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ABSTRACT

The purpose of this paper is fourfold: 1) to survey the literature on evolutionary economics in general; 2) to
survey the-literature on evolutionary economic modeling in particular; 3) to outline the contribution that system
dynamics can make to evolutionary economic modeling; and 4) to present two original, evolutionary, system
dynamics models.

The paper begins by noting that the evolitionary perspective hasa long and drstmgulshed history in the field of
economics. Well-known economists such Karl Marx, Richard Eli (founder of the American Econontic Association),
Thorstein Veblen, Joseph Schumipeter, Gunnar Myrdal (“circular and cumulative causation”), Kenneth Boulding
(general systems theory); and Nicholas Kaldor (“increasing returns™), for example, have utilized the evolutionary
perspective. Despite this rich history, however, the paper notes that the evolutionary perspective does not dominate
economic theory. Two explanations for this are offered: 1) it is not in harmony wrlh neoclassical theory, and 2) it
has historically been seen as not amenable to formal modelmg

The paper then presentsra ‘survey of the literature on evolutionary .economics.. The survey indicates that the
writing on evolutronary economics usually involves one or more of the following ideas: 1) structural change versus
change within a given structure; 2) time irreversibility; 3) the second law. of Lhermodynamrcs 4) hysteresis; 5) co-
evolutionary processes; and 6) lhe behavror of Lhermodynamwally open nonlmear systems ina far-from cqurhbrrum
state. .

The paper next proceeds to survey the literature on evolutionary economic modeling. This survey indicates that
economic models classified as evolutionary usually exhibit one or more of the following characteristics: 1) path
dependency; 2) multiple equilibria; 3) the ability to self-organize; 4) the ability to behave chaotically.

Next, the paper provides an overview of the field of system dynamics and notes that, among other things; it can
bring an evolutionary economic modeling process to the field of evolutionary economics. Further, it can be used to
create individual models that can be classified as evolutionary, given the criteria mentioned above. Care is also taken

-to discuss the fundamentals of system dynamics modeling, including the systematic and formal treatment of
dynamics and feedback and the creation of models that portray realistic decision making structures.

The paper concludes with a detailed presentation of two evolutionary system dynamics duopoly models that
generate path dependency, multiple equilibria, and the ability to self-organize.

ADDITIONAL .COMMENTS

This paper is forthcoming in a book titled: Evolutionary Con:éptg in Contemporary Economics. Ann Arbor,
MI: University of Michigan Press. Richard W. England, ed; The authors-found it impessible to condense the paper
for these proceedings. Anyone interested in obtaining a copy should contact Professor Sterman at the above address.
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Time is a device 1o prevent everything from happening at once. !

Introduction

.. The evolutionary perspective has a long and distinguished history in the field of economics..Indeed, it
was adopted by economists such as Karl Marx (1867)-and. Thorstein:Veblen (1898) as early as the
nineteenth century, and Joseph Schumpeter {1934, 1939), Gunnar Myrdal:(1944), and Kenneth
Boulding (1981, 1991) during the twentieth. Unfortunately, aithough-provocative and insightful, the
writings of the early evolutionary economists were unable to catapult the .evelutionary perspective to the
forefront of the economics profession. Two common explanations for-this failure are ‘that: (1) the
evolutionary approach is.at odds with-the corpus of nonevolutionary theory which dominates economic
thinking, and (2) evolut:onary economics has tradltlonally been seen as-not amenable to mathematlcal
formalization. :

" With regard to its mcompatnbmty with mainstream economlc theory there isa great deal of ewdence
{e.g., Mirowski-1988; Engiand 1993) indicating that the economics profession grew up-trying to imitate
classical mechanics. As a result; the body of theory that.emerged and still:-largely:dominates economic
analysis (i.e., neoclassical economics) is.based upon the notion:of conserved or Hamiltonian systems and
hence on a.Newtonian or time:reversible view of the .world (Hamilton 19583)..Theories that are out of
harmony with this view are, at best, treated with suspicion and, at worst, re;ected or relegated to less-
visible scholarly outlets by the invisible college of economists.

" .Interms of the historical lack of mathematical formalization in evoluuonary econom;cs it is clear that
most of the classic evolutionary theories were created by economists who either wrote at a time when
formal modeling was not practiced, lacked the necessary training in mathematics, or felt: that the
mathematical tools of the day were insufficient for representing evolutionary change. Richard Goodwin
{1991: 30), for example, remembers. Schumpeter's “sadly deficient mathematical capability” and both
Myrdal (1944: 1069} and Boulding (1962) expressed their pessimism regardmg the pOSSIbIhty of
mathematically representing evolutionary change. 2

Of the two explanatlons for the failure of the evolutlonary perspective to become the normal science
of the economics. profession. the. first -- its incompatibility with neoclassical theoryv-- is .of primary
importance. The second -- its presumed.inability to be mathematically formalized - is really something of an
historical stereotype .and clearly.not correct. Nonlinear dynamic computer. simulation modeling has made
the building of mathematical evolutionary economic models possible since the 1950s. -

The purpose of this paper is to discuss the types of structure and behavior associated with

1 Joan Robinson (1962: Epigraph) attributes this quote to Henri Bergson (1911/1944).

2 More precisely, Boulding has argued that dynamic economic models created with ordinary
.differential equations are deterministic and hence nonevolutlonary, while Myrdal expressed doubt that the
process of “circular and cumulative causation” -- his engine of evolutionary economic-and socia! change --
could be represented mathematically. Similar positions have been taken by K. William Kapp (1968: 13)
and Allan Gruchy (1972: 305). As is shown:below, however, Bouldmg is incorrect, unless he takes a very
narrow view of differential equations. Recent developments in nonlinear dynamccs moreover, happily
reveal that Myrdat was unduly pessimistic.
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mathematical models that’are ‘typically ‘categorized as’evolutionary, and show that a particular type of
computer simulation modeling -- system dynamics -- can.be used to create models that possess these
characteristics. To support this claim, a number of evolutionary system dynamics models will be discussed
and an original evolutionary system dynamics model-will:be presented. Software and other resources
available for the creation and analysis of evolutionary system dynamics models will also be discussed.

But What Exactly is Evolutionary 'Economics?“x '

In order to review the fundamentals of- evolutionary' economic modeling, the characteristics of
evolutionary economic change must, arguably, first be identified and understood. Although a survey of
the literature would seem to indicate that no single, comprehenswe definition of the phenomenon exists,
it is possible to identify a number of recurring theines: B

According to David Hamilton (1953), evolutionary or “Darwrman” change is caused by changes in

system structure, while nonevolutionary or “Newtonian” change represents change within a given
structure. He used this distinction, ‘as did Veblen (1898), to show-the nonevolutionary nature of
neoclassical microeconomic theory. On the macroeconomic side, the distinction between structural and
nonstructural change has been used by Johansson et al. (1987: 4) and Boulding (1981) to draw a
distinction between economic growth and economic development. in their view, the former implies “more
of the same” while the latier implies structural change.
- ...Louis Perelman’s (1980) view-of evolutionarty ‘change emphasizes the idea of time irreversibility - i.e.,
the notion that it is’impossible to reverse time and make events undo themselves. England {1993) points
out-that most modern: growth theoretic :models violate: thrs canon because their tlme paths can be
reversed by switching the signs of their parameters. '

