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Abstract

An agent-based computational model is developed to explore the evolutionary dynam-
ics of an industry which is subject to knowledge-based competition with entry and exit.
It views the production process as a system of inter-dependent activities and the firm as
an adaptive entity whose survival depends on its ability to perform various activities with
greater efficiency than its rivals. The model is capable of generating many empirical regu-
larities, including those on firm turnovers, evolving market structure, and the intra-industry
technological diversity. Comparative dynamics analyses are performed to investigate how
these regularities are affected by various industry-specific factors such as the attributes
of the market environment, search propensities and the nature of the technology space in
which individual firm’s learning takes place. Of particular interest are the findings on firm
turnover and the number of surviving incumbents in the long run. The turnover of firms is
found to be greater when: 1) the market demand is larger; 2) the pool of potential entrants
is larger; 3) the start-up fund for a firm is smaller; and 4) the firms in the industry have
a lower propensity to search. The number of surviving incumbents is higher in the long
run when: 1) market demand is larger; 2) the fixed cost is lower; 3) the pool of potential
entrants is larger; and 4) the production process entails a greater number of component
activities.
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1 Introduction

The literature on industrial dynamics contains a wide array of empirical works identifying a set
of regularities which arise in many manufacturing industries.1 In particular, Gort and Klepper
(1982), tracing the market histories of 46 new products, empirically verified a distinct sequence
of stages that is widely observed in the development of various industries from their birth to
maturity. The historical paths of the industries examined displayed a common pattern, in
which the number of producers initially rose, then declined sharply, eventually converging to
a stable level.2 Examining the data on output for a subset of these industries over time, they
found that the output generally grew, but the rate of growth in output declined steadily over
the course of the industrial development. They also found that the market price of these
products declined monotonically over time, with the greatest percentage decrease occurring
during the early stage of the development. These findings have been confirmed and further
elaborated upon by Klepper and Simons (1997, 2000a, 2000b), and Klepper (2002).

A small number of papers have offered highly stylized theoretical models which provide in-
sights into the mechanisms generating the above-mentioned regularities [Klepper and Graddy
(1990), Jovanovic and MacDonald (1994)]. These models entail profit-maximizing firms with
foresight. In this paper, I propose an alternative model which entails a population of myopic,
though adaptive, firms engaged in perpetual search for improvements in their production tech-
nologies. The approach is to develop an agent-based computational model of an industry, in
which the entry/exit dynamics of the industry are driven by firm-level learning taking place
in a structured search space for production technology and the market-wide competition that
acts on the learning outcomes. In particular, the competition takes place on the basis of differ-
ential production efficiencies resulting from the heterogeneous stocks of knowledge (production
know-hows) accumulated by the individual firms through repeated innovation and imitation
attempts. The modelling of production technologies in this paper makes the representation
of knowledge and its accumulation explicit and tractable.

The proposed model is capable of generating all of the empirical regularities mentioned
above for a wide range of parameter configurations. The main objective of the paper is,
however, to go beyond merely generating these regularities.3 Utilizing the rich structure of
the model, I engage in the comparative dynamics analyses, in which the impacts of various
parameters on the resulting industry dynamics are thoroughly examined. The agent-based
computational approach taken in this paper permits the type of analyses that the purely the-
oretical models do not. The ultimate goal is to pursue objective and coherent comparisons
between industries which differ in their characteristics along the lines suggested by the para-
meter configurations considered in this paper. Indeed, several researchers have emphasized
the need for identifying the industry-specific factors that influence such evolutionary processes:

“A last observation concerns the enormous variation across new industries in the
pace and severity of the prototypical pattern of industry evolution. This suggests

1See Sutton (1997) and Caves (1998) for excellent surveys.
2See Carroll and Hannan (2000) for additional empirical evidences.
3 I view the ability to generate outputs having all of the empirical regularities mainly as validating the

computational model proposed in the paper. Such model validation improves the level of confidence we have
on the comparative dynamics analyses thus performed and any empirical predictions they may offer in terms of
how various industry-specific factors affect the time path of the industry development.
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that there are important differences across industries in the factors that condition
the evolutionary process. More fundamentally, it suggests that there are exoge-
nous factors that differ across industries that affect the pace and severity of the
evolutionary process.” [Klepper and Graddy (1990), p. 37]

“... we find substantial and persistent differences in entry and exit rates across
industries. Entry and exit rates at a point in time are also highly correlated across
industries so that industries with higher than average entry rates tend to also have
higher than average exit rates. Together these suggest that industry-specific factors
play an important role in determining entry and exit patterns.” [Dunne, Roberts,
and Samuelson (1988), p.496]

The comparative dynamics analyses in this paper are performed to respond to these calls.
The industry-specific factors considered in this paper include the attributes of the market
environment (such as the size of the market demand, level of the fixed cost, the availability of
potential entrants, initial wealth levels of the firms), the industry-specific search propensity,
and, finally, the nature of the technology space within which individual firm’s learning takes
place.

The existing literature on industrial dynamics already contains works with stylized the-
oretical models which are capable of generating the earlier-mentioned regularities. A case
in point is Klepper and Graddy (1990). Their model assumes a fixed number of potential
entrants, who differ in terms of their costs and product qualities. These potential entrants are
profit-maximizers who enter the industry only if the expected discounted profits from entry are
non-negative. Only a fraction of these potential entrants then actually enter the industry in
any given period, based on their relative cost and quality positions. The incumbent firms are
also heterogeneous in their costs and product qualities, where these differentials tend to persist
because of the imperfection in the imitation activities of the firms. In particular, they assume
that the firms may reduce their costs only through the imitation of more efficient competitors
and this imitation occurs only once — immediately upon their entry into the industry. After
the end of the entry period, no further cost reduction takes place. All firms are price-takers
and expect the market price to decline over time. In this setting, the empirical regularity
concerning the shakeout is generated through the randomness in the firms’ cost draws, the im-
provements of the cost positions through imitation upon entry, and the eventual exits of those
whose improved cost positions are not low enough to remain below the falling market price.
Jovanovic and MacDonald (1994) is another work that constructs a theoretical model which is
capable of generating the life cycle regularity identified by Gort and Klepper (1982). Using a
stylized analytical model, where one major invention is followed by a one-time refinement of
the technology, they generate the regularities concerning the shakeout process. The model is
estimated using data from the U.S. automobile tire industry.

