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ABSTRACT 

System dynamics as a methodology has traditionally been 
concerned with the study of processes that can be descibed by 
continuous variables. Discrete or integer events, such as the 
number of sales made in a day or the number of factory closings 
in a year have either been approximated as continuous variables 
or else not dealt with. This paper examines another way of 
dealing with discrete events through the realization that any 
discrete event has a certain probability of occurance. These 
probabilities are continuous and conserved quantities and can be 
modeled as system dynamics levels. 

Treating probabilities as levels in dynamic simulations is a 
standard technique in stochastic modeling, markov models being 
one example. System dynamics' advantage over these other methods 
is that it can represent the impact of the results of the proba­
bilistic study on social feedback systems. 

This paper focuses on examples demonstrating the use of 
system dynamics to model uncertain events. These examples deal 
with the simple case of a Poisson process with a time varying 
event arrival rate. Extensions incorporating conditional and 
independent probabilities are also considered. 

1. INTRODUCTION 

There are many events and system states that cannot be 

modeled with traditional system dynamics because they cannot be 

described by continuous variables. Whether or not a machine is 

working, and the number of house sales made by a real estate 

agent in a given day must by modeled as integer, or discrete 

events. This paper shows how discrete events can be modeled in a 

system dynamics environment. Though the events themselves are 
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discrete, the probability that these events will occur is a 

continuous variable. 

It is possible to enumerate all possible states of the 

discrete system under consideration (a machine is either broken 

or working; real estate agents can sell either no houses, one 

house, two houses, etc.). If all possible system states are 

considered, then the system can always be described by one of 

these states. That is, the sum of the individual probabilities 

that the system is in one of the considered states will be one at 

all points in time. Because the total probability is always one, 

probability is a conserved variable. Because probabilities can 

take on any value between zero and one, probability is also a 

continuous variable. 

As a conserved and continuous variable, probability can be 

modeled as a level within a system dynamics model. A set of five 

interconnected levels can be used to represent the probabilities 

that a system under consideration is in one of five possible 

states. As time progresses conserved flows between these levels 

can deal with the changing probabilities for the system states. 

2. MOTIVATION FOR THIS STUDY 

Models of stochastic processes have existed for a number of 

years without system dynamics; continuous markov models being one 

representitive example. The question which naturally arises is 

whether or not there is any advantage to employing system dyn­

amics instead of the more conventional methods of dealing with 
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probabilistic systems. If the analysis focussed solely on a 

description of the discete events then there is probably no 

reason to favor system dynamics over traditional methodologies. 

However, many problems involve other factors that influence, and 

are influenced by discrete events. The need to represent these 

factors is the driving force behind the choice of system dynamics 

as the appropriate modeling tool. 

Consider the case of a salesman trying to develop a new 

customer. The salesman must invest some time and energy in 

developing the human side of the relationship with the potential 

customers purchasing agents. Modeling the process of building up 

such relationships is appropriate for classic system dynamics. 

The relationship can be modeled with a level. The dynamics of 

increasing this level are understood by salesman and can be 

incorporated into the model. However, converting the human 

relationship into a sale is an uncertain event. The level of the 

human relationship will influence the probability of a sale but 

the purchasing agent may not hav~ an application for the product, 

or- he may be waiting for a current supplier to make a mistake. 

By modeling sales as chance occurances we can find sales strate­

gies that maximize expected sales or which minimize the likeli­

hood of achieving no sales. 

This paper presents some simple examples where probabilities 

are treated as system dynamics levels. A first example considers 

the possibility of failure of a single machine. The results are 

compared to those using standard stochastic models. Later exam­

ples build on this first one to show representations of more 
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complex systems. These examples show how system dynamics can 

represent time varying expected failure rates as well as condi­

tional and independent prob.abili ties. Finally the system dyn­

amics approach to probability is related to advanced stochastic 

analysis techniques, such as markov models. 

We can define a set of possible states for a probabilistic 

system. This set is said to be collectively exhaustive if the 

system is always in one state on another. If in addition, only 

one state definition applies to the system at any one time, the 

state set is mutually exclusive. A system will always be in one, 

and only one, member of a mutually exlusive, collectively exhaus­

tive set. If we are uncertain as to which state the system is in 

we can say the that the probability it is in one of the states 

sums to one over such a set. 

3. A SIMPLE EXAMPLE 

Consider a water pump. The pump is efther working, or it is 

not. These two alternatives provide a mutually exclusive, col­

lectively exhaustive set of system states. Suppose the pump is 

currently working, and it is known that working pumps have an 

expected failure rate is L failures per year (or alternately, 

that a working pump has an expected service life of 1/L years). 

