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ABSTRACT 

The purpose of this paper is to convey the techniques and considerations 
normally involved in formulating and estimating parameters in system dynamics 
models. Ideally, model equations should be formulated so that the associated 
parameters each describe some unique observable characteristic of the real 
system. Thereby, translating observations and measurements below the level 
of aggregation of model structure (estimation from disaggregate data) into 
specific parameter values becomes very straightforward. Fewer assumptions 
about the structure of the system are needed than if the parameters ·were set 
by equation estimation or model estimation from data at the level of aggrega
tion of model structure. Making additional assumptions provides more oppor
tunities for systematic errors to creep into the parameter-setting process. 
Rather than using data at or above the level of aggregation of model structure 
to set parameters, such information might better be reserved for validity test
ing. When such data are not already used to set parameter values, the validity 
tests become simpler and depend upon fewer assumptions. 

Parameters need only be set accurately enough to allow the model to ful
fill its purpose. One time-saving research strategy is to determine, by us
ing only roughly-set parameters at first, how accurately the parameters must 
be set before investing time and effort in setting them accurately. Then, 
sensitivity testing can identify the relatively small number of parameters 
whose values significantly alter the model behavior or response to policy 
changes. The model can then be reformulated, the policies redesigned, or 
the sensitive parameters reset by more elaborate and hopefully more accurate 
techniques. 
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I. I N T R 0 D U C T I 0 N 

System dynamics as a discipline diverges in several respects from more 

traditional scientific disciplies, such as economics or physics. The most 

apparent difference concerns the methods of selecting numerical values for 

model parameters. In economics or experimental physics, a significant por-

tion of the total research effort is devoted to determini~g the precise 

values of the parameters that characterize the system under study. A sig-

nificant part of professional communications in journals and conferences 

concerns measurement, data, and statistical technique. In contrast, the 

literature of system dynamics describes the complex structure of models, 

and devotes considerable space to analyzing the behavioral consequences of 

that structure, Description of the parameter-setting process is usually 

brief or nonexistent. It should not be surprising that practitioners of 

traditional disciplines incorrectly perceive glaring deficiencies in system 

dynamics models. Careful and laborious parameter setting, a part of research 

long presumed necessary, appears totally lacking in system dynamics models. 

A. P u r p o s e a n d 0 r g a n i z a t i o n 

The purpose of this paper is to convey the considerations and techniques 

used to formulate and estimate parameters in system dynamics models. Section 

II begins by discussing issues in formulation of equations and their associ-

ated parameters. The issues revolve around a parameter-'s dual purpose of 

accurately describing some real process, and lending itself to straightforward 

estimation. Estimation is divided into three broad categories, described 

respectively in Sections III, IV, and V: estimation from disaggregated data, 
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equation estimation, and model estimation. Section VI describes the procedures 

by which an initial model with roughly-estimated parameters is transformed into 

a reliable guide to policy-making: sensitivity testing isolates the parameters 

that require reformulation, reestimation, or policy redesign. Finally, Section 

VII summarizes the main points of the paper. 

B. A H o u s i n g M o d e 1 

This paper discusses various means of selecting parameter values in the 

context of a small model of an urban housing stock. Although very simple, the 

model illustrates most of the issues and problems which accompany parameter 

selection in more complex system dynamics models. Each parameter in a properly-

formulated system dynamics model corresponds to some real process or processes. 

To set a parameter ln a system dynamics model is therefore to characterize or 

describe some process with a numerical value. (Section III gives examples.) 

The problems and issues entailed in such a characterization are virtually the 

same, regardless of how many other processes also must be characterized--that 

is, regardless of the size of the model. 

The model describes the aggregate structure of an urban housing market, 

and is designed to trace the broad. history of housing growth and stabilization 

in a central-city area. Figure 1 shows a DYNAMO flow diagram of the model.
1 

The level represents the total number of housing units H within a specified 

1The model leaves a large number of factors implicit within the formulation. 
For example, the model assumes that enough economic development occurs 
close to the residential area heing modeled so that jobs will be .available 
to support occupants of the housing units. For a more explicit treatment 
of a housing market within the context of an urban economy, see Forrester 
1969 (Appendix A), Goodman 1974b (Exercise 12), or Alfeld and Graham 1976 
(Chapters 6 and 7). 



HOUSING- LAND 
MULTIPLIER 

8
----

T 
HOUSING 

CONSTRUCTION 
NORMAL 

HCN I 
-<(-- I 

' I 
' I ', \ 

HC 
HOUSING _./ 
CONSTRUC- --
TION 

ll 

/ 

......... 

AREA 

I 
' ' I 

Figure 1. DYNAMO flow diagram 

LAND 
PER HOUSE 

LPH _,.... 
/ 

/ 
/ 

I 

HOUSING 
UNIT 

LIFETIME 
HL 

T 
I 

I 
/ 

/ 

2 

urban area. The rates are housing construction HC and housing demolition liD, 

both of which are measured in housing units per year. The equation that speci

fies the rate of housing demolition liD assumes some constant average housing 

unit lifetime IlL. Sections III and IV describe the equations for this model 

in the context of estimating their associated parameters, with the exception 

of the level equation: 
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I L C 0 N S I D E R A T I 0 N S I N PARAMETER 

FORMULATION 

Much of the effort in system dynamics modeling is devoted to development 

of the appropriat~ equation formulations and their associated parameters. 

Only careful formulation can create parameters whose values can be set rela-

tively straightforwardly. This section therefore discusses the considerations 

that enter into parameter formulation, as a prerequisite to the parameter-

setting techniques discussed in Sections III, IV, and V. 

A. R e a 1 i s m 

A model is constructed to represent a set of real processes for a purpose. 

The ultimate test of a model's validity, therefore, is whether the character-

istics of the representation agree closely enough with the characteristics of 

the real processes to allow the model to fulfill its purpose. The modeler can 

set a very lligh standard for the realism of a model structure by· requiring that 

each equation in a model; and each parameter in each equation, correspond 

simply· and directly to some specific characteristic of the real processes 

being modeled. 2 

For an example of direct correspondence to real characteristics, consider 

the equation for the rate of housing demolition liD in the simple housing model 

in Figure 1: 

I·IJI,I\L'"Il•I\/HL 
IH .. '"66 

HD 
H .. 
IlL 

- HOUSING lll..~ll..ITION <UNITS/YEAR) 
- HOUSING UNITS <UNilSl 
- IIOUHING UNTT LIFETII1E \YEf•i'':~:>) 

2¥ F· 
:;:.~ t l ~ c 

2see Forrester 1967, pp. 63-64, for a discussion of this subject in the context 
of managerial models. 
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The equation defines the annual rate at which houses are demolished, which is 

quite directly observable. HD is defined in terms of the number of housing 

units H in the area being modeled, and the average housing unit lifetime HL 

(the average age of housing units when they are demolished). Both quantities 

correspond to observable characteristics of the real system. 