To the extent that both Klepper and Graddy (1990) and Jovanovic and MacDonald (1994)
treat firm-level learning and market competition as the driving forces behind the evolution
of industry structure, their works take the same perspective as the one taken in this paper.
However, there are two aspects of these models that are not fully satisfactory. One, the
purely theoretical approach taken in these works tend to restrict the scope of their models
and analyses — e.g., the one-time-only imitation following entry in Klepper and Graddy (1990)
and the one-time refinement of the technology in Jovanovic and MacDonald (1994). Two,
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learning in these models is represented purely in terms of its outcome — a reduction in cost —
without specifying the content of the knowledge gained. Any diversity in production methods
present in the population is implied solely by the existing differences in the costs. But what if
the firms use two different methods of production which are equally effective? These models
are not capable of differentiating between these distinct, but equally efficient, technologies.
In a static setting with no learning, this is not an issue since market competition is affected
purely by the firms’ current cost levels. In a dynamic environment, however, in which firms
are learning and accumulating their knowledge over time, the firms having heterogeneous
technologies with equal efficiency levels are very likely to evolve in the long run toward those
technologies having unequal efficiencies. The exact contents of the firms’ current knowledge
matter in these cases, because they determine the paths the firms take in accumulating their
knowledge (through innovation and imitation) and, ultimately, the evolution of the industry.
A model which treats learning purely in terms of the cost reduction, while bypassing the exact
content of knowledge, will be deficient in this regard.

This paper intends to make a unique contribution to the literature by adopting a modelling
approach which is capable of overcoming these limitations. There are, in fact, two method-
ological aspects of the chosen modelling approach which are relevant in this regard. First, the
modelling approach taken here is an agent-based computational one.4 It entails constructing a
population of myopic — but adaptive — firms, each of which engages in a learning process using
simple decision rules that drive (through innovation and imitation) the adoption of methods
used to perform a system of production activities. These learning rules are combined with
the rules governing the entry and exit behaviors of the potential entrants and the incumbent
firms, respectively. By assuming a set of simple decision rules for the individual firms, we
make minimal demands on the level of sophistication in their reasoning abilities.5 Instead,
the observed phenomena at the industry level are viewed as the direct consequences of the
structured interactions among those decision rules which take place through market competi-
tion. All available computational resources are then dedicated to tracking such interactions
and computing the time paths of the endogenous variables which characterize the behaviors
of the firms and the industry. The observed regularities are treated as the realizations of
these time paths for various parameter configurations.6 It should be noted that my interest
in this paper is not in characterizing the steady-state equilibrium, but rather the focus is on
understanding the impacts of the industry-specific factors on the very process of short- to
medium-run adjustments which occur on the way to such steady-states.

The second notable aspect of the model is that the decision rules involving innovation
and imitation are executed in an environment which is constructed by the modeler ex ante.

4See Tesfatsion and Judd (2006) for the comprehensive and up-to-date reviews of the agent-based compu-
tational models in various economics research. The chapter by Dawid (2006) on models of innovation and
technological change is particularly relevant.

5This approach is in line with the suggestion of Caves (1998, p. 1956) that “the evidence on entrant’s growth
and failure rates clearly suggests a stochastic process in which firms make their entry investments unsure of
their success and do not initially position themselves at a unique optimal size.”

6 In taking this “generative” approach to explaining the macro-level phenomena, I am in perfect agreement
with Epstein (2006) when he states: “... to the generativist, it does not suffice to demonstrate that, if a society
of rational (homo economicus) agents were placed in the pattern, no individual would unilaterally depart —
the Nash equilibrium condition. Rather, to explain a pattern, one must show how a population of cognitively
plausible agents, interacting under plausible rules, could actually arrive at the pattern on time scales of interest.”
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This allows me to investigate the relationship between the exact structure of the environment
(defined by the nature of the production technologies) and the emergent pattern of inter-firm
interactions within it. More specifically, the process of innovation and imitation is viewed as
that of adaptive search carried out by the boundedly rational firms in this fixed environment.
The initial construction of the search environment is based on the conceptual framework which
views the process of producing a good as being decomposable into a system of activities. There
is a fixed number of methods which is assumed to be available for performing each activity.
The choice of a production technology is defined by a vector of methods, one for each activity
in the system. This vector then represents what the firm knows. In this framework, the act
of innovation or imitation is viewed as search for a vector that improves the firm’s production
efficiency.

The production technology in this context is complex when the ultimate production effi-
ciency of the firm using the technology is determined by the way these methods are combined
together. This approach allows for the possibility that certain activities in the production
system are complementary to one another, leading to the coexistence of multiple local optima
in technology choices. Such complementarities are often formally explained using the concept
of “supermodularity” [Milgrom and Roberts (1990, 1995) and Milgrom, Qian, and Roberts
(1991)].7 However, most of the theoretical work done on this concept has focused on formally
defining the conditions under which such supermodularities arise.8 They do not explore the
overall impact that the degree of complementarity has on the firm’s long-term search process
or the resulting industry structure. This is an important omission since the degree of comple-
mentarity, which defines the complexity of the technological environment within which firms
carry out their innovation/imitation activities, is what ultimately imposes the cognitive chal-
lenge on the firms, thereby affecting their abilities to compete and survive in the marketplace.
The model presented in this paper is developed precisely to address this issue in a systematic
fashion. The approach employed here for incorporating the inter-activity complementarity
in production systems is the NK-model borrowed from Kauffman (1993), who originally used
it to explore the evolutionary processes in biological systems. I utilize the NK-model in
constructing the complex technological environment within which the firms search for ways to
improve their production efficiencies.9

In the proposed model, different firms can have different sets of methods for the activities
that form the system. The diversity in production methods can result in unequal production
efficiencies which, in turn, lead to asymmetric average variable costs for the firms competing
in the market. Such cost asymmetry generates unequal performances. When there exists
a positive fixed cost of production, those firms which stay relatively inefficient tend to drop
out of the market over time. This selection process is carried out while the operating firms
engage in continual innovation and imitation to improve their production methods and lower

7Empirical support for the existence of complementarities are provided in the studies of human resource
systems as exemplified in MacDuffie and Krafcik (1992), MacDuffie (1995), Ichniowski, Shaw, and Prennushi
(1997), as well as a detailed case study in Ghemawat (1995). The primary purpose of this literature is to collect
empirical evidences of complementarities and to identify which activities of a firm are interdependent with one
another.

8See Vives (2005) for a comprehensive and up-to-date survey of this literature.
9 It is worthwhile to note that the NK-model has recently been used with much success by the management

scholars in exploring various organizational learning issues. See, for example, Levinthal (1997), Rivkin (2000),
Rivkin and Siggelkow (2003), and Ethiraj and Levinthal (2004).
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their costs. The firms in the model have limited cognitive capacity in terms of innovation and
imitation, which makes it difficult for any given technology to be transferred between the firms
in its entirety. When combined with the complexity in the nature of production process, this
implies that there is an inherent tendency for technological diversity to persist over time. In
each period, there are also potential entrants who contemplate entering the market with their
own ideas on how to produce the good. Whether or not a potential entrant actually enters
the market depends on how good their ideas are relative to the ones used by the existing
incumbents. As the entry process takes place over time, market competition continues to
apply its selection pressure on the operating firms, thereby forcing the market structure and
the distribution of technologies to evolve.

