be available. As we can see from the 
table, there are 6.95% of the populations who start in state S at Time 1 and get to state R by 
no later than Time 6. Assume there are t time steps, and n states. As we can see, the time 
complexity for the solution via dynamic programming is O(nt). The corresponding space 
complexity has been reduced to O(n). 

Table 4.3: The Analysis Results from Time 6 to Time 1 

 

 

 

4.3 Software Structures  

As mentioned above, the aforementioned algorithms must operate on observations from 
actual simulation run from external software (Vensim). Thus, we need a set of tools, which 
use the Vensim Application Programming Interface to access model output for further 
calculations and analysis. In addition, a GUI-based wrapper for Vensim is also needed.  
 
We have been conceptually designed the interface for AnalysisMethod, as indicated in Figure 
4.2. There are two classes – FindFraction and FindAverageTime, which implements this 
interface. Each class is for solving one type of problems. The class can have subclasses to 
handle differentiate boundary cases.  

	  



+constructModel() : AnalysisFrontier
+initialization() : AnalysisFrontier
+calculate() : AnalysisFrontier
+findFraction_Helper() : AnalysisFrontier
+findAverageTime_Helper() : AnalysisFrontier
+result() : float

<<interface>>
AnalysisMethod

+constructModel() : AnalysisFrontier
+initialization() : AnalysisFrontier
+findFraction_Helper() : AnalysisFrontier
+result() : float

FindFraction

+calculate() : AnalysisFrontier

FindFraction_At

+calculate() : AnalysisFrontier

FindFraction_By

+constructModel() : AnalysisFrontier
+initialization() : AnalysisFrontier
+findAverageTime_Helper() : AnalysisFrontier
+result() : float

FindAverageTime

+calculate() : AnalysisFrontier

FindAverageTimer_At

+calculate() : AnalysisFrontier

FindAverageTime_By

<<extends>><<extends>> <<extends>> <<extends>>

<<becomes>>

 
Figure 4.2 Interface Structure for methods of analysis 

 
 
It is worth noting that the algorithms for different analysis methods require similar structures 
to represent to models. Thus we can develop a common structure as the AnalysisFrontier, 
which stores the information related to the analysis and their temporary results. In Figure 4.3, 
it shows a UML diagram of the interface for model representations.  
 

 

+getNodeVal() : int
+setNodeVal() : void
+getEdgeVal() : float
+setNodeVal() : void
+add() : AnalysisFrontier
+delete() : AnalysisFrontier
+adjancent() : Node
+loadData() : AnalysisFrontier

<<interface>>
AnalysisFrontier

<<interface>>
Node -population : int

-fraction : float

NodeForFrac

-population : int
-boudaryFraction : float
-averageTime : float

NodeForAveT

-transitionRate : float
Edge

 
Figure 4.3 Interface for Model Structure 

 

 

Future Work 

Understanding how and why the algorithms work the way they do is crucial. Before one 
invests the effort of turning the algorithms described in this article into polished software 



packages, it will require further mathematical understanding and development from at least 
the following perspectives: 

(1) Additional methods for longitudinal statistics; 
(2) How those different methods are related; 
(3) Numerical computational efficiency and accuracy, such as pruning; and  

 (4) Extensive testing of the methods to an array of different models. 

Only after these aspects have been further explored will the time come to translate the 
methods into the software application, by following the interface structures suggested in 
previous section. The system is designed to use the Vensim Application Programming 
Interface to access model output from a past or current Vensim scenario selected by a user.
 (This scenario must have a SAVEPER equal to the timestep of the model). Using this 
interface, the system derives data on the values of stocks and flows over the time horizon of 
user interest – data of key use during the system operation. A key intermediate quantity used 
is the fraction of individuals within a stock who flow out of each outflow in the course of a 
given timestep. A central challenge in the design of the system concerns the need to reason 
in a time-efficient fashion regarding statistics that are quantified over all possible specific 
trajectories by which an individual could pass. While the number of possible time-specific 
trajectories from one stock to another is very large, the algorithms can take critical advantage 
of the memoryless character of transitions (i.e. the fact that the likely of a given transition is 
independent of the amount of time spent in that transition) to reduce the amount of work 
involved in computing the statistics. Algorithms based on dynamic programming exploit the 
common substructure of multiple paths to compute required statistics in a rapid but exact 
fashion. 

 

Conclusions 

In summary, we have been developed a set of algorithms, which can calculate the 
longitudinal statistics for aggregate population model. The algorithms are able to satisfy the 
growing interest among system dynamics researchers, which can help them discover the 
underlying dynamics of individual health patterns within populations and examine the 
impact of health interventions on such populations. A polished GUI - software package will 
be developed to permit application of algorithms to Vensim models. 