While an equation and its associated parameters may provide a good descrip-

tion of the real system, it may not be the best description. To avoid becoming 

fixated upon one set of parameters, the modeler must realize that, for the most 

part, parameters only describe the real system; they have no direct structural 

counterpart in the real system. For example, the housing-land multiplier tableHLM 

exists only as a set of model parameters. In the real system, people buy 

and sell land, and sometimes erect buildings. HlJIT merely describes those 

processes, and other descriptions are possible. 3 

Striving for a general description is sometimes more desirable and easier 

than creating a formulation that describes only a specific case. For example, 

suppose a model of a large corporation requires equations that describe pric-

ing decisions. Is the price determined by supply and demand in a somewhat 

competitive market, or is the price determined by a traditional mark-up above 

costs in a somewhat oligopolistic market? The modeler could choose a pricing 

equation that reflects one or the other hypothesis, but a pricing equation 

capable of representing both hypotheses and every alternative in between (by 

means of different parameter values) would be clearly superior. 

3
see Mass 1974a and Miller 1975 for different, more detailed descriptions of 
the markets for urban land and housing. 
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One symptom of a non-general formulation is the presence of parameters 

whose values cannot be realistically set independent of the values of other 

parameters. If each parameter truly describes some unique, individual, and 

observable characteristic of some part of the system, then every combination 

of parameter values should have some plausible analogue in a real system. 

But it is quite possible to formulate a model in which only some combinations 

of parameters have a realistic interpretation, while other combinations give 

nonsensical results. As a relatively obvious example, a model of budget 

allocation within a firm could have parameters that could be set to continually 

allocate 200 per~ent instead of 100 percent of the firm's income. 4 

E f f e c t i v e D a t a U t i 1 i z a t i o n 

Every parameter in a system dynamics model must be assigned a specific 

numerical value before the system behavior can be simulated. Therefore, the 

equation formulations and their associated parameters should not only provide 

a realistic description of the real system, but should also facilitate param-

eter estimation. 

l.fuat equation and paramter formulation best facilitates parameter esti-

mation? The answer depends on the kinds of data to be used to estimate the 

parameter value. If the model parameters are to be set on the basis of de-

tailed, firsthand observations, the model parameters should correspond simply 

and directly to observable characteristics of the real processes being repre

sented. On the other hand, if an abundance of aggregat~ statistical information 

4A superficial cure for such difficulties is to make algebraic constraints (such 
as allocating 100 percent of income) part of the model structure, either in ini
tial computations or in the auxiliary equations. However, interdependent param
eters (especially parameters describing allocations) often indicate missing lev
els or overaggregation. For example, a budget constraint is an aggregation of 
the feedback structure that surrounds the level of cash possessed by a firm or a 
household. (The feedback causes spending to increase when cash builds up and 
spending to decrease when cash is short.) The budget constraint is a behavioral 
consequence of that feedback structure. 



is to be used to estimate the value, the model equations should be formulated 

to facilitate the necessary computations (even though such formulations may 

not match the features of the real system very closely). 5 These two types 

of data will be called (in thls paper) data below the level of aggregation 

of model structure and data !!.t:. the level of aggregation of model structure, 

respectively. 

Data below the level of aggregation of model structure are observations 

and measurements of the processes whose aggregate is represented by a model 

equation. For example, consider .the processes involved in hou11ing demolition. 

One can observe the processes of aging and obsolescence which gradually ren-

der a housing unit less and less habitable. One can observe the other pro-

cesses by which houses are destroyed such as fire or replacement by new con-

struction in urban redevelopment. One can observe the details of the demoli-

tion of individual housing units, whose aggregate is represented in the model 

by the rate of housing demolition HD. If such observations are to be used 

to set model parameters, the parameters should directly correspond to observ-

able characteristics, such as the average housing unit lifetime IlL at the time 

of demolition. 

The other kind of information that can be used to set model parameters 

is data at the level of aggregation of model structure. Such data closely 

correspond to model variables. For example, s model variable might be the 

5The form of equations suitable for statistical estimation must often utilize 
relatively aggregate data, so that the equations usually do not depict the 
detailed processes through which the independent variables influence the de
pendent variable. Also, analytic tractability often restricts the form of 
such equations to be linear, with only one parameter per independent variable 
(even though in reality the independent variable may act upon the dependent 
variable linearly or nonlinearly through a variety of channels). 
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annual rate of housing demolition HD within an area, and the corresponding 

data then would be the number of housing units destroyed each year. Both the 

model variable and the associated data represent the aggregation of a number 

of objects: apartments, condominiums, single-family wooden houses, old houses, 

and so on. The model variable and the data also represent the effects of a 

number of processes: obsolescence of .facilities within housing units, 

gradually-accumulating damage to the interior and structure of housing units, 

declining rent levels, declining maintenance expenditures, and condemnation 

proceedings, to name a few. The data and the model variable are therefore 

on the same level of aggregation. How can the modeler infer parameter values 

from data that correspond to model variables? The data alone do not suffice, 

since they describe the behavior of model variables, but not the model param-

eters. The modeler must also use a model equation or several equations to 

compute parameter values from data on model variables. One difficulty with 

data at the level of aggregation of model variables is that the computations 

require the use of assumptions about one or more equations. Such assumptions 

always constitute "more rope to hang yourself with." The more assumptions, the 

more opportunities for error. In contrast, setting parameters from data below 

the level of aggregation of model variables allows each parameter to be set 

and judged independently, without computations based on the rest of the equa

tion which it helps to specify. 
6 

6Econometricians are aware of an analogous situation in estimating simultaneous
equation models.. Even though simultaneous-equation estimation methods theoret
ically deliver greater accuracy than multiple applications of single-equation 
methods, the simultaneous-equation methods are more sensitive to minor viola
tions of assumptions (less robust) than single-equation methods. Similarly, 
paramter estimation from 'data at the level of aggregation of model variables 
is less robust than parameter estimation from data below the level of aggrega
tion of model variables. 
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One potential hazard exists in using data below the level of aggregation 

of model structure. The hazard lies in formulating a model structure and param-

eters that are agg~;egated to the point where one cannot reliably observe the 

processes being characterized by the parameter values. For example, in the sim-

ple housing system, a variety of processes determine how long it takes the sys-

tem to make a transition between growth and equilibrium--incentives to con-

struct housing, supply and demand effects in the land market, and housing depre-

elation, for instance. In the model, a number of different parameters charac-

terize tbese diverse processes. An alternative formulation of .the model might 

have contained a single parameter that specified the time ·constant for the 

transition from growth to equilibrium. Urban experts may very well be willing 

to give estimates of such a quantity, but the number would be a conclusion or 

opinion drawn from their mental models of how the system behaves, rather than 

a report on direct observations of events in the city. 