The next section describes the model in detail. This is followed by a discussion in Section
3 of how the computational experiments are designed and executed. The shakeout dynam-
ics, evolving market structure, and the intra-industry technological diversity for the baseline
parameter configuration are presented in Section 4. Section 5 then explores the impacts that
various classes of parameters (industry-specific factors) have on the industry dynamics iden-
tified in Section 4. Finally, a brief summary of the results and the concluding remarks are
provided in Section 6.

2 The Model

The conceptual framework surrounding the proposed model is the view that a firm’s production
efficiency — a core determinant of its ability to compete in the market — is realized from the way
its various production activities fit together as a system. Porter (1996) offers a useful example
which demonstrates the competitive advantage such complementarity confers on a firm:

Southwest’s rapid gate turnaround, which allows frequent departures and greater
use of aircraft, is essential to its high-convenience, low-cost positioning. But how
does Southwest achieve it? Part of the answer lies in the company’s well-paid
gate and ground crews, whose productivity in turn-arounds is enhanced by flexible
union rules. But the bigger part of the answer lies in how Southwest performs other
activities. With no meals, no seat assignment, and no interline baggage transfers,
Southwest avoids having to perform activities that slow down other airlines. It
selects airports and routes to avoid congestion that introduces delays. Southwest’s
strict limits on the type and length of routes make standardized aircraft possible:
every aircraft Southwest turns is a Boeing 737.... What is Southwest’s core com-
petence? Its key success factor? The correct answer is that everything matters.
Southwest’s strategy involves a whole system of activities, not a collection of parts.
Its competitive advantage comes from the way its activities fit and reinforce one
another. [Emphasis added.]

The model used in this paper formalizes this concept of complementarity, while viewing
the process of production as a system of activities. The details of this approach are described
next.
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2.1 Production Process as a Complex System of Activities

A production process is composed of N distinct activities, where, for each activity, there exists
a finite set of methods which can be used. For simplicity, we assume that there are exactly
two methods which can be used to perform each activity. Let us represent the two methods
as 0 and 1. The space of all possible production technologies is then X ≡ {0, 1}N and a
particular choice of technology is a binary vector of length N such that x ≡ (x1, ..., xN), where
xi ∈ {0, 1}∀i. The distance between two such vectors, x and y, of length N is captured by
the Hamming distance:

D(x, y) =
NX
i=1

|xi − yi| , (1)

which is the number of dimensions for which the vectors differ.
Associated with each technology is a numeric representing its production efficiency, e(x),

which is a simple average of the efficiency contributions that thoseN individual activities make.
The crucial part of the model is how the production efficiency of a given technology is influenced
by the exact way in which the methods chosen for various activities fit together. In order to
address the issue of fit (or complementarity) among activities in our framework, we assume
that for each activity there are K(< N) other activities which influence the contribution of a
given activity to the overall efficiency of the firm’s production system. Let vi(xi, x1i , ..., x

K
i )

denote the contribution of activity i to a firm’s production efficiency, where its dependence
on own activity, xi, and the K other activities to which it is coupled, (x1i , ..., x

K
i ), is made

explicit.10 For expositional convenience, we will denote by zi the vector of methods used in
the activities coupled to activity i (including itself) such that zi ≡ (xi, x1i , ..., xKi ). We assume
that the value attached to vi for each possible vector zi (of length K + 1) is a random draw
from [0, 100] according to a uniform distribution. The overall efficiency level of a firm, when
it uses x, is then

e(x) =
1

N

NX
k=1

vk(zk). (2)

Division by N is done for the purpose of normalization which facilitates comparison of the
outcomes across different values of N . Clearly, e(x) ∈ [0, 100].

Given e(x) defined for all x ∈ X, a firm’s innovation/imitation activity in our context can
be viewed as search for more efficient technology. It is useful to think of this search as taking
place on a landscape, which is defined on Euclidean space with each activity of a firm being
represented by a dimension of the space and the final dimension indicating the efficiency of
the firm. A critical factor in the firm’s search process is the exact shape of this landscape.
Kauffman (1993) has shown that the way various activities interact with one another through
N and K determines the shape of the landscape. The main result is that for K > 0 the
landscape is rugged so that there are multiple local optima. Furthermore, the average number
of local optima on such rugged landscapes tends to increase in N and K — the technological
environment is more complex for higher values of N and/or K. These properties will become
crucial later on when we address the issue of technological diversity in an evolving industry. It
10 In the computational experiments, the K activities to which activity i is coupled are chosen randomly from

(N − 1) other activities with a uniform distribution.
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is, hence, through varying the values of N and K that we can directly control the nature of the
technological environment within which the boundedly rational firms carry out their search.

Since the methods vectors evolve over time as firms successfully engage in search, we put
the time superscript on them for expositional clarity: xti ≡ (xti,1, x

t
i,2, ..., x

t
i,N) denotes the

production technology employed by firm i in period t, where xti ∈ X and xti,k ∈ {0, 1} is the
method chosen for activity k. Firm i’s production efficiency level in period t is then e(xti).

2.2 Demand and Cost

In each period, there exists a finite number of firms that operate in the market. In this
section, we define the static market equilibrium among the operating firms. As such, we will
abstract away from the time superscript temporarily. Let m be the number of firms in the
market. The market is that of a homogeneous good. The firms are Cournot oligopolists,
where they choose production quantities: qi denotes firm i’s production quantity. In defining
the Cournot equilibrium in this setting, we assume that all m firms produce positive quantities
in equilibrium.11 The inverse market demand function is specified to be

P (Q) = a−Q, (3)

where P (Q) is the price consumers are willing to pay when there are Q(=
Pm
j=1 qj) units of

total output available in the market.
Each operating firm has its production technology, xi, and faces the following total cost

function:
C(qi) = fi + ci · qi. (4)

Hence, fi is a fixed cost of production for firm i, while ci is its marginal cost. The firm’s
marginal cost depends on the level of production efficiency embedded in the technology that
the firm is using. More specifically, I assume that ci is a declining function of e(xi) and specify
the following simple form

ci(xi) = 100− e(xi). (5)

The total cost can be re-written as:

C(qi) = fi + (100− e(xi)) · qi. (6)

2.3 Cournot Equilibrium with Asymmetric Costs

Given the inverse market demand function and the firm cost function, firm i’s profit is:

πi(qi, Q− qi) =
a− mX

j=1

qj

 · qi − fi − ci · qi (7)