The probability that the pump will fail over a very short time 

interval, dt, is L*dt. If there is only a finite probability 

that the pump is working then the expected number of pump fail­

ures will be 
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Expected failure rate L * Pr[pump working] (Eq. 3-1) 

We can rephrase the problem by considering the probabilies 

as system dynamic levels. The probability that the pump is 

working is a level which will vary from zero to one. Similarly, 

a second level will contain the probability that the pump has 

failed. The rate at which "probability" moves between these 

levels is the expected failure rate (the probability of pump 

failure over a short dt is the product of expected failure rate 

and dt). A flow diagram of the process is presented in Fig. 1. 

For the simple case of constant mean failure rate, L, we 

have defined a classical Poisson process. The probability of 

pump failure will exhibit the growing exponential expected by 

students of both probability and system dynamics. 

Pr [pump failure before time T] 

4.· A MORE COMPLEX EXAMPLE 

-LT 
1 - e (Eq. 3-2) 

When the defining parameter L is constant there is no need 

to go beyond the simple exponential formulation presented above. 

However, reality exhibits substantial non-linearities. For the 

case of a water pump we might expect that rates of failure would 

increase with service life. Fig. 2 presents a possible relation­

ship between service life and mean pump failure rates. As the 

pump ages, its expected fatlure rate increases. Another way of 
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Figure 1: Flow diagram for a simple Poisson process 
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looking at the table in Fig. 2 is to consider the failure rate as 

the reciprocal of expected remaining service life. In Fig. 2 we 

are assuming that a pump that is still operational after one year 

can be expected to last, on average, ten more years. If it 

manages to survive up to ten years, then it can be expected to 

last for a little over three more years. 

This relation was incorporated into a DYNAMO model which 

plots the cumulative probability that the pump has stopped work­

ing over time, given that it was originally operational (Fig. 3). 

For comparison, Fig. 3 also presents the case of simple exponen-

tial growth shown in Equation 3.2. 

5. CONDITIONAL PROBABILITIES 

Suppose our pump from the last example has managed to say in 

service for 10 years. We decide to replace it with a new pump. 

However, the old one is still functional so we decide to leave it 

installed, using it only if the newer pump breaks. The new 

system has three possible states: (1) the new pump is working: 

(2) the new pump has broken, but the back-up is functioning: and 

(3) the entire system has failed. The system is diagrammed in 

Fig. 4. The system cascaded probabilities between the three 

levels because failure of the back-up pump is conditional on the 

prior failure of the main pump. 

Note that the expected failure rate differs for the two 

pumps. The new pump has the same time/failure rate trade-off 
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assumed in the first example while the old pump has saturated the 

curve. The results of this simulation are presented in Fig. 5 • 

The non-linearities in such a probabilistic system are easily 

handled using system dynamics. 

6. INDEPENDENT PROB~BILISTIC EVENTS 

Consider the case of independent pumping systems. If each 

pump has a 100 gallon/day capacity, then a parallel arrangement 

will be able to pump 200 gallons/day. Suppose we install a 

second pump along side the double pump system from the last 

example. Fig. 6 shows a flow diagram representing this situ-

at ion. 

Because the two pumps are independent, "probability" does 

not flow between the sub-systems. Within each sub-system, how-

ever, probability is conserved and sums to one unit. Using such 

an arrangement we can determine the probability that the two pump 

system will supply 200 gallons/day, 100 gallons/day (for the case 

of either pump broken), or nothing. Fig. 7 shows the relevant 

DYN~MO output. 

7. CONCLUSIONS 

The above examples could all have been handled by tradi-

tiona! stochastic modeling, such as markov analysis. DYNAMO's 

simple integration algorithm has perhaps limited the accuracy of 
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the results; however DYNAMO's well-defined structure makes the 

process of setting up the models, especially the ancilliary 

equations relating failure rates to service life, very smooth. 

Both system dynamics and markov models involve the enumeration of 

system states and dynamic simulation of changing state probabil­

ities, and if the analysis were limited to the probabilistic 

events, there is not much to favor one methodology over the 

other. 

In many situations, though, the concern is with the impli­

cations of the state probabilities, rather than with the proba­

bilities themselves. To add a story to the example from Figures 

6 and 7 consider an isolated town which requires a water supply 

of 200 gallons per day. The health of the population and the 

success of local agriculture will all be affected if pump fail­

ures occur. The feedback between health and productivity, and 

agricultural output and health are processes that can effectively 

be modeled with the system dynamics methodology. Traditional 

stochastic modeling is not as adept at deal'ing with the impacts 

of probabilistic events on social feedback systems as is neces­

sary for many studies. 

On the other side of the coin, it is important for system 

dynamics practitioners to remember that most systems are not 

deterministic and do contain some random elements. Monte carlo 

simulations using some "noise" function is one approach for 

dealing with uncertainty. However, this technique is not very 

effective for studying low probability events because of the 

large cost involved in running many repeated simulations. Model-
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ing probabilities explicitly as levels is just another way of 

dealing with uncertainty in systems. 