Another example of confusing observations with conclusions occurs in the 

field of international trade, where experts needed to predict the time it would 

take for the volume of trade to adjust to the Smithsonian currency realignment. 

Junz and Rhomberg 1973 show that statistical estimates of this delay time dif-

fer from the expert opinions by about a factor of two. That a difference ex-

ists is not surprising. That the difference is only a factor of two is 

surprising. Consider: the experts were attempting to predict, on a 

purely intuitive basis, the behavior resulting from a very high-order, non-

linear, multiple-loop feedback system, involving a 'wide diversity of processes, 

including marketing, inventorying,. production, hiring, financing; and 

- 552 -

pricing. 7 If one formulates an equation with parameters that characterize the 

result of a complex set of interactions by a single number, then one must of 

course ~xperience great difficulty in obtaining reliable expert opinion or 

other data below the level of aggregation of model structure: the model 

structure is aggregated well above the point where a person can reliably wit

ness the workings of its components. 8 

7There is· an epistomological difficulty associated with the distinction between 
parameters that describe system behavior and parameters that describe processes 
within the system. The difficulty is that ultimately, all that one ever ob
serves is behavior. For example, the observed average lifetime of a housing 
unit discussed above could be considered as the behavioral result of a more 
detailed system of interactions among rent levels, maintenance and capital 
costs, population and income levels, social traditions about housing, and 
many other variables. So regardless of how detailed one makes a model, in a 
strict philosophical sense, one always has parameters that are descriptions 
of the outcome of processes not explicitly represented. These descriptions 
are adequate for the purposes of the model provided that the outcomes of the 
processes not explicitly represented do not change significantly as a result 
of the dynamics being modeled. For example, one could ask whether the aver
age lifetime of a housing unit changes as the system makes the transition 
from abundant land to scarce land. 

8rhere are two possible courses of action when one has formulated a model whose 
parameters are too aggregated to be set reliably from available data below the 
level of aggregation of model structure. One course is to restructure (usually 
disaggregate) the model so that its parameters do correspond directly to observ
able unchanging characteristics of processes within the system. 'fhe disaggre
gation will usually involve not only subdivision of levels into more levels, 
but also explicit addition of feedback loops that control the levels. For 
example, Mass· 197/oa and Miller 1975 disaggregate the relationship between land 
availability and urban housing construction discussed in Section III.B of this 
paper. The other course ~f action when a parameter is too aggregated to be set 
reliably from available data below the level of aggregation of model structure 
is to use another estimation technique and data at the level of aggregation of 
model structure--usually statistical techniques. It seems unwise, however, to 
attempt to estimate a simple relationship if the actual system is complex enough 
to render expert opinion unreliable. In the foreign-trade example above, for 
instance, the aggregated delay between exchange rates and trade volume could 
(for some model purposes) be completely inadequate: numerous other variables 
impinge on that part of the system, including, among others, forward exchange 
rates; availability of arbitrage capital; relative interest rates; expected ex
change rates; availability of capital, labor, and financing; and transport costs. 
For many model purposes, the total aggregate delay time must be regarded as an 
endogenously-determined dynamic variable, and not as a constant parameter. 
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The final consideration about effective data use concerns model validation. 

After a model has been formulated and the parameter values set, validation tests 

demonstrate whether or not the model's structure and behavior agree (are consis

tent with) available data about the system being modeled. The more a model's 

equations, parameter values, and behavior resemble the known characteristics of 

the real system, the more valid the model. 

If parameters are computed from data at the level of aggregation of model 

structure, the model is to some extent forced to replicate the characteristics 

of those data. These characteristics can range from phase and magnitude rela

tionships between individual variables to the entire system's behavior mode. 

But such a replication cannot increase confidence in the validity of the model. 

The method of parameter estimation forces the model behavior and real behavior 

to agree. 

One possible strategy for data use would be to use aggregate numerical 

data (data at the level of aggregation of model structure) to set parameter 

values. The information left over for testing the validity of the model ls 

then the data below the level of aggregation of the model structure (that is, 

observations of the details of the processes being modeled), plus whatever 

aggregate information remains to be extracted by more elaborate statistical 

tests. This strategy seems to provide many opportunities for error. It is 

too easy to declare parameter values reasonable and characteristic of the real 

system after the fact, even when they may not be (especially since a model 

whose parameters are set by statistical or numerical procedures may not have 

paraemters that correspond directly to observable characteristics of the real 

system; see footnote 5). Statistical testing procedures do not seem appropriate 

for validity testing, both because of logical limitations (discussed in Mass 
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and Senge 1976), and because the tests are predicated upon many assumptions, 

which when false can rause the tests to indicate good results spuriously (see 

Senge 1975a). 

Another strategy for data use, more commonly employed in system dynamics 

models, is to reserve the more aggregate numerical information for validity 

testing, and to set model parameters from data below the level of aggregation 

of the model structure. This strategy maximizes the opportunities for unbiased 

utilization of data below the level of aggregation of model structure. By 

excluding the use of aggregated data from parameter setting, this strategy 

also maximizes the amount of aggregate data that can legitimately he used to 

test model vaU.dity, without resorting to complex and non-robust statistical 

tests. 

To summarize this section, realistic equation formulation should provide 

a recognizable yet general description of some real process, in which each 

parameter describes some independent characteristic of the process being 

modeled. Formulation at the proper level of aggregation can facilitate param

eter setting and validity testing, by allowing parameters to he set from data 

below the level of aggregation of model structure. This reduces the number of 

assumptions made in parameter settings, and allows the more aggregate data to 

be used in validity testing. 
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I I I. E S T I M A T I 0 N F R 0 M 

DATA D I S A G G R E G A T E 

0 v e r v i e w o f t h e T h r e e 

P a r a m e t e r E s t i m a t i o n 

C a t e g o r i e s 

T e c h n i q u e s 

Each of the next three sections describes one category of parameter setting 

technique. (Several examples of each type are given.). In order to delineate 

the differences between the types, we will discuss all the types in this 

subsection. 

This section describes estimations from disaggregate data or, more precise-

ly, data below the level of aggregation of model structure. As an example, the 

text has already discussed how the average housing unit HL can be estimated by 

observing the age of individual housing units when they are demolished. Est!-

mations from disaggregate data may or may not involve computation, but the com-

potations never involve the actual model equations. 

Section IV describes equation estimation, which uses data at the level of 

aggregation of model structure in a computation based on the equation that con-

tains the parameter being estimated. For example, assuming that Equation 2 de-

fining housing demolition HD is correct, dividing the number of housing units 

by the number of housing units in a year within an area yields an estimate of 

average housing unit lifetime HL. 