For simplicity, let us assume that the firms have identical fixed cost so that f1 = f2 = ...fm ≡ f .
11 In actuality, there is no reason to suppose that in the presence of asymmetric costs all m firms will produce

positive quantities in equilibrium. Some of these firms may become inactive by producing zero quantity. The
algorithm used to distinguish among active and inactive firms based on their production costs will be addressed
in a later section.
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The first-order conditions for profit maximization imply thata− mX
j=1

bqj
− bqi − ci = 0 (8)

∀i ∈ {1, ...,m}, where the output vector in Cournot equilibrium is (bq1, bq2, ..., bqm) . Adding the
first-order conditions for all firms yields

m ·
a− mX

j=1

bqj
− mX

j=1

bqj = mX
j=1

cj (9)

Dividing both sides by m and simplifying, we get

mX
j=1

bqj = aµ m

m+ 1

¶
−
µ

1

m+ 1

¶ mX
j=1

cj (10)

Hence, the equilibrium market output (and the equilibrium market price) depends only on the
sum of the marginal costs and not on the distribution of cis [Bergstrom and Varian (1985)].
Using the inverse demand function, one can then write the equilibrium market price as bP ,
where

bP = µ 1

m+ 1

¶a+ mX
j=1

cj

 (11)

Given the vector of marginal costs defined by the firm’s chosen technology, bP is then uniquely
determined. Furthermore, from the first order condition for each firm one can then express
the Cournot equilibrium output rate as

bqi = bP − ci (12)

=

µ
1

m+ 1

¶a+ mX
j=1

cj

− ci (13)

∀i ∈ {1, ...,m}. A firm’s equilibrium output rate depends on its own marginal cost and the
sum of all marginal costs. The Cournot equilibrium firm profit is

π(bqi) = bP bqi − f − cibqi (14)

=
³ bP − ci´ bqi − f

= (bqi)2 − f (15)

Note that bqi is a function of ci and Pm
j=1 cj , while ck is a function of xk for all k. It is

then straightforward that the equilibrium firm profit is fully determined, once the vectors of
methods for all firms are known. Further note that ci ≤ ck implies bqi ≥ bqk and, hence,
π(bqi) ≥ π(bqk)∀i, k ∈ {1, ...,m}.
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2.4 Dynamic Structure of the Model

In every period of the horizon in this model, there are four stages of firm decision making.
Figure 1 shows the sequence of these decision stages. The definitions of the set notations
introduced in this section and used throughout the paper are summarized in Table 1.

The process of intra-industry dynamics in period t starts with four groups of state variables.
First, there exists a set of surviving firms from t − 1, denoted St−1, where S0 = ∅. The set
of surviving firms includes those firms which were active in t − 1 in that their outputs were
strictly positive as well as those firms which were inactive with their plants shut down during
the previous period. Let St−1a and St−1−a denote, respectively, the set of active and inactive
firms in t− 1 such that

St−1a ≡ {all j ∈ St−1|qt−1j > 0}, (16)

St−1−a ≡ {all j ∈ St−1|qt−1j = 0}, (17)

and St−1a ∪ St−1−a = St−1. The inactive firms in t− 1 are able to survive if they have sufficient
wealth balance to cover their fixed costs for that period.

Second, each firm i ∈ St−1 possesses a production technology, xt−1i , carried over from t−1,
which gives rise to its current efficiency level of e(xt−1i ) and the consequent marginal cost of
ct−1i as defined in equation (5).

Third, each firm i ∈ St−1 has a current wealth level of wt−1i which it carries over from
t − 1. This wealth level is adjusted at the end of each period on the basis of the economic
profit earned (which adds to it) or loss incurred (which subtracts from it) by the firm. It is
this wealth level which ultimately determines the firm’s viability in the market.

Finally, there is a finite set of potential entrants, Rt, who contemplate entering the industry
in the beginning of t. In this paper, we assume that the size of the potential entrants pool
is fixed and constant at r throughout the entire horizon. We also assume that this pool of r
potential entrants is renewed fresh each period. Each potential entrant k in Rt is endowed
with a technology, xtk, randomly chosen from X according to uniform distribution. Associated
with the technology is its corresponding efficiency level, e(xtk), and the marginal cost of c

t
k for

all k ∈ Rt.

2.4.1 Stage 1: Entry Decisions

In stage 1 of each period, the potential entrants in Rt first make their decisions to enter. This
entry decision is dependent upon the common threshold efficiency level, bet, which is defined as
follows: bet = ½ 0 for t = 1,

min{e(xt−1i )}i∈St−1a
for t > 1.

(18)

bet is, hence, the efficiency level of the least efficient active incumbent from the previous period,
except for t = 1 when there is no past record of efficiency levels to compare to. Given the
threshold level, the decision rule of a potential entrant k ∈ Rt is:½

Enter, if and only if e(xtk) ≥ bet
Do not enter, otherwise.

(19)

The decision rule indicates that an outsider will be attracted to enter the industry if and only if
it is convinced that it is at least as efficient as the least efficient incumbent who actively engaged
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in production in the previous period. Implicit behind this assumption is that the efficiency
level of an incumbent firm can be inferred by an outsider only if it produces a positive output.
Note from equation (12) that the least efficient active incumbent firm is the one producing
the minimum positive output. Assuming that the potential entrants have the knowledge of
the cost structure as specified in equation (5), they only need to observe the outputs and the
market price to correctly infer the efficiency levels of the incumbent firms.12

Once every potential entrant in Rt makes its entry decision on the basis of the above
criterion, the resulting set of actual entrants, Et ⊆ Rt, contains only those firms with suffi-
ciently efficient technologies. Denote byM t the set of firms ready to compete in the industry:
M t = St−1 ∪ Et. We will denote by mt the number of competing firms in period t such that
mt =

¯̄
M t
¯̄
.

All entrants into the industry enter with a fixed “start-up budget” of b dollars. The start-
up budget may be viewed as a firm’s available fund that remains after paying for the one-time
setup cost of entry.13 For example, if one wishes to consider a case where a firm has zero fund
available, but must incur a positive entry cost, it would be natural to consider b as having a
strictly negative value. Just as each firm in St−1 has its current wealth level of wt−1i , we will
let wt−1j = b for all j ∈ Et. At the end of stage 1 of period t, we then have a well-defined set
of competing firms, M t, and the current wealth levels for all firms in that set, {wt−1i }∀i∈Mt .

2.4.2 Stage 2: Innovation/Imitation Decisions

In stage 2, the surviving incumbents from t− 1 — i.e., all firms in St−1 — engage in innovation
or imitation in order to improve the efficiency of their existing technologies. Given that the
new entrants in Et, selected in stage 1, entered with new technologies, they do not engage in
the innovation/imitation process in t.