The concepts of time:iirreversibility: and structural change are closely related to the second Iaw of
thermodynamics which shows that dissipative dynamical systems genérate increased entropy or disorder
-over time, preventing them from returning to-their previous states. Nicholas Georgescu-Roegen (1971,
11980)"and-Boulding (1981, 1991) ‘have applied the secorid law to the analysis of economic systems.3
Time irreversibility, structural change, and the second law of thermodynamics are themselves closely
related to the. idea:of:hysteresis; or the inability of a-system that has been-changed by an external force to
return to: its original state after the .external-force'is removed. Olivier Blanchard and Lawrence ‘Summers
/(1986)- have used this:concépt to‘explain-European unemployment, Dixit (1992) has used it to explain the
failure:of:firms:to:withdraw from investment pro;ects after the conditions that initially made them' appear
profitable disappear, and Evans and Ramey: 19922 have used it te create a thrps curve that embodles
rational expectations with explicit calculation costs. :

The view that economic systems evolve toward inéreased” Ievels of disorder and entropy has
‘sometimes been referred to as'the “engineering view" of evolution. Of note is that this view conflicts with
ithe view of evolution originating:in biology, which posits that systems ‘evolve toward greater levels of order
-and complexity. “Co-evolutionary economists” such as Richard Chase (1985) and James Swariéy (1985)
have developed theories that enable this conflict to be reconciled: In these theorigs, dissipative economic
systems generate increased levels of entropy and disorder that motivate humans to develop mcreasmgly
complex entropy-skirting technical innovations and social institutions.5

llya Prigogine’s original work on far-from-equilibrium thermodynamic systems is sm!ar to the theories
of the co-evolutionary economists.® Prigogine and theorists in physics, chemistry, and biology have
shown how: thermodynamlcally open, dissipative, entropy generating systems, ‘operating in a far-from-
equilibrium state, can reorganize themselves into more complex temporal and/or spatial structures. when
-they are pushed against their nonlinear constraints. ThIS view is thus also able to reconcne the
englneerlng and brologrcal views of evolutlon

" 33ee the discussion in Radzicki (1988a)
4 An overview of hysteresis effects in-economics is contamed in Cross and Allan (1988).
5 For a further discussion of these ideas see Radzicki (1990b).

6 See Nicolis-and Prigogine (1977), Jantsch (1980), Prigogine and Stengers (1984) Laszlo (19‘87),
Allen and McGlade (1987), and Allen (1988).
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But What Exactly is Evolutionary Economic Modeling?

An- exammatlon of the types of mathematlcal models that are’commonly classified as “evolutionary”
indicates that they are constructed in both discrete and continuous time, utilize a variety of mathematical
techniques, exhibit different types of dynamical behaviors and; in some cases; can be solved without the
aid of a computer. This lack of uniformity, however, does not preclude the identification of some common
characteristics. In- addition to being dynamic and able to exhibit some form:of disequilibrium behavior,
evolutionary economic models tend to possess one or more of the following traits: 1) path dependency,
2) the abiiity to self-organize; 3) multiple equilibria; or 4) chaotic behavior.

Path dependency.is a characteristic of models that can get locked into the pamcular dynamical-path
they initially “choose” (usually by chance). Paul David (1985) and Brian Arthur (1988, 1989, .1990) have
described numerous real-life instances of this behavior involving the adophon of new technologies and
the location decisions of firms, while Arthur (1989, 1990), Arthur et al. (1987), and Krugman (1991) have
developed formal models of the phenomenon. Economic models exhibiting hysteresis (e.g., Blanchard
and Summers 1986, Dixit 1992, Evans and Ramey 1992) can also be consndered path dependenl as can
system dynamics models possessing “floating goal” structures.

Floating goal structlres are aspiration levels used by agents in decision making; which themselves
adapt to-past experience and hence cause present goals and-activities to bé influenced by past fesults
(see Forrester 1968, Meadows 1982)."In a floating goal structure system, the direction taken in the future
depends upon the cumulative impact of the potholes, actions, and obstacles it meets along the way, and
not solely on its current physical state. Thus, random events become critical determinants of the system’s
path and even its qualitative character; as when the chance formation-of a few businesses in a region
causes the growth of a cluster of related industries through the cumulative advantage of co- -location and
access to developing knowledge infrastructure, and other resources (e g. the Sl|lCOﬂ Valley, the New
York Diamond District).

‘Self-organization is-exhibited by models that undergo-abrupt changes in thelr temporal or spatial
structures through changes in* their’parameters or via the amplification of random, -microscopic,
fluctuations. Self-organizations of the former type include -models that can exhibit bifurcations and
catastrophes, such as those developed by May (1976), Varian (1979), Stutzer (1980), Mosekilde et al.
(1988), Andersen and Sturis (1988), Sterman (1988b), Sterman (1989b), and Lorenz (1989). Richard Day
(1983) has déscribed bifurcations and catastrophes as'being akin to a marching band suddenly breakmg
formation, scrambling around, and regrouping in another formation.
= ~Examples of self-organizations that occur due‘to the amplification-of microscopic ﬂucluahons can be
found in the behavior-of many. nonlinear dynamic models residing within; ‘and outside’ of; the fields ‘of
ecohomics and system dynamics. Of particular note-is'the work of Forrester (1961: Appendlx N), Nicolis
and Prigogine (1977), Jantsch (1980), Mofitano and Ebeling (1980),-Mosekilde ¢t al. (1983), Prigogine
and Stengers (1984), Mosekilde and Rasmussen (1986), Laszlo (1987), Arthur et al (1987), Allen and
McGlade (1987), Allen (1988),-Dosi (1988), Silverberg (1988), Silverberg-et al. (1988), Arthur (1989),
Radzicki (1990b), Moxnes (1992), and. Wittenberg and- Sterman (1992)." In these models, random
fluctuations, often representing the idiosyncratic actions of individual economic agents, become ampiified
by positive feedback processes and grow:to dominate the macroscopic behavior of the systems.

‘Yet another way to.identify models that are typically classified as evolutionary is via the presence of
multiple equilibria. The particular-equilibrium “chosen”-by these models usually reflécts the effects of
‘random-shocks that direct it down a’particular path..Models with multiple equilibria can -also be path
dependent and exhibit time mevers:bxllty and the ability to self-organize. Peter Diamohd (1987) has shown
that multiple equilibria can arise in-economic models that exphcntly represent market imperfections. o

Deterministic chaos.is an irregular oscillatory behavior that arises in nonstochastic, nonlinear, feedback
systems. Although it is generated by models that are completely devoid of exogenous randomness, its
period and amplitude never repeat and it functions much like the idealized random variates of probability
theory, generating variety and causing deviations from “average” behavior. A small sample of-economic
models that can exhibit chaos includes-those created by Stutzer (1980), Day and Shafer (1986), and
Goodwin (1991).7 A small sample of system dynamics models that can generate chaos includes those
developed by Andersen and Sturis (1988) Sterman (1988b), Sterman (1989b) and Mosekilde et al.
(1992). An excellent overview of the issues assocnated wnth chaotlc dynamics is presented by Mosekiide

et al. (1988). ’

7 See also the collection of economic models contained. in Lorenz. (1989).
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"~ The tie between evolutionary behavior and models that can:produce chaos'involves the notion-of,ani
attractor. An attractor is the set of points that defines the steady state behavior or “temporal structure” of a
dynamlcal system. A tixed point (defining an equilibrium steady: state) is the only type of attractor possible
in linear systems, while fixed points, saddle loops, limit cycles, tori, higher dimensional orbits of some
complexity,-and chaotic attractors are possible in nonlinear systems, Of note is that many nonlinear
systems exhibit bifurcations by which they-switch their trajectories from one attractor-te another via-a small
change in-one of their parameters. Such swrtches are examples:of system self organlzatlons and hence of
‘model-based evolutionary change.-

* An important characteristic of a model whose motion is detrned by a chaotlc attractor is that. lts behavror

is’sensitive to.its initial conditions. This' means that-a minute change, €, inits vector’ of state variables will

cause it to travel down a time path that is significantly different (i.e., much greater than €) from its previous
trajectory. Infact, the chaotic atfractor will strétch and fold the motion of the system o severely. that it will
cause an gxponential divergence of the two time paths. As a result, models that produce chaos.can. also
be said to produce path dependent behavior.