  



Appendix I - Interface 

interface AnalysisMethod  
{ 
 AnalysisFrontier init(AnalysisFrontier g. Pair<Node, Node> State); 
 AnalysisFrontier calculate(AnalysisFrontier g, Pair<Node, Node> State);  
 AnalysisFrontier FindFraction_Helper(AnalysisFrontier g, Pair<Node, Node> State); 

AnalysisFrontier FindAverageTime_Helper(AnalysisFrontier g, Pair<Node, Node> State); 
double result(); 

} 
 
abstract class FindFraction implements AnalysisMethod 
{ 
 public FindFractiont() {}; 
 AnalysisFrontier init(AnalysisFrontier g, Pair<Node, Node> State); 

AnalysisFrontier FindFraction_Helper(AnalysisFrontier g, Pair<Node, Node> State);  
double result();  

} 
 
class FindFraction_At extends FindFraction 
{ 
 public FindFraction_At() {super()} 
 AnalysisFrontier calculate(AnalysisFrontier g, Pair<Node, Node> State);  
} 
 
class FindFraction_By extends FindFraction 
{ 
 public FindFraction_By() {super()}; 
 AnalysisFrontier calculate(AnalysisFrontier g, Pair<Node, Node> State);  
} 
 
abstract class FindAverageTime implements AnalysisMethod 
{ 
 public FindAverageTime() {}; 
 AnalysisFrontier init(AnalysisFrontier g, Pair<Node, Node> State); 
 AnalysisFrontier FindAverageTime_Helper(AnalysisFrontier g, Pair<Node, Node> State); 
 double result(); 
} 
 
class FindAverageTime_At extends FindAverageTime 
{ 
 public FindAverageTime_At() {super()}; 
 AnalysisFrontier calculate(AnalysisFrontier g, Pair<Node, Node> State);  
} 



 
class FindAverageTime_By extends FindAverageTime 
{ 
 public FindAverageTime_By() (super()); 
 AnalysisFrontier calculate(AnalysisFrontier g, Pair<Node, Node> State); 
   
} 
 

Appendix II – Algorithms (Draft) 

abstract class FindFraction implements AnalysisMethod 
{ 
 public FindFraction () {}; 
 AnalysisFrontier init(AnalysisFrontier g, Pair<Node, Node> State) 
 { 
  // Each node in graph should have a value of fraction 
  assign the fraction for the Sink to be 1 
  assign the fraction for other node to be 0 
  
 } 

AnalysisFrontier FindFraction_Helper (AnalysisFrontier g, Pair<Node, Node> State) 
{ 

  Temporary duplicate graph g, as we need old values to calculate new ones 
      //Q is the queue   
  Q := push(Sink) 
  do until Q is empty 

    CurrentNode := Q.pop() 
Push all other nodes pointed at CurrentNode to Q 
for each node N in Q 
    N.fraction = CurrentNode_oldFrac * outFlowrateToCurrentNode + 
         N.fraction *  rateOfStay 
endfor 

  endwhile   
 

} 
 double result() 
 { 
  return Source.fraction; 
 } 

 
} 
 
class FindFraction_At extends FindFraction 



{ 
 public FindFraction_At() {super()}; 
 AnalysisFrontier calculate(AnalysisFrontier g, Pair<Node, Node> State) 
 { 
  AnalysisFrontier newFrontier = super. FindFraction_Helper (AnalysisFrontier g, 
Pair<Node, Node> State); 
  override the new fraction value for the Sink to be 1   
 } 
} 
 
class FindFraction_By extends FindFraction 
{ 
 public FindFraction_By() {super()}; 
 AnalysisFrontier calculate(AnalysisFrontier g, Pair<Node, Node> State) 
 { 
  AnalysisFrontier newFrontier = super. FindFraction_Helper (AnalysisFrontier g, 
Pair<Node, Node> State); 
 } 
} 
 
abstract class FindAverageTime implements AnalysisMethod 
{ 
 public FindAverageTime() 
 AnalysisFrontier init(AnalysisFrontier g, Pair<Node, Node> State) 
 { 
  //Each node in graph should have for averageTime and boundaryFactor 
  assign the averageTime for all the node to be 0 
  assign the boundaryFactor for all the node to be 1  
 } 

AnalysisFrontier FindAverageTime_Helper (AnalysisFrontier g, Pair<Node, Node> State) 
{ 

  Temporary duplicate graph g, as we need old values to calculate new ones 
      //Q is the queue   
  Q := push(Sink) 
  do until Q is empty 

    CurrentNode := Q.pop() 
Push all other nodes pointed at CurrentNode to Q 
for each node N in Q 
    // BF – BoundaryFactor; AT - AverageTime 
    N.b_factor = N.b_factor *  rateOfStay +  
   Σ all outFlowRate excluded the one to CurrentNode 

N.averageTime = ( outFlowRateToCurrentNode * ( 1 + 
CurrentState.averageTime ) + 



( rateOfStay – N.b_factor ) * ( 1 + N.averageTime ) ) / ( 
outFlowRateToCurrentNode + rateOfStay – N.b_factor)  

endfor 
  endwhile   
 

} 
 double result() 
 { 
  return Source.averageTime; 
 } 
 
} 
 
class FindAverageTime_At extends FindAverageTime 
{ 
 public FindAverageTime_At() {super()}; 
 AnalysisFrontier calculate(AnalysisFrontier g, Pair<Node, Node> State) 
 { 
  // More thoughts should be put on this type of question 
  AnalysisFrontier newFrontier = FindAverageTime_Helper  

(AnalysisFrontier g, Pair<Node, Node> State); 
override the new average time for the Sink to be ( Sink.averageTime + 1 ) 

 } 
 
} 
 
class FindAverageTime_By extends FindAverageTime 
{ 
 public FindAverageTime_By() {super()}; 
 AnalysisFrontier calculate(AnalysisFrontier g, Pair<Node, Node> State) 
 { 
  AnalysisFrontier newFrontier = FindAverageTime_Helper  

(AnalysisFrontier g, Pair<Node, Node> State); 
 } 
 
}  
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