Section V describes model estimation, which uses data at the level of 

aggregation of model structure in a computation based on the entire set of 
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model equations. 9 For example, one could simulate the housing model with var-

ious vaiues of the average housing unit lifetime HL until the model behavior 

approximately matches observed historical behavior. 

B. E s t i m a t i n g Between Limits 

There are several variations in the technique of estimation from disag-

gregate data; the example of estimating the average housing unit lifetime 

HL is the simplest variety, where a single parameter is directly set equal to 

an easily-measured quantitative characteristic of the real system. A slightly 

more complex situation arises when not enough observations are available to 

set a single unique value. Even so, the modeler can obtain a parameter esti-

mate by considering upper and lower limits, which the parameter values should 

not approach. 

For example, Equation 3 defines the rate of housing construction IIC as 

the product of the number of housing units II, the housing construction normal 

HCN, and the housing-land multiplier HLM. 

HC.KLm(H,KI<HCNl<HLM.KI 
HC*'0.07 

HC -- IIOI.JSING 
··- HOUSING 

CONSTRUCTION <UNITS/YEAR! 
UNITS <UNITS I 

:;,. 1'': 
:s. 1? c 

H 
HCN 
HLM 

- HOUSING CONSTRUCTION NORMAL <FRACTION/YEAR! 
- HOUSING-LAND MULTIPLIER <DIMENSIONLESS! 

The number of housing units H indicates the size and inherent ability to en-

gender growth of the developing community or city being modeled. The housing 

9s:l.ngle-equation methods in econometrics {such as the family of least-squares 
estimators) are equation estimations. The econometric full-information 
maximum-likelihood (FIML) techniques and the control engineering full
information maximum-likelihood via optimal filtering {FIMLOF) techniques 
are both model estimations. For descriptions of FIMLOF techniques, see 
Peterson 1976, Peterson 1975, Peterson and Schweppe 1974, or Schweppe 1974, 
Chapter 14. 
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construction normal HCN is the proportion of additional new houses a community 

or city can build under some defined set of normal conditions. Under such 

normal conditions, the third factor, the housing-land multiplier HLM, assumes 

a value of 1.0. HLM represents the effects of deviations from the set of 

10 normal conditions on construction by exceeding or falling below 1.0. 

What values are appropriate for housing construction normal IICN? One 

set of answers comes from observations of houses being built and neighborhood 

expansions. If normal conditions are defined to apply when the con~unity can 

still experience substantial growth, an HCN value of 0.01 is too small. Such 

a value would imply that a con~unity of 100 houses, despite the availability 

of acceptable construction sites, would have only one more house built in it in 

a year, which is not substantial growth. At the other extreme, a value of IICN 

of 1.0 is clearly too large. With such a value, every year, new housing units 

would be constructed in numbers equal to the size of the housing stock at the 

beginning of that year. Neighborhoods seldom, if ever,. grow so rapidly. How 

fast do neighborhoods grow? A realistic value of HCN must lie somewhere be-

tween 0.01 and 1.0. Simply choosing a value for IICN somewhere between these 

two extremes may suffice for the purpose of .the model. Alternatively, the 

modeler may have to seek more precise information to further narrow the range 

of possible parameter values. (Section V discusses methods of determining 

how accurately parameters must be set.) 

10The normal conditions chosen for this model are the conditions that occur 
when the growing housing stock first occupies 80 percent of the land area 
being modeled. "Normal" is used here in the scientific sense of normalized 
quantities, rather than in the sense of either "typical" or "healthy." 
Alfeld and Graham 1976 (Section 5.3) and Graham 1974 further discuss the 
use of normal conditions in model formulations. 
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c. E s t i m a t i n g T a b 1 e F u n c t i o n s 

w i t h ·E x t r e m e C o n d i t i o n s, 

N o r m a 1 P o i n t s, a n d S m o o t h C u r v a t u r e 

Table functions seem to constitute a formidable estimation problem, since 

they are typically specified by 5 to 15 numbers. But the problem can be broken 

into subpr~blems: estimating the value and the slope of the function at one 

extreme, at the normal value, and at the other extreme. The remaining sub-

problem is connecting the known values and slopes with a smooth curve. 

For example, consider Equation 4, which specifies the housing-lnnd multi-

plier IILM as a table function of the land fraction occupied LFO. 

HLM.KaTADLEIHLMToLFO.K,Ool•O·ll 
HLMT=.4/,7/l/1,25/1,45/1.5/1.5/1.4/1/.3/0 

HLM - HOUSING-LAND ML~TfPLIER ID1MENS10NI.ESSl 
IILMT IIOUSJND-LAND 11ULTIPLIEH H\BLE 
LFO - LAND FRACTION OCCUPIED IDIMENSIONLESS) 

-4 v (j 

·'1. l' 

Under the extreme condition of very low land occupancy, incentives for 

construction should be appreciably lower than under normal conditions. rn1en 

the land fraction occupied LFO approaches zero (near the left side of the curve 

in Figure 2), the area being modeled is mostly vacant land. The area's via-

bility as an urbanizing entity has not yet been demonstrated. Developers can-

not count on continuing demand for the housing units they construct. Many 

services taken for granted in more heavily-settled areas must be installed 

new neighborhood-by-new neighborhood: roads, sewers, electricity, gas, and 

schools. These· services will by no means be complete in an area too sparsely-

settled to make even city water or sewers an economical proposition, let alone 

public transportation. So the housing-land multiplier Hl.M should be well below 

1.0 when LFO is 0.0; Figure ;! gives HLM a value of o;4 when LFO equals 0.0 

(Point A). 
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Figure 2. Housing-land multiplier table 

Adding housing units to a sparsely-settled area gradually makes more and 

more urban services economical, paying propositions, thereby making housing 

construction more attractive and more obviously profitable. But adding a 

few houses cannot pay for the infrastructure--schools, roads, libraries, 

utilities--necessary to deliver a complete ensemble of urban services. The 

curve for the housing-land multiplier table should slope upwards, but not 

very steeply from where LFO equals 0.0. (See the line segment between Points 

A and B on Figure 2.) 

Now consider the normal condition, defined as the condition that occurs 

during the normal period, when the land fraction occupied LFO equals 0.8. 

By definition, under normal conditions, the rate of housing construction JIC 

equals the product of housing units H, and housing construction normal IICN, 

Therefore, when LFO equals 0.8, JILM must exert no influence on UC, and must 

equal 1.0 (Point C on Figure 2). 
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Consider the other extreme condition in which the land fraction occcupied 

LFO equals 1.0. The land area within the co0111unity, city, or district being 

modeled is fully and totally occupied. Even the least desirable sites have 

been built upon. Regardless of whatever incentives exist to construct hous-

ing, no housing can be constructed within the area being modeled until there 

is some physical space available upon which to build--until LFO ceases to 

equal 1.0. So the housing-land multiplier JILM should equal 0.0 when LFO 

equals 1.0, which establishes Point E on the graph of the housing-land mul-

tiplier table HLMT in Figure 2. 