"~ One last point concerning dynamical models whose steady state behavrors are defmed by attractors
and.whose time paths have transient components, is that it-is not possible to reverse the signs of their
parameters .and “backward predict” their trajectories, . unless their initial values: are known with exact
certalnty (Lorenz 1989: 61- 63) In.this.sense then they are-time irreversible and hence evolutionary.

Characterlstrcs of System Dynamrcs Models

, System dynamics was orlglnally created in 19505 to address problems encountered by managers in
corporate systems (Forrester 1961). Its.use was extended during the 1960s, 70s, and 80s to include
economic, social, biological, ‘and physical systems (Forrester 1969, 1972; Roberts 1978; Sturis et al.
1991). Today system dynamics is applied to diverse problems. in:the behavnoral economic, and natural
sciences. It is used as a modeling methodology in academic research (e.g. Sterman 1989a, 1989¢), as a
:method 1o stimulate learning among corporate executives (e.g. Senge 19390, Morecroft and Sterman
1992) and as a tool for teaching at the pre-college:-level (e.g. Hoepkins 1992; Gould 1993).

.+ The .intellectual -roots-.of system .dynamics lie :in.control engineering.and. the theory of
servomechanisms developed. in the early. part of the twentieth-century. Richardson (1991) has traced the
“history of system dynamics and the concept of feedback in the social sciences from the use offeedback in
ancient mechanical devices, through the theory.of feedback control systems in steam enginegovernors
-and.servomechanisms, to. its diffusion into .the social and behavioral-sciences beginning in the 1940s.
Over the years, system dynamicists have developed a distinct set of guidelines for.helping them build
dynamlc models.8 Among: the: most important are that: 1):the dynamic behavior of any system emerges
from its struciure;: 2) the: modeling, and subsequent understanding, -of any system requtres the
Iidentification-and representation-of that -structure; 3).decision making.in human systemsis boundedly
rational; and 4) discovery of the decision rules people actually use requrres emplncal work, lncludlng field
-observation.of decision making behavior.

System dynamics models, from a mathematical pornt of view, consist of systems of ordrnary nonllnear
differential equations. Typlcally, system dynamics models- are formulated in continuous time:and assume
continuous variables, though the use of simulation to solve the models. means continuity is not essential
1o the method. Indeed, where necessary for-fidelity to:the problem being modeled, a good- system
dynamics: model wili contain discrete elements such.as queues, quantized flows (e.g. lnteger flows of
people), probabilistic- decision-rules; and other departures from-deterministic lumped models.?

System dynamics:models can be characterized as structural, disequilibrium, behavioral models. They
drffer therefore, - from the familiar.econometric models general equilibrium-models, and rational
expectatlons models in a variety of ways:

- Magrobehavior from Microstructure: The concept of feedback is central to system dynamics.
Feedback exists whenever decisions made by agents in a system alter the state of the system, thus giving

.8 Day (1987) has developed a similar set of gurdellnes for economic modeling. See also Radzicki
(1988b, 1990a).

9 Software tools such as STELLA (Richmond and Peterson 1992) support both continuous and
discrete elements, so it is a simpie matter to simulate any system of mixed continuous-discrete elements,
systems of difference equations, delay-differential models, markov models, and so on.

388 Iv SYSTEM DYNAMICS '93




rise to new information that conditions future decisions. The dynamics of a system emerge out of the

- interaction of.the multiple feedback loops in its structure. Feedback loops may be self-reinforcing (positive
- feedback) or-self-correcting {negative feedback). Positive loops. are self-reinforcing processes such as the

compounding of interest or the growth of a population. Negative loops: define goal-seeking-processes
such as the regulation of inventory: by adjustments of production, the equilibration of demand and:supply
viachanges in price, or-the adjustment of a firm's caprtal stock.to appropriate levels via changes-in
:nvestment A system dynamncs modelis-an expllcrt mapping-of a system's posrtlve and negative feedback
oops

System dynamlcs models seek to poriray the microstructure of a system at an operational level. The
feedback loop structure of any dynamic system consists.of the physical structure of the system, the flows:

" of information characterizing.the 'state-of the system, and the-decision rules ,of the agents in the system

including the behavioral decision-rules people use to manage their affairs. :

The -physical structure of any system is represented. by networks: of stocks and flows. Stocks
characterize the ‘'states of a system while flows represent the rates of ¢change of the stocks. A model of a
firm, industry, or national economy, for.example, would explicitly portray the stocks and flows of people,
resources, money, goods; capital, information, andso on. The stock-flow representation is a very general
idea that'can be applied to the dynamics of any system. Sturis et al. (1991), for example, have created a
system dynamics- model-of ‘human glucose-insulin interaction that includes stocks of glucose, insulin,
glucagon, and flows representing the synthesis, transport, and metabolism of these compounds. A
system’s ‘stocks accumulate or-integrate its rates of flow and determine’its state.at:any point.intime. As a
result, each stock represents the accumulated history of rts flows.and serves as a source of system inertia
and as part of its memory. -

A second characteristic of stocks is that they decouple a system’s mflows from-its outﬂows n
equilibrium, the net inflows to all stocks-are zero, and the stocks are thus unchanging. For example, in
equilibrium orders for products must equal shipments which must equal production (ignoring cancellations
and scrappage). Since the stocks in traditional equilibrium models are unchanging they are often omitted.
To capture disequilibria: in a system, however, stocks: must be explicitly represented since they
accumulate the imbalances between inflows and outflows. In reality, orders for products need not, and
usually do not, equal shipments; the difference between these flows accumulates in order backlogs.
Likewise, differences. between ‘production and “shipments accumulate in inventories. Explicit
representation of stocks. also enables their inflows and outflows to respond to the decisions of the distinct
economic agents who, in the real system, control these separate-flows (e.g., buyers.and sellers'may place
orders and:produce goods at dltterent rates accordmg fo.the: separate decision rules and constraints they
eachface).

As a system’s stocks rise and fall agents take various actions to alter the rates of flow, thus closmg the
feedback loops that may bring the system:into: equilibrium:or reinforce current frends. For example,
excessive inventories may cause a firm.to lay off some workers to.reduce production.or cut price.to
stimulate orders, thus reducing inventories to desired levels. Whether such corrective actions:in fact bring
the system into:equilibrium-is determined by the interaction .of all the feedback processes in the.system,
as are the characteristics of the adjustment path itself. However, often the interaction of multiple feedback
processes in complex nonlinear systems cause disequilibria to persist. For example, in the case of a
speculative bubble, it has been repeatedly demonstrated empirically (e.g. Andreassen 1990, Sterman
1987) that:people tend to form: expectations of future asset prices (e:g., real estate prices; the price of
gold, the price of tulips).by extrapolating recent price trends. An exogenous price rise may thus cause
new buyers.to.enter the market and reduce offerings by current holders, so that the price in fact rises in a
self-fulfilling prophecy; as described by .John. Stuart Mill (1848, Volume 11::45ff), Robert K. Merton (1936)
and Charles Kindleberger (1978). 10 Here the intendedly rational decisions: of rndlvrduals create and
reinforce disequilibrium.