Each surviving incumbent in t gets one chance to search (through innovation or imitation)
in that period with probability α. With probability (1−α), it does not get the opportunity to
search, in which case xti = x

t−1
i . With α, we are then capturing the exogenously specified firm

propensity (common to all firms) to engage in exploration for improved technologies in a given
industry.14 This opportunity (incentive) may be determined by the institutions exogenous to
the market competition or by the prevailing culture of innovation within the industry that is
not specified in the model.

If firm i gets to search in period t, it then chooses to “innovate” with probability βti and
“imitate” with probability 1− βti . [The probability β

t
i is endogenous — how it is updated from

one period to the next is discussed below.] Innovation occurs when the firm considers changing
12Two comments are in order here. One, the potential entrants can infer the overall efficiency levels of

the active incumbents, but not the individual components of the efficiency vector. Two, a potential entrant
correctly infers its own efficiency level given the technology it is endowed with. While a more general model
may specify a noisy evaluation of the efficiency level, we avoid complicating the analysis by simply assuming
that the potential entrants are already familiar with their technologies. This is likely if they happen to be the
established players in other markets, trying to expand into the market in question.
13The size of the one-time cost of entry is not directly relevant for our analysis. It may be zero or positive.

If it is zero, then b is the excess fund the firm enters the market with. If it is positive, then b is what remains
of the fund after paying for the cost of entry.
14 In reality, the search propensity, α, is likely to be heterogeneous among firms. It may also be endogenous

in that it may evolve over time on the basis of individual firm’s realized profits. I specify it to be homogeneous
and exogenous in this model so as to keep our computational analysis tractable.
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the method in one randomly chosen activity. Imitation occurs when the firm picks another
firm j from a subset of St−1 and considers copying the method employed by j in one randomly
chosen activity.15 Only those surviving firms which were profitable in t− 1, i.e., πt−1k > 0, are
considered as the potential targets for imitation. Let St−1b denote the set of these profitable
firms, where St−1b ⊆ St−1. The choice of a firm to imitate is made probabilistically using the
“roulette wheel” algorithm. To be specific, the probability of firm i ∈ St−1 observing a firm
j ∈ St−1b is denoted ptij and is defined as follows:

ptij ≡
πt−1jP

∀k∈St−1b ,k 6=i
πt−1k

, j 6= i (20)

such that
P

∀j∈St−1b ,j 6=i
ptij = 1∀i ∈ St−1. Hence, the more profitable firm is more likely to be

observed and imitated.
Let extk denote firm k’s vector of experimental methods (i.e., a technology considered for

potential adoption) obtained through “innovation” or through “imitation.” The adoption
decision rule is as follows:

xtk =

½ extk, if and only if e(extk) > e(xt−1k )

xt−1k , otherwise.
(21)

A proposed technology is adopted by a firm if and only if the resulting efficiency level exceeds
that of its current technology. Implicit behind this rule is the assumption that the firm is
able to correctly infer the efficiency level associated with the experimental technology, extk.
While we believe that the firm can obtain such information only through actual experiments,
we abstract away from modelling such experiments so as not to overload the already complex
model.

We intentionally limit the scope of technological change to one activity at a time. This
implies a cognitive constraint faced by the firms. As the number of activities in which methods
can be changed rises above one, the firms are then able to consider innovations and imitations
of larger scale and the existence of complementarities among activities (and the resulting
multiplicity of local optima) poses no problem in the long run since the firms are able to jump
from one local optimum to another.16

Let us now get back to the choice probability, βti . In our setting, α (search propensity) is
exogenous and common to all firms, while βti is endogenous and specific to each firm. More
specifically, the choice probabilities of βti and 1−βti are adjusted over time by individual firms
according to a reinforcement learning rule. We adopt a version of the Experience-Weighted
Attraction (EWA) learning rule as described in Camerer and Ho (1990). Under this rule, a
firm has a numerical attraction for each possible action — innovation or imitation in our case.
The learning rule specifies how attractions are updated by the firm’s experience and how the
probabilities of choosing different actions depend on attractions. The main feature of the rule
15Hence, the imitating firm is assumed to be capable of copying only a small part of the entire technology.
16An additional constraint in terms of a firm’s cognitive capacity is the degree of precision in its evaluation

of the production efficiency. So as to avoid overloading the model, we assume that the production efficiency of
a firm’s technology is assessed with perfect accuracy.
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is that a positive outcome realized from a course of action reinforces the likelihood of that
same action being chosen again.

Using the EWA-rule, βti is adjusted each period on the basis of evolving attraction measures,
BINi (t) for innovation and BIMi (t) for imitation. The evolution of BINi (t) and BIMi (t) follow
the process below:

BINi (t+ 1) =

½
φBINi (t) + 1, if firm i adopted a technology through innovation in t
φBINi (t), otherwise

(22)

BIMi (t+ 1) =

½
φBIMi (t) + 1, if firm i adopted a technology through imitation in t
φBIMi (t), otherwise

(23)

where φ ∈ (0, 1] is the decay factor. Hence, if the firm chose to pursue innovation and
discovered and then adopted a new idea, the attraction measure for innovation increases by
1 after allowing for the decay factor of φ on the previous attraction level. If the firm chose
innovation but was unsuccessful (because the idea generated was not useful) or if it instead
chose imitation, then its new attraction measure for innovation is simply the attraction level
from the previous period decayed by the factor φ. Similarly, a success or failure in imitation at
t has identical influence on BIMi (t+1). For analytical simplicity, we assume φ = 1 throughout
this paper so that the attractions do not decay.

Given BINi (t) and BIMi (t), one derives the choice probability of innovation in period t as
follows:

βti =
BINi (t)

BINi (t) +BIMi (t)
. (24)

The probability of pursuing imitation is, of course, 1 − βti . The expression in (24) implies
that a favorable experience through innovation raises the probability that a firm will choose
innovation again in the future.

2.4.3 Stage 3: Output Decisions and Market Competition

Given the consequences of the innovation/imitation choices made in stage 2 by the firms in
St−1, all firms in M t now have the updated technologies {xti}∀i∈Mt as well as their current
wealth levels {wt−1i }∀i∈Mt . The updated technologies define the efficiency levels of the firms,
{e(xti)}∀i∈Mt , and their corresponding marginal costs for period t, {cti}∀i∈Mt . Given these
marginal costs, the firms engage in Cournot competition in the market, where we approximate
the outcome with the Cournot equilibrium defined in 2.3.