If the land fraction occupied LFO was not 1.0 but close to 1.0 (nearly 

full land occupancy), urban services such as sidewalks, schools, libraries, 

roads, and public transportation would already be installed and fully devel-

oped. To be sure, the crowding and lack of desirable construction sites 

implied by an· LFO close to 1.0 would not permit housing construction to take 

place so rapidly under the normal conditions. Nonetheless, any small reduc-

tion of LFO from 1.0 opens up the possibility of appreciable housing construe-

tion. Therefore, the curve of the housing-land multiplier should probably 

be fairly steeply-sloped as LFO approaches 1.0. (See the line segment be-

tween Points D and E on Figure 2.) 

So far we have estimated the· values at and near two extreme conditions 

and at the normal condition. Now all that remains is to draw a curve through 

the estim~ted points. Any sharply bent or kinked curve is probably not very 

realistic. A bend or kink implies something special and unique about the 

exact conditions at which the bend or kink occurs. Since the housing-land 

multiplier ta!>le IIUff represents a very large number of processes, the prob-

ability is vanishingly small that all of the processes represented would show 
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major changes under a single unique set of conditions. Accordingly. the curve 

for HLMT (and in general, all highly-aggregated relationships) should change 

smoothly, without kinks or bends. 

Solving the subproblems of extreme conditions, normal conditions, and con-

necting known points with smooth curves, allows the modeler to estimate a non-

linear table function with a high degree of confidence. The estimated table 

summarizes observat.ions of a large number of processes below the level of ag-

gregation of model structure. IILMT is the aggregate representation of these 

processes and their effect on housing construction. 11 

D. C a 1 c u 1 a t i n g a P a r a m e t e r 

f r o m D i s a g g r e g a t e Numerics 

E s t i m a t e 

D a t a 

The modeler can combine numerical estimates or observations of processes 

below the level of aggregation of the model structure into values for model 

parameters. For example, consider an equation in an ecological model which 

specifies the birth rate of rabbits BR (measured in rabbits per month) as 

the product of the total rabbit population RP and some constant function, the 

rabbit birth fraction RBF: 

R BR.KL = RP.K*RBF 

The average person may not seem to have enough information to specify a value 

for RBF, but most people in fact know enough about the biological characterist-

ics of rabbits to specify at least an approximate value. Suppose that a mature 

11" . L~IT can be considered to be the composite of two nonlinear functions, one of 
which represents the simulating effect of infrastructure development on hous
ing construction. The other represents the inhibiting effect of low land 
availability on housing construction. In general, if a curve becomes any 
more complex than the hump-shaped IILMT curve, it should be broken into com
ponents and its components each estimated separately. Customarily, most mul
tipliers in system dynamics models have a simple monotonic form. 
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female rabbit litters about every 5 months, and that about 4 babies per litter 

survive, Since about half the mature rabbit population is female, that makes 

1 litter x 
5 months 

4 babies x 1 mature female 
1 mature female 2 mature rabbits 

·= 0.4 babies I mature rabbit I month. 

But not every rabbit is mature. If rabbits live about 4 years or 48 months, 

and require about 6 months to mature, and if the rabbit population is evenly 

distributed, then (48- 6)/48, or 0.875 of the rabbit population will be mature. 

If the rabbit population is growing, then there will be proportionately more 

young rabbits in the population, which reduces the fraction of mature rabbits. 

Assume that the rabbit population being modeled is growing rapidly. There-

fore, the fraction of mature rabbits should be less than 0.875, say around 0.5. 

For the whole rabbit population, there are: 

0.4 babies x 0.5 mature rabbits 
mature rabbit-month rabbit 

= 0.2 babies/month/rabbit 

So, setting the rabbit birth fraction RBF equal to 0.2 should be fairly close 

to the value that would be derived by direct observat:ion.
12 

(Senge 1975b dis-

cusses a more complex computation in a managerial model.) 

12The parameter estimation uses only the author's impressions of the biological 
characteristics of rabbits. The reader may wish to check the parameter value 
derived above against more detailed observations and measurements. An ency
clopedia should have information about the average longevity, maturation time, 
gestation period, and litter size and frequency of rabbits. (Don't forget to 
account for infant mortality when carrying out the computation, and make sure 
the lifetimes and infant mortality rates apply to a growing rabbit population.) 



IV. E Q U A T I 0 N E S T I M A T I 0 N 

Estimation from disaggregate data employs data below the level of.aggre-

gation of model structure, and never uses a model equation to compute a param-

eter value. In contrast, equation estimation employs data at the level of 

aggregation of model structure, and must always use a model_equation to com-
. 13 

pute a parameter value. Subsection III.A described estimating the average 

housing unit lifetime HL by using the equation for housing demolition HD and 

data on liD and housing units H. The following subsection describes a slightly 

more complex example. 

A. E s t i m a t i n g 

a N o r m a 1 F r a c t i o n a 1 R a t e 0 f F 1 o w 

The format for many rate equations in system dynamics models is 

Rate = Level* Normal Fraction* Multipliers 

By simple algebra, the value for the normal fraction is given by: 

Rate 
Normal Fraction = Leve'i *Multipliers 

Under the normal conditions (at whatever time period it is defined), the 

multipliers, by definition, assume .values of 1.0. So the normal fractional 

flow rate can be computed by dividing the observed rate by the observed 

level, both measured during the period of normal conditions. For example, 

suppose that one defines the year 1960 as the normal period for the urban 

13only in rare instances can the modeler use simple manipulation of the model 
equation to estimate more than one parameter. Single-equation econometric 
techniques routinely estimate many parameters simultaneously, with corre
spondingly more stringent requirements for specification and data accuracy. 

area being modeled. Then, if the data are available, one can divide the num-

her of housing units constructed in the area during 1960 by the number of 

housing units in the area in 1960 to obtain a value for housing construction 

normal HCN. 

Equation estimation requires several assumptions--in this case, that the 

data apply to the normal period, that the data are accurate, and that the 

equation is accurate. These assumptions provide opportunities for errors. 

One example occurred in an attempted .revision of the Urban Dynamics model 

(Forrester 1969) in Babcock 1970. Babcock attempted to set normal con-

stants using d~ta on levels and rates of flow, but neglected to use data 

only for. the normal period. He used data for cities near equilibrium also, 

The simple housing model presented here can show what happened as a result. 