Another important component of any system's structure'is its nonlinear relationships. Every significant
economic process and institution involves nonlinearities-(Forrester 1987), though much of the history of
economic theory in general, and business cycle theory in‘particular, has been an attempt to work around
nonlinearity for reasons of analytic tractability (Richardson. 1991, Zarnowitz 1985: 540). Nonlinearities are
responsible for-a:system's robustness or ability to stay within certain boundaries. For example, output
suffers diminishing ‘returns as individual factors of production: are increased relative to others, gross
investment remains nonnegative no matter how much a firm’s capacity exceeds its orders, shipments are

.10 gee the discussion in Richardson (1991: 774f).
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determined primarily by orders when- warehouses are full but must drop to"zero"ds inventories are
depleted, the cash position of a firm has little-influence-on its capital investment or employment decisions
unless a severe liquidity crisis appears:and dominates -all other considerations, nommal mterest rates do
not become negative no matter how rapid deflation may be, and so on.

~In-addition, and:perhaps most importantly, nonlinearities -contribute sngnmcantly to a system s
evolutgonary behavior because they cause the strength of its feedback loops, ‘and: hence -its “active
structure,” to change over time: (Richardson 1991). Returning to the example. of the speculative bubble, it
is clear that the positive feedbacks of extrapolative expectations are opposed by the negative feedbacks
created by substitution to: other products, ‘increases. in production ot the commeodity, -declining-real
incomes ‘as prices rise, and arbitrage opportunities. ‘However, if the lure of speculative profit is strong
enough; the positive feedback loops created by. extrapolative expectations: can overwhelm the negative
feedbacks that might restore equilibrium - at lease for a time. As prices are bid higher and higher relative to
fundamental value; however, the credibility of projections of further increases falls, weakening the positive
loops:-At the.same time, the negative loops gain in strength. That is, the relative strength-of the different
loops is:-nonlinearly ‘dependent on-the balance between current prices and. fundamental value.
Eventually; the negative loops become dominant and price increases slow. As soon asthis occurs; of
course; some seek to liquidate their holdings, and prices begin to fall. Now'the same positive feedback
loops ‘dominate again ‘as falling prices -lead to. panic selling. Eventually, the:negative feedback. loops
reassert themselves once prices are iow relative:to fundamental value, halting price-declines. Of note.in
this account is the shifting dominance of the positive and negative feedbacks due to nonlinearities. The
nonlinearities cause-the active feedback loops, and hence the dynamic behavior of the system, to change
endogenously through time, and ensure the global robustness of the system. No hnear model can
capture.such shifts. - -

Together, these elements -of structure (stocks -and flows, information feedbacks, decision.rules, and
nonlinearities) define the feedback loops in any system. By modeling: decision-making behavior and the
physical structure of the system at the micro-level; the macro-level dynamics emerge naturaily out of the
interactions of the system components. Because such models provide a behavioral description firmly
rooted -in managerial practice they are well suited to an exammatlon of the dynamic: effects -of policy
mmatlves -

- Pisequilibrium Dynamics: System dynamics models are dtsequmbrlum models. It is not assumed that
economic systems are always (or ever) in equilibrium; nor-that they move smoothly from bne equilibrium to
the next. To model dynamics,. including evolution; properly, the-stability: of: the system must not be
assumed. Rather, the decision processes of the ‘agents in‘the: system:must:be modeled, including.the
way people perceive and react to imbalances, as well as the delays, constraints, inadequate information,
and side-effects that often confound them. Stability, adjustment paths, the response to shocks, and the
nature of equilibria:are viewed as behavioral outcomes of a:model. They are properties that emerge from
the underlying assumptions about system structure and the interaction of the feedback loops created by
the stock and-flow networks, information flows, and decision rules of the actors-in the system. Thus
system dynamics models are well suited to-modeling evolutionary envnronments where path-dependent
behavior and multiple and:changing equilibria often arise.

Bounded Ratignality: The decision rules in system dynamics models govern the rates of flow that alter
system:stocks: The: decision rules in models:of human behavior rest on the theory of bounded rationality
(Cyert-and March 1963, Merton 1936, Nelson and Winter 1982, Simon 1947, 1957, 1979).'The: essence
of.the theory is'summarized in Herbert Simon's principle of bounded rationality (1957: 198):

The' capacity of the human mind for formulating and-solving complex problems:is very
small‘compared to the size of the: problem whose solution is required for objectively

:~rational behavior in the real world or even.for a reasonable approximation to such ob;ecttve
rationality.

Boundedly. rational decision making means agents.at each decision pointin a system use heunsttcs to
select from-among the available information cues, process and combine those cues, and make a decision:
These decisions then alter-the rates of flow in the-system, altering. its stocks, and giving rise. to new
information, thus closing- various feedback loops. as the decision makers perceive-and react to. the new
information. Though there is.often a rationale, or intended rationality, to the decision making heuristics:of
the agents, there is .no presumption in-system dynamics that these heuristics :are optimal; or even
consistent; nor that decision making is based only on rational cognitive factors.1 The theory of bounded

11 For example, emotions, habit, rules of thumb, and culture often-play rofes in decision making.
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rationality provides both theoretical underpinnings and a rich data base for the development and testing. of
behavioral models of decision making.in economics. Psychological, contextual, cultural, and other social
and economic forces may all influence the heuristics people- use. For-example;. cognitive and social
psychology provides a rich database of theory and expenmental results documentlng numerous cognitive
limitations on human information perception and processing, errors and biase} in common heuristics used
in jlidgmenit and decision. making, and other deviations from the axioms of rationality (Tversky and
Kahneman 1974, Hogarth 1987, Kahneman, Slovic, and Tversky 1982).

EmmugaLmemo_ds_m_sxslem_dmamm A'good model of economic dynamrcs must be descnptrve To.
simulate, in the root sense .of “mimic;” the behavior of a system accurately, decision makmg must be
portrayed as .it.is, and not as it might be if people conformed to the axioms of economic rationatity.
Discovering, representmg, and testing. models of decision making:heuristics is intrinsically an.empirical
task. Because the focus is on the process by which people make decisions, .good system dynamics.
modeling involves field work and direct observation of the system under study, as.well as the traditional
tools of statistical estimation.!? The modeler must often use ethnographic and anthropological methods
to elicit the decision rules of the actors (Forrester 1861, Morecroft and Sterman 1992).. Additional
techniques to elicit decision making behavior include laboratory experiments (Sterman 1989a, 1989b,
1989c¢, 1988b). and cognitive mapping (Axelrod 1976, Checkland 1981, .Vennix and Gubbels 1992,
Richardson et al. 1992). When weli done, complementary field-based, laboratory, and statistical methods -
yield a rich representation, ‘grounded in multrple data sources, of the déecision-making heuristics of agents
and how these rules might change over time. Evolutronary models need to be grounded in such.direct
observation of decision making, lest the axioms of individual profit-and utility maximization be replaced by
equally whimsical and arbitrary assumptions about decision making-behavior.-