Note that the equilibrium in 2.3 was defined for m firms who were assumed to produce
positive quantities in equilibrium. In actuality, given the asymmetric costs, there is no reason
to think that all mt firms will produce positive quantities in equilibrium. Some relatively inef-
ficient firms may shut down their plants and stay inactive. What we need is then a mechanism
for identifying the set of active firms out ofM t such that the Cournot equilibrium among these
firms will indeed entail positive quantities only. This is accomplished in the following sequence
of steps. Starting from the initial set of active firms, compute the equilibrium outputs for
each firm. If the outputs for one or more firms are negative, then de-activate the least efficient
firm from the set of currently active firms — i.e., set qti = 0 where i is the least efficient firm.
Re-define the set of active firms (as the previous set of active firms minus the de-activated
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firms) and recompute the equilibrium outputs. Repeat the procedure until all active firms
are producing non-negative outputs. Each inactive firm produces zero output and incurs the
economic loss equivalent to its fixed cost. Each active firm produces its Cournot equilibrium
output and earns the corresponding profit. We then have πti for all i ∈M t.

2.4.4 Stage 4: Exit Decisions

Given the single-period profits or losses made in stage 3 of the game, the incumbent firms
consider exiting the industry in the final stage. The incumbent firms’ wealth levels are first
updated on the basis of the profits (losses) made in t:

wti = w
t−1
i + πti . (25)

The exit decision rule for each firm is:½
Stay in iff wti ≥ d,
Exit otherwise,

(26)

where d is the threshold wealth level such that all firms with their current wealth levels below
d exit the market. Once the exit decisions are made by all firms in M t, the set of surviving
firms from period t is then defined as:

St ≡ {∀i ∈M t|wti ≥ d}. (27)

We denote by Lt the set of firms which have decided to exit:

Lt ≡ {∀i ∈M t|wti < d}. (28)

The set of surviving firms, St, their current technologies, {xti}∀i∈St , and their current wealth
levels, {wti}∀i∈St , are then passed on to t+ 1 as the state variables.

3 Design of Computational Experiments

The ultimate objective is to examine the time paths of certain endogenous variables for various
parameter configurations that are relevant for the evolution of the industry. The definitions
as well as the values of the parameters considered in the simulations are provided in Table 2.

The endogenous variables I am interested in can be separated into three categories. First,
there are those which characterize the turnover of the firms. These include: 1)

¯̄
M t
¯̄
, the

number of all operating firms in t; 2)
¯̄
Et
¯̄
, the number of actual entrants in t; 3)

¯̄
Lt
¯̄
, the

number of exiting firms in t.
The second category of endogenous variables include those capturing the state of the mar-

ket: 1) bP t, the equilibrium market price in t; 2) bQt, the equilibrium industry output, where

bQt ≡ mtX
i=1

bqti ; (29)
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3) ht, the Herfindahl-Hirschmann Index in t, where

ht ≡
mtX
i=1

µ bqtibQt · 100
¶2
. (30)

For lack of space, we will characterize the behavior of the second category variables only for
the baseline case. The comparative dynamics results pertaining to these variables will not be
reported here.

Finally, the third category describes the evolution of the technological diversity within
the industry. The relevant outputs to examine are the distributions of the operating firms’
marginal costs, outputs, and their technologies: {cti}∀i∈Mt , {qti}∀i∈Mt , {xti}∀i∈Mt . Since
some firms may have identical technologies, identical marginal costs, and, hence, identical
equilibrium outputs, one can summarize the extent of diversity among firms at any given point
in time by computing the proportion of all operating firms who have distinct technologies.17

We run 1000 replications for each parameter configuration, using a fresh set of random
numbers for each replication.18 We report the time paths of the above variables directly
from a single typical replication as well as those averaged over 1000 replications. Outputs are
examined for a sufficiently large number of individual replications so as to ensure that the time
paths from a single replication reported in the paper are indeed typical of all replications for
a given parameter configuration.19

4 The Baseline Case: Generating and Identifying Regularities

The baseline case considered in this section assumes the following configuration of parameter
values: N = 16; K = 2; r = 10; f = 20; a = 200; b = 100; d = 0.0; α = 1.0; T = 4, 000. The
manufacturing process has 16 component activities, where the efficiency contribution of each
activity is determined by the method chosen for that activity and the methods chosen for two
other activities which are directly linked to it. There are 10 potential entrants contemplating
entry into the market each period. The fixed cost is 20 and the demand intercept is 200. Each
firm, when it enters the industry, has a start-up budget of 100. An existing incumbent leaves
the market if its current wealth balance falls below 0.0. The operating firms engage in search
every period, where the search mechanism is chosen between innovation and imitation based
on the probabilities that evolve over time through reinforcement learning. The cognitive skills
of the firms are such that they are capable of evaluating the efficiency consequence of changing
the method in only one activity out of N .

Before reporting the full set of results for the baseline case, I first show that the model
presented in this paper is indeed capable of generating the empirical regularities mentioned
earlier. The key empirical regularities involve the time paths of 1) the number of producers
in the industry, 2) the aggregate industry output and 3) the market price. Using the data on
17Given that a technology in this model is a vector of 0s and 1s, it is quite simple to distinguish among

different technologies.
18Since we consider a horizon of 4,000 periods in each of our replications, we are then computing the outcomes

from 4 million occurrences of the market competition for each parameter configuration.
19The source code for the computational experiments was written in C++ and the simulation outputs were

analyzed and visualized using Mathematica 3.0. The source code is available upon request from the author.
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U.S. automobile tire industry, initially collected by Gort and Klepper (1982) and published in
Jovanovic and MacDonald (1994), I plot in Figure 2 the following: 1) the number of producers
over 68 years from 1906 to 1973, 2) the industry output over 64 years from 1910 to 1973, and
3) the price index over 61 years from 1913 to 1973. The complete data sets are provided in
the Appendix of Jovanovic and MacDonald (1994).

As initially shown by Gort and Klepper (1982), the number of producers rises sharply in
the beginning, reaching the maximum of 275 in 1922. It then declines sharply, eventually
leveling off to a stable level. The industry output appears to rise and the wholesale price
index declines over time.

Given the empirical results displayed in Figure 2, I now compare them to the computational
results generated with our model for the baseline parameter configuration. Figure 3 shows
the time paths of the three variables — number of producers, industry output, and market
price — from a single typical replication. These time paths are plotted only for the first 68
periods in order to facilitate comparisons with the empirical data plotted in Figure 2. The
qualitative similarities between the figures in Figure 2 and Figure 3 are striking.20 The number
of incumbents in the baseline model rises sharply in the beginning, reaches a maximum, and
then turns downward, eventually stabilizing to a moderate level. The industry output grows
just as in the case of the automobile tire industry, but the rate of its growth declines over time.
This is in contrast to the output path of the tire industry plotted in Figure 2 — the output
appears to increase at a slightly increasing rate in that case. However, the simulated output
path in Figure 3 is in perfect agreement with the general pattern observed in terms of the
percentage change in output for 25 different products as reported in Gort and Klepper (1982)
and Klepper and Graddy (1990): “The summary statistics ... suggest that the rate of growth
of output declines steadily over the course of the development of new product industries.”
[Gort and Klepper (1982), pp. 644-645] The market price path generated by the model also
has the same general shape as that created by the actual data. Both the simulated and the
actual price paths appear to fall at a decreasing rate.