The housing model reaches equilibrium after the housing stock grows until 

a shortage of land suppresses further housing construction. Because the 

normal conditions in the model are growth conditions, the housing-land 

multiplier HLM must suppress housing construction by going well below 1.0. 

Suppose we divided the actual rate of housing construction HC
8 

by the actual 

number of houses lla to obtain a computed value for the housing construction 

normal HCNc• If the model equations are accurate, using equilibrium data 

to compute HCN: 

H *HCN *HLM 
a a a = IICN *HUI 

Ha a a 

which means that 

Using the computed value of HCN in a model reduces the model's impetus to 

grow, and thus reduces the extent to which HLM must drop to bring the model 
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into equilibrium. Similarly in Urban Dynamics, growth ceases when land short-

age and unfavorable internal conditions (principally a job shortage and pre-

dominance of lower-income groups) depress construction. Using data from near-

equilibrium to compute normal fractions considerably reduces the extent to 

which internal conditions in the model must decline to halt growth. In fact, 

the model will no longer reproduce and account for depressed urban conditions. · 

Babcock's modified Urban Dynamics model therefore no longer even fulfills its 

purpose, merely because the implicit assumptions used in parameter setting 

were violated. 

B •. E s t i m a t i n g a C o n v e r s i o n F a c t o r 

A large number of parameters are conversion factors, which.convert quan-

tities from one dimension to another. For example, land per house LPH con-

verts housing units to an equivalent number of acres. Equation 5 uses LPII 

in the definition of land fraction occupied LFO: 

LFO,K=<H,K*LPHI/AREA 
LF'II'"'O ol 
ARFA"'70()0 

LFO 
II 
LPH 
AllEr! 

LAND FRACTION OCCUPIED (DIMENSIONLESS) 
- HOUSING UNITS CUNITSl 
- LAND PER HOUSE CACREB/UNITl 

IWEA ( ACIIDl l 

5, (-:) 
t'i .1, c 
~;.;.!, c 

Equation 5 could be manipulated to compute LPH as a funct:I.Qn of LFO, housing 

units H, and AREA. The only difficulty with such a computation lies in mak-

ing sure that the definitions of the data used are appropriate for the model. 

For example, land per house LPII must include not only the land directly be-

neath each housing unit, but also the associated land used for yards, side-

walks, roads, garages, driveways, and schools and stores serving the.neigh-

borhood. The modeler might suppose that the land per house LPII for a 
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particular area could be calculted from the land area zoned for residential 

use (minus the atea of vacant lots), divided by the number of dwelling units 

within the area. ·However, many cities have land that is zoned for both resi-

dential and commercial use; some fraction of that land must be included in the 

residential land area as well. Once the definitional considerations have been 

laid to rest, conversion factors are relatively straightforward. Schroeder 

and Strongman 1974 describe the use of such procedures to adapt the Urban 

Dynamics model (Forrester 1969) to a real city. 

v. M 0 D E L E S T I M A T I 0 N 

As just described, equation estimation consists of manipulating one model 

equation to compute a parameter value. In contrast, model estimation consists 

of manipulating all of the model equations to compute a parameter value. For 

example, the housing construction normal HCN could be estimated by finding the 

value of IICN that causes housing growth to fit the observed rate of growth. 

The fitting could either be performed with repeated simulations or (if possible) 

by an .!!!!. hoc computation. For example, say that the stock of housing grew at 

4.0 percent per year under normal conditions. Also suppose that, from observa-

tion of housing demolition, the housing unit lifetime IlL is estimated to be 66 

years--that is, 1/66 of the houses are demolished each year. If the model 

equations are assumed to be correct, then the housing construction normal IICN 

must exceed 1/66 by 0.04 to produce the observed rate of growth during the 

normal period. Therefore, IICN can be inferred to be 1/66 + 0.04 = 0.07. As 

'another example, suppose a real system exhibits fluctuations of some specific 
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period. The modeler can choose the magnitudes of time constants of the system 

so as to produce oscillations near the real period. (Forrester 1968, Chapter 

10, derives a simple rule of thumb: for a system with two time constants T1 

and T 2 , their geometric average approximately equals the period divided by 2n: 

lr 1T2 ;;; P/2n.) 

One danger of model estimation is misattributing the observed behavior to 

the value of a particular parameter. In the oscillation example just cited, 

if T 1 is inaccurate, model estimation will compute an inaccurate value for T2 

as well in order that lr
1
r 2 ;;; P/2n. As a subtler example, the Urban Dynamics 

model was once being modified to match the historical growth and decline of 

Lowell, Massachusetts. A period of rapid growth early in the city's history 

was being modeled by altering a table function similar to the housing-land 

multiplier HLM. The table, arrived at through repreated simulations, had 

about the same values at the extremes and normal points as the curve in Fig-

ure 2, but Point B was well above 1.0. Although the altered curve allowed 

the model to reproduce the historical behavior quite accurately, it no longer 

constituted s realistic representation of the true cause-and-effect relation

ships within the city. 14 

The modeler can choose one parameter value over another merely because 

it yields model behavior closer to real system behavior. · But such a technique 

14Errors in model estimation are often detected by checking the results with 
other data. In the urban example above, the table function was deemed in
compatible with day-to-day observations on the process of indus.trial de
velopment (which is data below the level of aggregation of model structure). 
This use of two independent sets of data is equivalent in principle to the 
long-standing econometric practice of estimating parameters with data from 
one time period and evaluating the parameter estimates with.data from 
another time period. 
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presumes that the entire model structure is correct, which is equivalent to 

making the maximum possible number of assumptions. Then, the falsity of any 

one of the assumptions can in principle cause serious problems. The modeler 

might better avoid making chains of assumptions, where possible, by setting 

parameter values from easily-observed characteristics of the processes being 

modeled (data below the level of aggregation of model structure). A model 

is more credible if each formulation and each parameter value stands inde

pendently as ·a plausible and realistic representation of a real process. 15 

VI. P L A N N I N G P A R A M E T E R 

E F F 0 R T S 

E S T I M A T I 0 N 

The preceding sections have discussed considerations in parameter formu-

lation (Section II) and a variety of techniques for estimating parameter val-

ues (Sections III, IV, and V). Those discussions cover the parameter-related 

issues involved in arriving at an initial model, the accuracy of whose param-

eter values may or may not suffice to allow the model to fulfill its purpose. 

~1at are the appropriate next steps? 