The attrlbutes described above. make system dynamics modeling well suited to the study of
evolutlonary dynamics in human_ systems. The flexibility of the modeling method and. emphasis on
empirical assessment of the decision rules of the actors means the microstructure of a system can be
represented with great fidelity. The resulting high-order, nonlinear systems typically contain dozens or
even more interacting positive and.negative feedback loops. The nonlinearities in dynamic.systems mean
the active structure or dominant teedback loops can change endogenously. As a result, system dynamics
models may possess multipie equilibria.. The equilibria.in a system dynamics model may or may. not be -
stable. They can (and do)-exhibit path-dependent, irreversible dynamics. They can learn and evolve. For
example, one of the. earliest system. dynamics  models. (Forrester 1961: Appendix- N) represents a
manufacturing firm that “learns” to detect seasonal cycles. in incoming orders, then.adjusts production
accordingly. The_ customer order raté has no exogenous seasonality but does .contain. random-
distusbances. As the firm responds to these random fluctuations, the resulting-changes.in price and
product availability, in turn, induce the simulated customers to alter their ordering patterns until the system .
generates strong seasonal pattérns, when none existed before. Other examples of .evolution and.
leaming in system dynamics. models are provided by Merten, Loffler, and Wiedmann {1987), whose model.
of a multinational firm learns to reorganize itself as it grows Nancy Roberts' (1974) model of elementary
schools, 'in which each. student's achievement is.dependent on teacher, student, and parent:
expectatrons which in turn are dependent on student achievement; and Levin et al's. (1976) models of
human service organrzatrons in which service provider standards and client expectations are conditioned -
by the quality of services received, thus creating path dependent dynamrcs -

Two. ways In which System Dynamics Modeling is Evolutionary~

There are really two ways in which system dynamics modelmg can be consrdered evolutlonary The
first, as discussed above, is in terms of the behavior of a particular system dynamics model: System
dynamics models can possess muitiple equilibria and exhibit path dependency, self-organization, chaos,
time irreversibility, .and evolution to increased levels of complexity and -entropy. Moreover, their nonlinear

Homer (1985)," Shantzis and Behrens (1973), Levin, Roberts, and Hirsch (1975), and Homer {1992)
provrde examples including worker burnout, tribai rituals, and drug use.

12 See Senge (1980) for an example of econometric tools applied to system dynamics models
Validation is discussed-in Forrester and Senge {1980), Sterman {1984), Radzicki (1988b), and Radzicki
(1990a). . .
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relationships can cause their “active structures”to change as a simulation unfolds. In terms of a number of
criteria therefore, individual system dynamics models can be classified as evolutionary.

- A second way in which system dynamlcs models can be considered evolutionary comes from the
notion that the true value of modeling arisés from the modeling process, rather than from any pamcular,
model (Forrester 1985). In other words, system dynamicists believe that it'is ‘the. iterative process of
making ‘one's perceptions explicit and then testing their adequacy via snmulauon ‘that generates insight
and hence the value from modeling, and not any one runor version of a model. As a result; system
dynamicists never consider a model as being complete, but only in-its latest stage of development
Moreover, they note that'as new-insights and ideas are ‘generated from the modeler's participation'in the
process, the structure of the model will change to accommodate them. Given this perspectnve then, the
system dynamics modeling' process ¢an clearly be classified as evolutionary. Of ‘note’is that evolutionary
economists have put forth essentially the same argument ms;a-_us the:r pattern modelmg process since
the time of John Dewey (1910, 1938).13

An IIlustratlon

' To tllustrate ‘some of the ideas put forth in this paper, a simple evolutlonary system dynamlcs ‘model will
now be presented. The modet depicts the competition for market share between firms where each
benefits from a significant learning curve. Forclarity of exposition and considerations of space, the model
is highly simplified compared to typical theories of industry and firm structure in the system dynamics
literature (e.g. Forrester 1961, Mass 1975, Lyneis 1980, Beinhocker et al. 1993), yet it illustrates the path-
dependent, self-organizing dynamlcs typicat of evolutionary models. Further, for brevity; empirical tests of
the modet are not described. The reader interésted in'empirical testing is referred to Paich and Sterman
(1992) for an experlmental study of decision making behavior in a setting simitar to the one assumed’
below.

“ Figure 1 shows the system dynamics stock-flow diagram for the learning curve model. The model’s.
stocks are represented by the rectangles (e.g., Firm 1 Cumulative Experience), and its flows are’
represented by the pipe and vaive-like icons that appear to be filling and draining the tubs (e g., Firm1
Production). The solid arrows in Figure 1 represent flows of information while the circular icons depict
constants, behavioral relationships, or decision points where the simulated agents transform flows of
lntormatnon into decisioris {(e: g. Firm 1 -Price is determined by | Firm 1 Unit Costs and Firm 1 Margin). = *

There“is- a‘one-to-one correspondence between the ‘structural diagram and the equatlons The
diagram_and: equations-are the actual output from STELLA, the software program used to develop the'
mode! (Richmond and Peterson 1992). The model was created by drawing the structural diagram on the
screen of the computer, then specifying the form of the equations. The software enforces consistency
between the diagram and the equations, and provides numerous built-in functions to assist the model
builder. Experience has shown that business people and students, from grade school to CEOs, can leamn
the mechanics of the software in a few hours. A caveat, however: learning the software mechanics is easy,
learning how to build good models is' difficult. The ease of use of the software tools means complex
nonlinear dynamic modeling is now accessible to anyone, regardless of computer skills or mathematical
background. Obviously, some training in mathematics and an understanding of decision making behavior
and complex dynamics are important for developing insightful, robust-models. The software allows a
modeler to spend his or her time thinking about system structure and behavior, rather than programming.
Researchers interested in evolutionary dynamics will find that such software can be used for “rapid
prototypmg" and testing of models with considerable complexuty ;

- The model represents the competmon among firms in the presence of a-learning curve. The S|mp|est
version of the model, presented first, is one-in which the only feedback loops are those created by the
leammg curve. This version shows how & learning curve can create path- dependent dynamics. The model
is then extended to consider imperfect private appropriability -of experience, introducing additional
feedback complexity and yielding much richer dynamics.

The model assumes that all firms are identical in structure, parameters, and initial conditions. Two firms
are assumed for simplicity, although the model readily generalizes to a population of N firms, which may be
heterogeneous. The equations’4 are

: 13 See also Wilber and Harrison (1978) and Gruchy (1972).

4:For brevity of exposition only the equations: tor firm 1 are shown. The equations for firm 2-are
ldenttcal
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(1) - - ‘Firm>1-Demand = Firm_1_Market_Share*Industry_Demand
Each firm's demand is the industry demand multiplied by the firm's share of that demand.
@) Frrm 1_Market_Share = Firm_1_Attractiveness/Aggregate_ Attractlveness

Each firm receives a share of the industry demand propomonal to the attracuveness" of that firm's
product compared to that of other firms (see equation 12).

