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Abstract 

The paper is an attempt at a theory of relations connecting 
feasible observations /or measurements/ ·and feasible decisions 
/or controls/ in general cybernetic systems. The theory gives 
a formal framework and a tool for quantitative analysis of the 
following facts: 
1. An increase in observation possibilities, e.g. an increase 
of the precision of measurement, enlarging the scope of obser
vation etc., results in an increase in decision possibilities 
by making more effective decisions possible. This works also in 
the other direction: if there are more feasible decision, new 
observations or measurements become available. 
2. In the framework of a cybernetic model no decisions and/or 
observations which generate antinomies can be simultaneously 
feasible. This creates interesting and important constraints on 
measurements and decisions in systems which include man or where 
a human or automatic decision maker is an object of observation, 
and where the results of observation may be known to this 
decision maker. 
3. The observation /measurement/ takes time and changes its 
object and thus ~he result of observation always refers to the 
past rather than to the present. This normally is due to 
physical effects though other phenomena, like psychological, 
may also be important depending on the nature of the object. 

The facts of group 1 are in a sense opposite to those of 
groups 2 and 3. This leads to the existence of optimum de•ision-
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-measurement possibilities. Conditions for this optimum to 
exist together with its significance for biological and 
technological systems will be discussed. 

The subject of this paper is of interdisciplinary interest 
and has been studied, partially and from particular angles, 
within the framework of control theory /facts of group 1/, 
mathematical logic /theory of antinomies, principles of mathe
matics- mainly facts of group 2/, physics /theory of measure
ment, principles of quantum machanics - mainly facts of group 3/ 
and philosophy /the classic problems of free will and con
sciouness/. The relevance of the presented theory to these 
fields will also be discussed. 
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ON RELATIONS BETWEEN FEASIBLE OBSERVATION AND DECISIONS 

1. Introduction 

~he goal of this paper is to formulate some basic questions 

or problems connected with dynamic systems. We will consider 
I 

these systems from the control-theoretical point of view. 

The first question is to establish how the actual state 

of knowledge influences as a feedback on the foundations. 

Three classes of the systems will be discussed: 

1. The systems for whick there exists the concordance between 

identification and control, 

2. The systems for which there exists antinomy between iden

tification and control /decision/, 

;. The systems with time delay between observations and 

controls. 

2. Problems and examples 

2.1 • .Antinomy between energy and accuracy 

Let us consider the systems presented in Figure 1. 

We assume the model of the system as a deterministic one 

described by the equation 

• 1 
y II: T' u /1/ 

Y (o) = Yo 
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where y - output 

u - decision 

and the criterion function as 

I = Jc~ + .A~2)dt 
0 

/2/ 

where i\ - constant coefficient 

Application of the Bellman equation leads to the determination 

of the optimal controller in the sense of minimization of 

functional /2/. 

In the general case, the system is described by the vector 

equation 

; = f (y, u, t) - ~--

and the criterion function is 
tf 

I = G(lf) + J f'0 (!·t!!t t) dt 
0 

We denote the minimal value of I by: 
t 

s(t) =min G{yf)+ r f
0

(y,:!!,s) ds 
uE U - .J -t 

U admissible region of decision 

Then the Bellman equation is L-1_7 

/3/ 

/4/ 

/5/ 

/6/ 
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From /5/ we have for t = tf 

Assuming that the minimum of S with respect to ~ is 

inside the region U we can search for it using the equation 

obtained by the differentiation of equation /6/ 

CJf0 (~,~,t) 
o u* 

a f(~ ,£*, t) 

ou* 
= 0 

In our case, from equations /1/ and /2/ we see that: 

fo(~>£,t) = Y2 + )\.2u2 

f(l,£,t) = - ~i u 

From /6/ we have 

and from /8/ 

2 A_2u* + .Q!_ T1 = 0 
()y* i 

Elimination of ~ from /11/ and /10/ leads to: oy 

/8/ 

/9/ 

/10/ 

/11/ 

/12/ 
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The optimal decision in the feedback form is 

returning to /1/ gives 

the solution of which is 

y*(t) = y
0 

t 
- xr. 

e J. 

and the minimal value of the functional is 

s = f(~ + A2
u

2
)dt = AT1y~ = } • Y~ 

o Ti 

/13/ 

/14/ 

/15/ 

/16/ 

Following the same way we find for the process described 

by the equation 

/17/ 

y(o) = y 0 

y*(t) = y e-~+~)2 
1 

¥ 
0 

/18/ 

u"(t) = 1 -~1+~{ ~ /19/ 

and the minimal value of the functional is 
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s = 
Ty2 

0 . -
2 

/20/ 

There exisiii concordance between attainable accuracy and 

control. If the action ~i rises,then accuracy also rises. 

The total ISE decreases. See Fig. 2 and Fig. 3. 

2.2. Antinomy between identification time and control time 

Let us assume that our process is a ppiori not known, and 
!"., 

for its recognition we need an interval of time equal -~ • 

After that we can control by the time equal e which in 

particular may be equal to infinity. Now we analyse our 

system /see Fig. 1/, but we must take into account that 

between the process and the controller there exists some 

delay /see Fig. 4 I. 