15 
This is not to say· that model estimation techniques cannot increase one's 
confidence in a model. If one has a means of detecting errors in model 
estimations, such estimations can be quite useful in formulating and vall
dating a model. For example, Peterson 1975 used statistical consistency 
checks and strong prior parameter values to uncover flaws in developing a 
model of energy demand. After the flaws were corrected, confidence in the 
model was much increased when model estimation (which is rather sensitive 
to specification problems) failed to indicate further problems. lf, how
ever, one does not have an independent means of checking the model estima
tion, the resulting parameter values seem highly likely to contain system
atic errors. 
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A. S t r a t e g i e s 

The modeler could devote considerable time and effort to estimating real-

istic and accurate parameter values, and defer further work on model testing 

and refinement of formulations. Or, one could continue the development of 

the model formulation through model testing, and defer the parameter-estimation 

effort. (Forrester 1961, Chapter 13, and Mass and Senge 1976 further discuss 

general model testing.) What '!trategy best allows the model to fulfill its 

purpose? Most system dynamics models do not have the purpose of precise nu-

merical prediction. Instead, they are usually aimed at replicating the causes 

of an undesirable behavior mode, and investigating policies that diminish or 

eliminate the undesirable behavior. 16 

Such a purpose allows the system dynamics model to capitillize npon a 

remarkable fact: system dynamics models usually represent nonlinear, high-

order, multi-loop feedback systems, whose responses infrequently show sensi

tivity to a parameter variation. 17 System dynamicists capitalize on this 

fact by constructing models using very rough, very quick parameter estimates. 

The completed model itself can then serve to assess the model's need for 

accurate parameter values: by testing model behavior when parameters are 

changed, the modeler sees whether or not altering the parameter value after 

16Forrester 1961, pp. 123-128, describes this distinction in terms of predict
ing a future system state versus predicting the system behavior. 

17There appear to he four structural causes of parameter insensitivity. One, 
minor negative feedback loops; they tend to compensate for parameter changes 
within them. Britting and Trump 1975 further discuss this subject. Two, 
structure outside dominant loops; usually, only a relatively small number of 
feedback loops (the dominant loops) produce the system behavior. Parameters 
that characterize processes not involved in any of the dominant loops cannot 
have much affect on behavior. Three, redundancy; a feedbaek loop can have 
several branches, so that parameter changes that inactivate one branch cannot 
prevent the feedback from functioning. Four, numerical insignificance; for 
example, doubling the time constant or a relatively short delay in a series 
of delays does not significantly change the overall response time. 
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a laborious redetermination of the value could possibly have an effect on the 

outcome. 

Usually, only a few parameter values significantly influence the outcome. 

Those parameters alone warrant further effort in formulation and estimation. 

The initial rough estimates of most of the parameters are accurate enough for 

the purpose of the model. The following subsection discusses the simulation 

tests that distinguish the sensitive from the insensitive parameters. 

B. S e n s i t i v i t y T e s t i n g 

Uncertainties and inaccuracies in parameter values may affect either the 

model behavior or the policy recommendations derived from the model. Testing 

behavior sensitivity requires a comparison of two simulations: a reference 

simulation, and a simulation with an altered parameter value. 18 For an example 

of behavior sensitivity, suppose that minor parameter variations cause the 

housing model to exhibit several distinct modes of behavior. Perhaps the 

behavior of real urban areas depends critically on the processes represented 

by the sensitive parameters. If each of the several model-behavior modes 

18 A model can ·be subjected to two types of parameter variatio.ns. One type is 
to evaluate model behavior or policy impact only over the range of values 
that the parameter could realistically assume. For example, if housing 
construction normal HCN could plausibly lie only between 0.04 and 0.4, then 
0.04 and 0.4 would be the extreme values of HCN tested. The other type 
of parameter variation is to raise or lower a parameter value progressively 
to find the point at which the parameter variation substantially alters the 
model behavior or policy impact. For example, lowering HCN far enough would 
cause the rate of housing demolition HD to exceed the rate of housing eon
struction HC so that the number of housing units H would shrink instead of 
grow. Both types of parameter variation are appropriate for either behavior 
or policy sensitivity testing; the former variation gives more information 
about the realism of a model or workability of a policy, and the latter 
variation gives more information about the possible behavior modes of the 
system. 
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corresponds to a real situation or example, the parameter sensitivity builds 

confidence that the model captures the essential features of the real system. 

However, if the model exhibits a behavior sensitivity that does not correspond 

to the behavior sensitivity of real urban areas, then the model requires care-

ful reexamination. The sensitive parameter indicates an area that requires 

either reformulation or reestimation. 

Parameter variation may also alter or reverse the impact of simulated 

policy changes. The model user needs to know whether a policy yielding favor-

able results with one set of parameters can also yield unfavorable results 

with a different set of parameters. Susceptibility of policy results to 

parameter changes is called policy sensitivity. Passing a policy-sensitivity 

test builds confidence in the policy recommendation, while passing a behavior-

sensitivity test builds confidence in a model structure. 

A policy-sensitivity test requires at least four simulations: a reference 

simulation, a simulation of the policy change, a reference simulation with 

an altered parameter value, and a policy simulation with the same altered 

parameter value. Figure 3 shows the procedure for comparing simulations. 

First, determine the impact of the policy change by comparing the reference 

simulation and the policy simulation. Second, determine the impact of the 

policy change under the conditions depicted by the altered parameter value: 

compare the reference simulation with the altered parameter value to the policy 

simulation with the altered parameter value. At this point, the modeler knows 

the impact of the policy change upon the original model and upon the model with 

an altered parameter value. Comparing the two policy impacts provides a measure 

of whether or not the given parameter variation affects the desirability of the 

policy--the policy sensitivity. 

SIMULATE 
ORIGINAL MODEL 
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SIMULATE MODEL 
WITH ALTERED 
PARAMETER 

SIMULATE SIMULATE 
POLICY CHANGE (POLICY CHANGE 

) 

WITH ALTERED 
PARAMETER 

FIND IMPACf FIND IMPACT 
OF POLICY ON OF POLICY ON 
MODEL BEHAVIOR\ (MODEL BEHAVIOR 

· WITH ALTERED 
PARAMETER 

FIND SENSITIVITY 
OF POLICY IMPACT 

·TO PARAMETER 
VARIATIONS 

Figure 3, Procedure for testing policy sensitivity 

In performing various types of model tests, the modeler might be tempted 

to avoid thoroughly analyzing the model behavior and examine only the end re-

sult: whether or not the overall behavior changes in response to a parameter 

value change. Especially for a model suspected of being faulty, or during 

numerous sensitivity tests, one might not take the time to analyze exactly 

why the model behaves as it does in each simulation. (Senge and Mass 1976 

give an example of model analysis,) Such a purely technical analysis, however, 

provides several benefits. First, a technical analysis simplifies model 

testing. If the structural causes of a system's insensitivity are known 

(see footnote 17), one can immediately identify whole areas of the model 

structure that are not important (in the behavior mode being tested). More-

over, one can identify the areas in the model structure that are important 
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to the behavior mode being tested, and that require further investigation. 

So, contrary to initial suspicions, performing a technical analysis may shorten, 

instead of lengthening, the testing process. 