(3) Firm_1_Attractiveness = Firm_1_Random_Disturbance* (Frrm 1 Pnce"
(Consumer_. Sensmvrty to_ Pnce))

4) Frrm 1 Random Dlsturbance = 1+STEP(1 1) NORMAL(O 1)

The attractiveness of each firm's product is determined by price and a-random dlsturbance The
elasticity of attractiveness with respect to price is high but finite: the products are not perfect substitutes
but somewhat differentiated. In addition, each firm's attractiveness is influenced by an independent
random variable representing the stochastic influence of factors of attractiveness not captured in price and
variations in consumer preferences. The disturbances are spécified as normal random variables with
standard deviations of 10% (the STEP function prevents the random disturbances from having any impact
untit time 1, so that the model begins in an initial equilibrium where the two firms are identical). Models-with
more sophisticated determinants of product attractiveness, lncludlng product attributes such as delivery
delay and reliability, product quality and functionality; service, network externalmes and 50 on are
described in Paich and Sterman (1992) and Sterman (1988a) '

(5) ‘ Frrm_1__Pnce- Frrm_1_Un|t_Costs’(1+F|rm_1_~Marg|n)
(6)  Firm_1 Margm 1]

Price is determined by unit costs and a target margin, assumed to be constant and setto zero for
simplicity.-In more complex models the marginis a strategic variable-which can be used to capture firm
strategy ‘such as-an attempt to gain initial market share advantage to proflt from the learnmg curve
(Bernhocker etal 1993)

(7) - Firm_1_Unit_Costs'= (Frrm 1 Cumula’nve Productuon)"(Frrm 1 Learmng Rate)
(8) “Firm_1 Learnmg_Rate LOGN(. 80)/LOGN( )

In the spirit of Arrow’s (1962) original work, equations 7 and 8 portray the learnmg curve. Followmg
standard learning curve:theory and empirical research, the unit production costs of each-firm fall by-a fixed
percentage with each doubling of cumulative production’ experience.!® An 80% learning curvé is
assumed; that'is, unit costs fall 20% with each doubling of cumulative experience. The mode! also
assumes, for now, that- Iearnmg is pnvately appropriable - each firm can prevent rivals from benefitting from
its own experlence :

©9) Firm_1_Cumulative Productron() Flrm 1 Cumulatlve Productron(t dt) + (F'ir'm_'1_'Producti0n)
INIT Frrm 1_Cumulative_Production=1 :

(10) Frrm 1 Productlon Firm_1_Demand

Cumulative production is simply the integral of productnon The initial cumulative production levels are
set to unity (as specified by the INIT statement). Production is assumed to equal demand. For simplicity,
capacity constraints, production lags, inventories, and backlogs that can cause disequilibria inthe'goods
markets are ignored. Models treating disequitibrium dynamics caused by inventories and capacity are
plentiful in the system dynamics literature (e.g. Forrester 1961, Mass 1975, Lyneis 1980, Sterman 19893,

15 Arrow (1962), however, originally assumed that learning was a function of cumulative jnvestment.
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Sterman 1989b, and Sterman 1989c). Models of learning curve environments that treat these sources of
disequilibrium include Beinhocker et al. (1993), and Paich and Sterman (1992).

(11)  Industry_Demand = STEP(4,1)

The evolution of the industry commences when industry demand, initially zero, increases suddenly to
four units per year-in year one. -For-simplicity industry demand price elasticity and other factors that may
affect industry demand such as word of mouth, marketing, demographic changes, etc. are ignored. See
Paich and Sterman (1992) and Bernhocker et al. (1993) for models wnh dynamrc endogenous rndustry
demand. , : : :

(12)  Aggregate_Attractiveness = Firm_1_Attractiveness+Firm_2 _Attractiveness

The aggregate attractiveness of ali frrms is the sum of the rndrvrdual attractrveness Ievels ensunng that
the:sum of the market shares is unity for any- number of frrms o :

(13) Consumer Sensmvny to Prrce =10

: Each firm is assumed to operate in an imperfectly competmve enwronment Each firm' s demand curve
is highly, but not infinitely, elastic (assuming no reaction by the other firm). . :
.- .Obviously the model is highly simplified. Yet it contains sufficient feedback complexrty to show
interesting path-dependent behavior. The feedback structure, of the model is shown .in Figure 2. The
learning curve creates a positive or self-reinforcing feedback process within eachfirm (loops 1 and 2 in the
figure). These loops act to differentiate the two firms from one another by progressively rernforcmg and
amplifying any initial difference in prices and market shares. in addition, the coupling of the two firms
through competition creates a third positive. loop (the.Figure.8” loop denoted as.loop 3 in Figure 2)
whereby greater market share of, say, firm 1 boosts its cumulative output, lowering its price, and reducing
firm 2's market share, thus slowing the rate at which firm 2 gains experience and can lower its price, further
. boosting firm 1's market share. Though both firms are identical at the statt of the simulation, the random
disturbances. in product attractiveness will give one firm a.small initial advantage in.market share. In the
simulation.. shown. in Figure -3, the. initial edge goes fo firm 1. Firm 1 develops a slight lead-in the
accumulation.of producuon experience, and fmoves down the learning curve faster than its competitor,
yielding a slight price advantage. Lower price then yields additionai market share-and still faster
accumutation of production experience, while the competitor's rate of experience accumulation slows.
The process continues until the leading firm captures essentially the entire.market, driving the competitor
out of business. The competitor's costs stabilize well above those of the dominant firm.

Figure 4 shows the result of fifty simulations, differing only.-in.the. particular sequence .of random
disturbances realized in each case.'® As expected, each firm dominates about half the time, and the
envelope of market share paths traces out a “lobster claw” shape. Because costs fall most rapidly in the
early years when cumulative production is doubling rapidly, small initial advantages rapidly-differentiate the
two firms. Later, the- cumulative cost advantage of the dominant firm is simply too great to.overcome and
the system locks in to.the particular equilibrium chosen. indeed, in most cases the loser has been driven
out by year 10. Occasronauy, however, the random disturbances roughly balance during-the period in
which the learning curve is strongest, leading to slower differentiation. However, the positive feedback
loops through which success begets success always lead eventually to the dominance of one of the firms
—that is, the model has only two equilibrium states: Firm .1 market share must.tend towards 100% or 0%.
Further, the particular equilibrium realized depends on the particular sequence- of events in the early
history of the industry. Here these events are modeled as random, though in reality they also depend on
the strategic moves of the contending firms as well as the parameters governing the-learning curve and
other aspects of the firms’ structure and decision making behavior (which need not be the same).

it is worthwhile to. consider more subtle dynamics which.can arise when the.feedback -environment is
richer,.containing muitiple positive and negative feedbacks, some of which are nonlinearly coupled, :so
that the dominant foops-or active structure can shift endogenously as the system evolves. To illustrate,
the model is now generalized to include imperfect appropriability of learning. In reality, a firm-may often
benefit from the production experience of its rivals by imitating their practices and techniques, learning

16 The simulations were run under the Euler integration method with a time step DT = .25 years.
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from.suppliers -or customers. they have in common, -sending . their employees to-trade shows and
professional conferences, hiring competitor. employees, and reverse- engmeenng rival's products (von
Hippel 1988) The. equatrons of the model are modified as follows , ) .

{7) § Frrm 1 Unrt Costs-(Frrm 1, Cumulatrve Productlon+ ,
Frrm 1. Cumulatrve Learmng from Competttors)“(Flrm 1 Learnrng_Rate)

‘Unit costs are now. determrned by the -sum of the frrm s own cumulatrve productron experrence and the
stock of cumulative experience the frrm has been able to glean from its competrtor .