4.1 Entry, Exit, and Shakeout

I now present the full set of results that are generated in the baseline case for the entire horizon
of 4,000 periods. We start with the processes of entry and exit and the resulting market
structure which evolves over time. Figure 4(a) reports the time paths over t ∈ {1, ..., 4000} of
the following endogenous variables from a single typical replication: 1) number of incumbent
firms, mt, 2) number of actual entrants,

¯̄
Et
¯̄
, and 3) number of exits,

¯̄
Lt
¯̄
. These measures

were then obtained for 1,000 independent replications and averaged. The time paths of those
averages are reported in Figure 4(b). Both sets of figures are drawn with the logarithm of time
index along the horizontal axis so that the adjustments taking place in the first 100 periods
are magnified relative to those in later periods. [In fact, the same scaling will be used for most
of the figures presented in this paper.]

The most striking property observed in these figures is the one involving the number of
incumbent firms, mt. Given that the size of the potential entrants pool is fixed at 10 each
period, the number of incumbent firms starts at m1 = 10. Since the firms enter with a
20Since my interest in this paper is in examining the qualitative nature of the dynamics, I make no attempt

to calibrate the model to improve the fit between the computational and empirical results.
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fixed budget of b = 100, it takes some time before any exit occurs — the relatively inefficient
firms must accumulate sufficient economic losses before they go bankrupt. In the meantime,
entry continues as those potential entrants with good draws on technology find themselves
sufficiently efficient to enter and compete in the industry. This is shown in the time paths of¯̄
Et
¯̄
captured in Figure 4, where the number of actual entrants, even as it declines, remains

rather high in the beginning. For the first 10 periods or so, the total number of incumbent
firms rises because of this inflow of the new entrants. The increase in mt, however, comes to a
stop eventually. As can be seen in the bottom figures of Figure 4(a) and 4(b), the time path of
the number of exits starts to rise after the fifth period. These exits of the relatively inefficient
firms occur as the general reduction in costs achieved through innovation and imitation puts
the downward pressure on the market price. The combination of diminishing entry and rising
exit then leads to a rapid decline in the number of incumbent firms, which eventually comes
to a somewhat stabilized level at around t = 50.

The shakeout phenomenon observed in so many new industries arises naturally in this
model, in which the opening-up of a new market is followed by firms entering with operating
practices of various efficiency levels. While the new available market demand invites entry,
the ensuing market competition applies sufficient selection pressure on the firms of unequal
production efficiencies that the exits of relatively inefficient firms become inevitable. The
simulation outputs not reported here show that shakeout is a general phenomenon that arises
for a wide variety of parameter configurations considered in this paper.

4.2 Output, Price, and Concentration

As mentioned earlier in this section, the movements of the market price and the industry
output have been shown to exhibit certain regularities. Figure 5 captures the time paths
of the market price and the industry output that are generated with the baseline parameter
configurations — 5(a) from a single typical replication and 5(b) from averaging of the 1,000
independent replications. The results confirm the empirical observations made by Gort and
Klepper (1982) as well as Klepper and Graddy (1990).

Based on each firm’s output, bqti , I also computed the Herfindahl-Hirschmann Index (HHI)
each period for all t ∈ {1, ..., T}. The resulting time path, ht, is displayed at the bottom
of Figure 5. The HHI declines over time such that the market becomes increasingly less
concentrated. In particular, the HHI declines steeply during the first 10 periods, reflecting the
rapid increase in mt in this phase as captured in Figure 4. The decline slows down after the
initial 10 periods and, between t = 10 and t = 100, it tends to go back up slightly or remain
constant. Recall from Figure 4 that the number of incumbents, mt, declines significantly
between t = 10 and t = 100. Purely on the basis of the number of firms alone, one would
expect the HHI to rise during these periods. This is, indeed, what is shown in Figure 5(a).
On average, however, this is not necessarily what happens. According to Figure 5(b) in which
the HHI values are averaged over 1,000 replications, the time path of the HHI between t = 10
and t = 100 stays constant, even though the number of firms in the industry drops during the
same period. Why is this so? The answer lies in the asymmetry in the firms’ market shares
caused by the asymmetry in marginal costs. How the technological diversity giving rise to
such asymmetries evolves over time is the focus of the discussion in the next section.
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4.3 Technological Diversity

Note that the firms initially start out with technologies which are chosen randomly. Clearly,
the initial marginal costs are asymmetric based on this fact alone. The main question, however,
is whether the firms will eventually come to adopt a common technology and, hence, converge
on a common level of marginal cost as they innovate (or imitate) over time in search of more
efficient technologies.

Let us first look at the marginal costs of all operating firms in M t for all t ∈ {1, ..., T}.
Figure 6(a) captures how the distribution of marginal costs evolves over time using the data
generated from a single replication. Clearly, the distribution shifts down over time as the firms
successfully innovate and adopt improved operating methods. Furthermore, the range of the
marginal costs in t narrows as t increases, indicating that technological convergence is indeed
taking place among firms. Figure 6(b) plots the evolving distribution of firm outputs from
the same replication. These are the Cournot equilibrium outputs based on the distribution of
marginal costs captured in 6(a). Note that the baseline configuration of parameters used to
generate Figure 6 entails K = 1. The technology landscape is then moderately rugged. The
single simulation reported in Figure 6 shows that the firms converge to 5 different marginal
cost levels at the end of the horizon.

In order to capture the intra-industry technological diversity and its evolution in the most
direct manner, the total number of distinct technologies — i.e., non-identical methods vectors
— held by all operating firms in each period is counted and its time path is reported in Figure
7. The time path from a single replication is reported in Figure 7(a), while the average of
those from 1,000 replications is reported in Figure 7(b). Note that the number of distinct
technologies starts out at 10 in t = 1, which implies that all initial entrants tend to start out
with distinct technologies. As more firms enter, there is a proliferation of distinct technologies
between t = 1 and t = 10. With the decline in the number of firm following the peak at
around t = 10, the number of distinct technologies also declines.