Furthermore, purely technical analysis of model behavior also begins to 

address the problem of sensitivity to multiple parameter changes. It is 

almost feasible to test the effect of all single parameter variations for 

most models. However, the number of possible combinations of multiple param-

eter changes in medium-sized or large models is far too large for the modeler 

19 or a computer to test all possible combinations of parameter changes. But 

~fa tested theory is available to explain the underlying causes of the model's 

behavior and its insensitivity to parameter variations, the modeler can dis-

tingulsh between the multiple parameter changes that have a significant impact 

and those that do not. Exhaustive testing is therefore not necessary in such 

cases. 

c. Dealing w i t h S e n s i t i v e P a r a m e t e r s 

The identification of behavior-sensitive and policy-sensitive parameters 

can help to guide rnodel reformulation, parameter estimation, and policy devel~ 

opment, as shown ln Figure 4. The upper part of the figure illustrates 

behavior-sensitivity testing (1) as a means of evaluating the realism of the 

19It is not clear at all, however, that changes in large numbers of parameters 
are reasonable tests. Assuming a Bayesian viewpoint, assign each parameter 
value a probability, and assume that the parameters are independently distrib-· 
uted. Changing a single parameter away from its most probable value reduces 
its probability by some factor. For example, assume the factor is 0.5. The 
probability of the entire set of parameters is reduced in proportion to the 
product of the reductions in the individual probabilities. The probability 
of the entire set of parameters therefore is reduced by· 0.5. Then a multiple 
parameter change reduces the probability density of each parameter by 0.5. 
So making four such parameter changes reduces the aggregate probability by 
0.0625. Investigating the consequences of such an unlikely event as four 
such parameter changes does not st!em very worthwhile. 
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(I) 
MODEL TEST BEHAVIOR 
SENSITIVE SENSITIVITY 
AREA IN MORE 1 
DETAIL~ 
(~ g) 

NO . IS SENSITIVITY 

REAlLISTI~:S 

(4) 
-~---• FORMULATIVE POLICY~ 

RECOMMENDATIONS \ 

l (5) ADD PARAMETER 
CllANGES TO 

TEST POLICY POLICY 

SENrl.:~ ~RECOMM~~fATIONS 

ARE SENSITIVE YES 
--------PARAMETERS 

NO 

CONTROLLABLE? 

Figure 4. Sensitivity testing in policy analysis 

model. If the behavior sensitivity of the model does not correspond to the 

behavior sensitivity of the real system (2), the model formulation must be 

refined until they do correspond (3). The model then can be used to identify 

policies that improve the behavior of the system (4). 

To establish confidence in the policy recommendati.ons, the policies should 

be tested for their sensitivity to parameter variations (5). Suppose variations 

in a parameter influence the desirability of a policy. The first question to 

pose is whether or not the model user can control or influence the real processes 

represented by the sensitive parameter (6). For instance, suppose a policy of 

encouraging business expansion is sensitive to the average housing unit lifetime HL. 
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To some extent, policy-makers may be able to manipulate the average lifetime 

of housing by altering assessment and property-tax practices or zoning. Ad

justing the values of controllable parameters should be incorporated into the 

policy recommendations (7). Of course, the policy of encouraging business 

expansion and altering housing lifetimes then requires further testing for 

sensitivity to other parameters (5), 

If policies are sensitive to uncontrollable parameters, modei users have 

three options. First, perhaps the easiest option is to model in more detail 

the processes represented by the sensitive parameters (3). Model parameters 

describe the aggregate effects of processes below the level of aggregation of 

model structure. These processes may occur over time periods much shorter or 

longer than the time horizon the model is intended to portray. For example, 

the housing-land multiplier table HLMT implicitly represents both the purchase 

and sale of parcels of land and the elevation of land prices when unoccupied 

land becomes scarce. HLMT gives the longer-term, aggregate results of these 

short-term processes: building construction slows down as the land approaches 

full occupancy. If the feedback loops that regulate land use are explicitly 

represented, the revised model may show significantly less parameter sensitiv-

ity than the original representation. (Mass 1974a and Miller 1975 give more 

detailed models of land use.) 

The second option is to use the model to search for combinations of pol-

icies not sensitive to model parameters (8). Single policy changes which pro-

duce only moderate improvements and are fairly insensitive to parameter vari-

ations occasionally may be combined into a potent, insensitive policy, (Mass 

1974b and Forrester.l969, pp. 227-237, give examples.) Third and finally, if 

model reformulation and policy redesign both fail, the modeler must resort to 
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some form of empirical research to determine more accurately the value of the 

sensitive parameter (9). 

V I I. C 0 N C L U S I 0 N 

This paper discusses parameter-related issues that span the process of 

modeling, from initial model formulation to final policy recommendations. 

Of necessity, there are a large number of specific conclusions, principal 

among which a~e: 

(1) Each parameter should describe a separate and independent characteristic 
of the real processes being modeled. 

(2) The equation formulation should be general enough to allow parameter 
values to describe many different cases, 

(3) Preliminary parameter estimation should utilize data below the level of 
aggregation (estimation from disaggregate data) where possible. 

(4) 'If parameters are to be estimated from data below the level of aggrega
tion of model structure, the model structure should be disaggregated 
enough to allow the parameters to be based on reliable observations of 
relatively unchanging characteristics of the elements of the system, 
rather than on (possibly ill-founded) conclusions or opinions about the 
dynamic behavior of some subsystem. 

(5) Equation estimation and model estimation should be used as secondary tech
niques if at all, since they are much more vulnerable to error than esti
mation from disaggregate data. 

(6) Data at the level of aggregation of model structure should be reserved for 
validity testing. 

(7) Testing a model's behavior sensitivity and policy sensitivity can help to 
identify the parameters and equations that require further estimation or 
reformulation. 

(8) Technical analysis of model behavior identifies the structural causes of 
parameter sensitivity, and diminishes the need to test every parameter 
and combination of parameters. 
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(9) There are three ways to derive workable policy reconnnendations in the 
presence of uncontrollable policy-sensitive parameters: reformulate 
the model to reduce the sensitivity, redesign the poltcy reconnnendation 
to reduce its sensitivity, or reestimate the parameters in question with 
more accuracy~ 

The number of techniques, even nonstatistical techniques, for setting 

parameter values is very large. The appropriateness of each technique de-

pends on the needs of the model for accnr:tte parameter values to fulfill its 

purpose, the information available, and the strategy followed for model con-

struction and validity testing. These same considerations motivate both the 

traditional uses of data (in experimental physics or economics, for example) 

and the typical system dynamics use of data described here. Researchers 

should respond to different purposes, models, and availability of data by 

choosing a method of setting parameters appropriate to the problem being 

investigated. 
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