The first interval /Identification/ 

Let us assume that during the interval ct of time we 

have recegnized that our process can be described by the 

equation 

y (t) = + ;.;. u (t-t) 
l. 

/21/ 

y(o) = y('t) = Yo 

and 

u(t) = 0 for t~'t' 

As the criterion functional we assume 

"'C> 

S ( u) = j ( y2 l t) + 1\2 u2 
( t)) d t /22/ 

0 
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During the interval of identification, according to /21/ 

we have 
'L 

S(u) == j y
2 (t) dt = y~ 7: /23/ 

0 

After this time the controller can be informed about the 

process and we have 

coo 

S(u) = y~'l + f (y2 (t) + "A2u
2 (t-1)) dt 

"t 

Applying Bellman's procedure leads to the relations 

and 

/24/ 

/25/ 

/26/ 

Elimination of ~~ from equations /25/ and /26/ gives: 

We realize negative feedback so we choose 

u (t-'t) =- * y (t) 

which inserted to equation /21/ yields 

y(t) :: - _j_ y"(~) 
l\Ti 

The solution of /28/ is 

/27/ 

/27/ 

/28/ 
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e 
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/29/ 

/30/ 

The value of the functional is obtained from /24/, /29/ and /30/ 

Minimum of S as a function .of ~ is attained for 

and 

)\T. 
t' * = ----1:. ln2 

2 

/31/ 

/32/ 

/33/ 

It is evident from the relations /32/ and /33/ that there 

is an antinomy between the time of identification l; and 

control action T1. • For that reason it is not possible to 
~ 

obtain an arbitrarily high accuracy. The product of time delay 

't' and control T 1. is constant 
~ 

rr. _1_= ~ln2 
1\T. 

~ 

Similarly for process 

y ( t) ::: - ~ y ~ ) + ~ u (t-1:') 

y ( o) = y('t) = y 
0 

, and u ( t) = 

/34/ 

/35/ 

"-\.. 0 for t ~ t; 
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we have 

/36/ 

which with the equation /35/ gives 

/37/ 

The solution of it is 

/38/ 

/39/ 

Finally using /38/ and /39/ we can calculate the minimal 

value of the functional: 

/40/ 

The functional S(u) as the f~ction of relative time delay 

} attains its minimum for 

Gt'= 1 
ln 

(~t + (1 - 11+ (~ 2't 
2 ~1+ (~) ~ (~)2 

. /41/ 

see Fig. il. 

The minimal value is equal to: 
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s" (u ~ = 1 + ln 00 2+ (1-l)1+(~)2) Y~ 
(~)2 

/42/ 

The dependence of (~)r and S*(u) as the functions of 

(~ is shown in Fig. 6 and 7 • 

The conclusion is evident. 

In the presence of time delay it is impossible to obtain 

an arbitrarily small error, even using the optimal controller. 

The analysed controller has the disadvantage that in the 

case of over estimation of the value of time delay the whole 

closed system may be unstable. To prevent this it is necessary 

to maintain stability condition. 

Let us finally analyse the same process, but using a 

conventional controller. 

We have in the interval of identification lr 

and /43/ 

u (t) : 0 , t ~ 't 

In the period of oontrol we have· the equation 

y(t') = - ~. u (t-t') 
J. 

/44/ 

'X he functional see {2,2_7 is equal to 
~ 

y2 't cos t' <::><:> 2 cos \, J y2
(t}dt 

YoTi Ti 0 Ti 
/45/ J2= = - t' = 

2 i-0-sin i-) 2 1-sin T7 
0 1 i . i 
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The minimum of this functional with respect to the parameter 

~ of the controller is at the point for which 

This optimal value is 

1: - ::: o, 739 
Ti 

The minimal value of 

The condition of stability is 

/47/ 

/48/ 

/49/ 

In figure 8 there is shown the dependence of the functional 

on x = 't · ~ for the system with time delay /curve F2/, 
l. 

and for the system without time delay /curve F1/ 

It is evident that the antinomy between time of identi

fication and control yields the limited accuracy given by 

equation /48/. 



3,60 

3,20 

2.80 

2AO 

2.00 

1,60 

1.20 

0,80 

0.40 

-315-

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 1r 
I -

-+-----.---.--.....------.---..--.,-----,---~ 2 
0.00 0. 40 0. 80 1,20 1.60 y. 

li 
F = ~1=--
1 2-f; 

cos.!. 
F. = r, 

2 2 ~ (1- sin i) 

Fig. B. 



-316-

References 

1. Bellman R.: Dynamic Programming, Princeton University 

Press, New Jer_sey 1957. 

2. G6recki H., Popek L.: Control of the System with Time Delay, 

3-rd Symposium Control of Distributed Parameter Systems 

1982 Toulouse, France. 

3. G6recki H., Popek L.: Parametric Optimization Problem for 

Control Systems with Time-Delay, Proc. of IXth Congress 

of IFAC, Budapest 1984. 