(14) Frrm 1 Cumulatrve Learnlng from Competrtors(t) 5
Firm_1. Cumulative.: Learning_from_Competitors(t - dt)+(Frrm 1 Learnmg from Competltors) dt
ANIT.Firm..1 Cumulatrve Learnrng from Competrtors 0

The stock “Cumulatrve Learmng from Competrtors" reflects the amount of the competrtors relevant
production experience. the firm.has been able to-acquire.. Thus to the extent-a firm.can learn from its
competitor, it will move down the learning.curve faster than when learning is pnvately appropnable lnmally,
none of the.competitor's experience is-known to the flrm S A

(15) Frrm 1 Learnrng from Compelrtors =
. A1 Approprrabrlrty of_Firm_2_Experience)*MAX(0, (Frrm 2 Cumulatrve Productron—
Firm_1 Cumulatrve Productron) NORMAL(1 1)/Frrm 1 Experlence Diffusion Delay)

(16) Firm_1 Expenence Dn‘fusnon _Delay =1

The rate at whrch gach firm accumulates knowledge about the productron experrence of its competltor
depends-on several factors. First, each firm may benefit.from the competitor's experience. only to the
extent the competitor's production experience is not privately. appropriable (hence the {1-appropriability}
term). Second, the: model. assumes that learning is. only beneficial to the firm {hence the MAX function to
ensure nonnegativity of the learning rate)..Third;.the model assumes that the firm Can only learn what it
does not yet know. Thus the rate of learning is proportional to the difference between the competitor's
knowledge and the firm's: the. greater the lead of the competitor, the-more the firm might benefit. The time
constant over which the gap in knowledge is closed.is determined by the Experience Diffusion Delay. The
diffusion delay represents the time required for one firm to learn about and implement the knowledge of
its competitor: A one year average delay is assumed in the simulations below. Finally, it is assumed that a
firm's learning from its.competitor is stochastic, with- multiplicative disturbances in the learning rate of each
firm determined by an independent normal random variabie, with a standard deviation equal to 10% of the
expected learning rate.

(17)- Appropnabrlrty of _Firm_1: Experrence GRAPH(Flrm 1 Market - Share)
, 1(0.00,.0.00), (0.1, 0.00), (0.2, 0.00), (0.3, 005) (04 015) (05 03) (0.6, 07) (0.7, 095) (0.8,
1.00), (0.9, 1.00), (1.00, 1.00), . :

There are many possible hypotheses regarding the approprtability of learning. Torfillustrate the
concept of shifting feedback loop. dominance; the»appropriability; of each firm's experience is assumed o
vary nonlinearly with market share, where -market share is used here.as-a proxy for market power (e.g.;
control_of suppliers. from whom. competitors might glean knowledge of. the firm's_practices and
techniques). When the competitor's market share is fow, their production experience is assumed:to be
nonappropriable -- i.e., the firm cannot.protect its knowledge from larger and more powerlul rivals. As a
firm's market share rises, however, the.degree of appropriability. rises until, for high market shares, its
knowledge is assumed to become fully appropriable (Figure 5). The software program STELLA allows this
relationship to be captured through a GRAPH function. The GRAPH function allows the - model-builder to
specify arbitrary nonlinear relatronshrps as a.series of x-y pairs. The software then interpolates linearly
between the points. Analytic functions can also be used easily (a logistic or Gompertz function, might be
used here). Clearly the relationship between market share and appropriability of knowledge in the model,
particularly the numerical values, is speculative; they are chosen simply to illustrate the ways in which
complex hypotheses about decision making behavior may be represented easily in models of this type.

The feedback loop structure of the revised model is. shown in Figure 6. Inspection of the. figure
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reveals that there:are now:more complex interactions'between the: model's feedback loops. The positive’
feedback loops: created by the learning curve are now potentially ofiset by negative feedback: ioops
created by the process of learning from competitors (loops 4, 5-and 6). A firm that finds itself {alling: behind
can learn from the practices of its rivals and thus close the gap in unit costs, restoring market share, staying
in the game - perhaps ultimately using the'learning curve to'its advantage. The-relative stréngth of the
positive experience curve loops and the negative cross-firm learning loops determines the nature of the
equilibrium achieved. As seen in the simple model, fully appropriable learning means the positive loops
dominate ‘and one firm must drive all others 1o extinction. If learning were not appropriable, and the-time
constant for knowledge diffusion were short-enough, the negative IOops that tend to“equalize learning
would dominate. Thus, whenever a firm began to develop a lead in experience, and hence a cost
advantage, its competitor would rapidly learn from-the experience and neutralize the leader's advantage.
The industry equilibrium would be an even split of the market among the:different competitors. Industry
leaders would emerge from time to time ‘as a result of the random component-assumed for ‘customer
preferences, but such periods of leadership would be short-lived and would not favor any particular firm.
~oInsthe full:éxtended ‘model the relative importance of the positive and negative loops varies
endogenously as-a function of market share, introducing another set of positive feedbacks. As'illustrated
by loop 7in Figure' 6, the ‘assumption that market dominance ‘allows a:firm to prevent rivals from benefitting
from its experience creates a positive loop whereby an‘increase in market share reduces the rate-at' which
other firms can learn, slowing the rate at which the negative learning loops 4-6 can equalize costs, giving
the firm still greater opportunity to move ahead on its own learning-curve.’In contrast to the two extreme
cases of complete:private: appropriability or rapid knowledge diffusion; it is not obvious from inspection
how the full model, with this complex nonlinear feedback structure, will behave. :

indeed, simulations of the extended model show a variety of complex paths for the evolution of the
industry. Figure 7 shows thirty simulations of the extended model. In most cases, one firm establishes
dominance quickly and drives the other to extinction before the losing firm can learn enough from the
competitor to close the experience gap and equalize unit costs. In these cases the positive learning curve
loops dominate, ‘and-the farther-behind a firm getsthe less it is able to benefit from competitor experience.
In other cases the initial leader finds-its' rival is able to close the gap, equalize market shares, and
essentially begin the game again. Figuré 8a shows ‘such a case. Firm 1-gains initial-advantage,-but is ot
able to prevent: firm 2 from learning from-its' experience. Despite firm 1°s market share:advantage of nearly
two-to-one in-year 5, firm 2-éventually wins::Occasionally, the initial leader suddenly loses, after a long
period of high-market share; as-shown in Figure 8b. Here, industry leadership passes between the two
firms séveral times. Around year 18, firm 2is ‘able 10 reverse the advantage of firm 1 through learning,and
dominate the industry with“about 70% ‘market share' from years 25 through 40. Nevertheless, firm 1
ultimately emerges the winner."The mterestmg feature of this simulation is the speed of the ultimate
triumph for firm 1 after decades of slow change. In still other simulations, the equilibrating negative Ioops
caused by the exchange of knowledge dominate the differentiating effects of the positive experience
curve loops and the two firms remain roughly equal for very long periods of time, as in Figure 8c.

Obviously, though only two firms are treated here for simplicity, the model generalizes readily to N
firms, so the interaction -of large populations of firms can be studied. Further, one can easily extend the
model to include explicit entry and exit; heterogeneity of firm attributes, customers, ‘and technology; more
sophisticated representations of decision making; and more sophisticated representations of technology
and organizations, including changes in fundamental architectures that may destroy firm competenmes
(Henderson and Clark 1990, Tushman and Romanelii 1985).
* - Despite the: simplicity of thie model; the simulations-exhibit-a number of key features of evolutionary
models: First, the dynamics are strongly path dependent Second; the behavior-is self-organizing: what
begins' as a-market of identical agents rapidly orgamzes itself into a highly differentiated structure. The
particular firm that dominates cannot be predicted in advance, yet the- model spontaneously -organizes
#tself into characteristic patterns. Third, the landscape in which the different firms compete against one
another is changing as they move through it: as production expenence and market share ¢hange, so does
the strength of the various feedback loops, thus conditioning the future evolution of the market. In the
language of feedback controf theory and system dynamics, the evolution of the industry endogenously
alters the dominant feedback structure of the system. These changes in actrve feedback structure then
feed back to condition the dynamics of the system.

Software -and other Resources for Evolutlonary System Dynamlcs Modelmg

Over the ‘years, a variety of software packages, books, and professnonal journals have been
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developed specifically for the field of system dynamics. in terms of software, DYNAMO (Pugh 1983),
DYSMAP2 (1992), and- NDTRAN (Davisson and Uhran.1979) are" available for both mainframe and
personal computers; Vensim (Eberlein 1991) is available for PCs and some UNIX-based workstations; and
STELLA (Richmond and Peterson 1992), | Think, and-MicroWorld Creator (1990) are available for the
Apple Macintosh.

Basic text books describing the system dynamics method: lnclude those. by Forrester (1961),
Forrester (1968), Goodman (1977), Richardson and Pugh (1981),.Roberts et al. (1983), and Richmond
and Peterson (1992). Since 1985 the international System Dynamics ‘Society has published a
professional journal, the:System Dynamics Review, covering the lheory and appllcatlon of system
dynamics i ina w:de range of disciplines.

Conclusions

Recent developments in nonlinear theory, the psychology of decision-making, and expenmental
economics have joined.to.form the basis for empirically testable, nonlinear, disequilibrium theories of
evolutionary economic dynamics. Advances in the mathematics of nonlinear dynamical systems allow
modelers to represent the non-average behavior of individual agents and to portray systems far from
equilibrium. Advances in simulation techniques, sofiware, and computer hardware make such capabilities
accessible to anyone with a personal computer and knowledge of basic mathematics.

. However, evolutionary -economics cannot succeed merely as a technical underlaklng If evolutionary
approaches are'to generate penetrating insights into the behavior of actual ecoriomic systems, the tools
of modeling must be compiemented by appropriate tools of empirical investigation so that-theories are
grounded in experimental test and field study -of economic-decision making. Evolutionary models should
portray the decision making behavior and heuristics of the people in the system as they exist, warts ‘and all,
including explicit attention to-the many limitations of cognitive capabilities, the role of ‘habits, emotions,
culture, and other bounds on human rationality. Though traditional tools of econometric estimation-will
continue to be useful, the decision rutes used in evolutionary models must be investigated first hand, in
the field and laboratory. The work and-methods of economic historians and institutionalists, psychologlsts.
sociologists, anthropologlsts and-others have much to-offer in this endeavor.

System dynamics is well suited to the development and testing of evolutionary models With its
historic emphasis on explicit modeling of stocks. and flows, . nonlinearities; feedback: processes, and
behavioral decision making, it provides a well-developed body.of- theory, technique, and exampies for
modeting disequilibrium dynamics in economic systems. Further,. system dynamics practitioners have
developed diverse methods for investigating.decision. making in ‘the field, eliciting the mental models and
decision.rules people .use, and testing the resulting formulations. Modern .developments in system
dynamics software and pedagogy have so simplified the mechanics of the model-building process that
pre-college students are regularly building evolutionary models, firms and government agencies are using
such models to help design corporate strategy and publrc policy, and research into new appllcatlons of
evolutionary dynamlcs is growing. . : ) AR L
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Figure 1: System Dynamics Model of Duopoly Under a Learning Cutve. The diagram is
reproduced exactly from the simulation model in STELLA. The dashed circles are “ghosts,” or copies of
variables defined elsewhere in the diagram (to avoid cluttering the diagram with crossed lines).
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Figure 2: Causal Loop Dlagram of the Learning Curve Model. The arrows indicate the
direction of causality. Signs (“+" or “") at arrow heads indicate the polarity of relatnonshxps a“+” indicates
that an increase in the independent variable causes the dependent variable to increase above what it
would have been, geteris paribus (and a decrease causes a decrease). Similarly, a “-" indicates that an
increase in the independent variable causes the dependent variable to decrease below what it would

have been. Thatis, X— *Y'= (3Y/0X) > 0 and X— Y = (9Y/0X) < 0. Positive loop polarity [denoted by (+)
in the loop identifier] indicates a self-reinforcing (positive feedback) process. Negative (-) loop polarity
indicates a self-regulating (negative feedback) process. See Richardson and Pugh (1981). The learning
curve creates positive feedbacks within each firm (loops 1 and 2) whereby accumulating production
experience lowers costs and prices, leading to greater market share and still faster learning. The coupling
of firms to one another through market share creates the “Fxgure 8" positive feedback (loop 3) through
which one firm's gain also slows the learning rate.of its rivals.
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Figure 3: Simulation Run Where Firm 1 “Wins.” Small initial differences in cumulative production
caused by random disturbances are amplified by the positive feedback loops until firm 1 forces firm 2 completely
out of the market, despite equal initial conditions.
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Figure 4: Fifty Simulations of the Model. Desplte the homogeneous initial conditions where all
firms are identical, the positive feedback loops created by the. learnmg curve rapldly drive one firm out of
business while the other grows to dominate the matKet. The winning firm in any given simulation is
determmed by the pamcular sequence of random disturbances that perturb the model. In most
? simulations the winner is determmed early, though occasnonally the dlfferentlatlon of the two firms takes
many years.
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Figure 5. Graphical Function- Showing . Assumed Dependence of Knowledge
Appropriability on. Market Share, for Firm 2 (Equation 17). The curve reflects the assumption’
that the larger firm 2's*market share, the more-it can appropriate its experiénce and prevent rivals from,
benefitting. The software interpolates linearly between the specified points:: The user can select any
domain and interval for the independent variable, thus-controlling the smoothness of the relationship.
While analytic expressions can be used to capture such nonfinear functions, the ability to specify arbitrary
nonlinearities as look-up tables greatly speeds. model development, enhances flexibility, and makes

complex nonlinear modeling accessible to students, managers, and others without extensive. training in
mathematics. o
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Figure 6: Causal Loop Diagram Showing the Feedback Structure of the Extended
Model, in Which Firms Can Benefit From the Accumulated Experience of Their Rivals.
For clarity, the structure for inter-firm learning is shown for firm 1 only. The structure of inter-firm learning for
firm 2 (not shown) is symmetrical and creates many more loops than are shown in the diagram. Inter-firm
learning introduces negative feedback loops that tend to equalize prices (loops 4, 5, 6), while the
assumed dependence of knowledge appropriability on market share creates additional positive feedbacks

(loop 7).
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Figure 7. Thirty Simulations of the Extended Model, Showing ‘Many More Complex
Paths of Industry Evolution Arising When Firms Can Learn from One Another. Note the
cases where market leadership. reverses through inter-firm learning. The ultimate winner is often not
selected for decades, and 1ong periods of: market share dominance no- longer guarantee a firm will
ultimately tnumph
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Figure 8. Three Simulations of the Extended Model, Showing the Diversity of Paths of
Market Evolution.
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