It is important to note here that the number of distinct technologies in a given period tends
to fall strictly below the number of incumbent firms [compare Figure 4(a) and Figure 7(a) — the
number of incumbent firms stabilizes to around 27, while the number of distinct technologies
declines to 5]. This implies that there is indeed a substantial degree of technological conver-
gence occurring over time as firms innovate (or imitate) and move toward some common local
optima in the search space. The convergence is, of course, not perfect when K > 0. In the
single replication captured in Figure 7(a), there are five distinct technologies in existence at
t = 4, 000. As shown in Figure 7(b), the number of distinct technologies at t = 4, 000 is, on
average, about 4. It tends to have a rather wide distribution across replications. Figure 8
shows the histogram of the number of distinct technologies at t = 4, 000 over 1,000 independent
replications. They range anywhere from 1 to 17, although in over 40% of the replications there
are only one or two distinct technologies. Diversity among firms is then not just a transient
phenomenon, but is more an inherent feature of the industries that are being modelled here.

The fact that the time paths in Figure 4(a) and Figure 7(a) have similar shapes implies that
the number of distinct technologies depends on the number of operating firms, which changes
over time. Hence, the initial sharp rise in the number of firms will automatically give rise to
a proliferation of distinct technologies. Since we look for a measure of technological diversity
which is consistent over time and is capable of controlling for the intertemporal changes in the

18



number of firms, we define a measure that takes the ratio of the number of distinct technologies
to the number of operating firms in period t:

δ(t) =
number of distinct technologies in t
number of operating firms in t (≡ mt)

(31)

δ(t) may be as high as 1 (which is when every firm has a unique technology) and as low as
1
mt (which is when all firms use an identical technology). Figure 9 captures the time series
of δ(t) averaged over the 1, 000 replications, using the baseline parameter configuration. The
“inverted S” shape of δ(t) is a general property.

The degree of technological diversity is clearly determined by the ruggedness of the land-
scape the firms are climbing in their search for a local optimum. Given the relationships
between the values of N and K and the ruggedness of the landscape, one expects the long-run
technological diversity to be a function of N and K as well. For instance, recall that K = 0
implies a smooth landscape with a unique optimum. When the technological environment is
as simple as this, there should be a perfect convergence in the long run, since everyone is in
search of the common optimum. However, for K > 0 — as in the baseline simulation cap-
tured in Figures 7-9 — one cannot rule out the possibility that there are multiple local optima
and, hence, the firms’ technological paths may diverge from one another over time as they
evolve toward different optima. A thorough investigation of how N and K affect technological
diversity is carried out in Section 5.

5 Comparative Dynamics

We now investigate how various parameters of the model influence the industry dynamics.
The approach taken is to vary the value of one specific parameter, while holding fixed the
values of other parameters at their baseline levels. The parameters of interest and their values
considered for our analyses are listed in Table 2.

For each parameter configuration, a single run of the simulation will generate the time
series of the endogenous variables which describe the evolving structure of the industry. In
the ensuing analyses, we focus on the entry/exit measures — i.e.,

¯̄
Et
¯̄
and

¯̄
Lt
¯̄
— as well as the

measure of intra-industry technological diversity, δ(t).
We begin by first observing the overall magnitude of the turnovers in the industry. The

simplest measures to look at for this purpose are the total number of entries and the total
number of exits which occurred over the entire horizon (4,000 periods) — i.e.,

P4000
t=1

¯̄
Et
¯̄
andP4000

t=1

¯̄
Lt
¯̄
. A high turnover rate is implied when an industry has a high total number of

entries simultaneously with a high total number of exits. Since in our model the industry is
“born” in t = 0 with zero incumbent, the difference between the two aggregate measures then
gives the number of surviving firms at the end of the horizon. As we compute these values for
each of the 1,000 replications, we obtain 1,000 independent realizations for each measure for a
specific configuration of parameter values.

Tables 3(a) and 3(b) — 3(a) for (a, f, r, b,α) and 3(b) for (N,K) — report the mean values
of
P4000
t=1

¯̄
Et
¯̄
,
P4000
t=1

¯̄
Lt
¯̄
, and

P4000
t=1

¯̄
Et
¯̄ −P4000

t=1

¯̄
Lt
¯̄
with the standard deviations reported

inside the parentheses. With the sole exception of f , the total number of entries and the total
number of exits move in tandem: When an industry has a high (low) rate of entry, it also has
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a high (low) rate of exit. Furthermore, we observe the following property with respect to the
relevant parameters.

Property 1: Both the total number of entries and the total number of exits are higher — i.e.,
there exists a greater turnover of firms — when: 1) the market demand (a) is larger; 2)
the pool of potential entrants (r) is larger; 3) the start-up fund (b) is smaller; and 4) the
industry-wide search propensity (α) is lower.

We find that the impact of f on
P4000
t=1

¯̄
Et
¯̄
is non-monotonic, although

P4000
t=1

¯̄
Lt
¯̄
rises

monotonically in f . Both N and K have non-monotonic effects on
P4000
t=1

¯̄
Et
¯̄
and

P4000
t=1

¯̄
Lt
¯̄
.

The next property captures the impact of the parameters on the long-run structure the
industry converges to.

Property 2: The number of surviving incumbents in the long-run is higher when: 1) the
market demand (a) is larger; 2) the fixed cost (f) is lower; 3) the pool of potential
entrants (r) is larger; and 4) the search space (N) is larger.

The impacts of b, α, and K on the net entry measure, are non-monotonic and, thus,
necessitate further investigation.

In the following subsections, we further refine and reinforce these results by investigating
in detail the time paths of

¯̄
Et
¯̄
,
¯̄
Lt
¯̄
, and mt, as well as that of δ(t). In particular, the results

on δ(t) are presented formally in Properties 3-5. Note that we perform 1,000 independent
replications for each configuration of parameter values. This means that we have 1,000 sep-
arate realizations of these measures for each time period. We take a simple average of these
realizations for each t, thereby generating a time path of the mean values. Such time paths
are generated for different parameter values and then plotted for visual comparison in Figures
10 through 16.

5.1 Effects of Demand, Cost, and Entry Conditions

We begin with the effects of a, f , r, and b. The short-run impacts of these parameters can
be inferred from the static equilibrium model of Cournot oligopoly. For instance, note from
equations (11), (13), and (14) that the size of the market demand, a, increases the market
price, firm output (and, hence, the industry outputs), and the firm profit, holding the number
of firms constant. The size of the fixed cost, f , on the other hand, has no impact on the price,
or the firm’s output, but has a negative impact on the firm’s profit, again, holding the number
of firms constant. The entry/exit tendencies in the industry can then be indirectly inferred
from the equilibrium levels of firm profitabilities. Of course, in the dynamic model of firm
competition in which entry and exit can take place continually, it is not at all clear how these
parameters would affect the evolution of the industry structure over time.

How does the size of market demand affect the flow of firms in and out of the industry?
In Figure 10, we first explore the impact of a on the number of entries which take place over
time. Clearly, an increase in a raises the number of entries that take place before they cease
eventually. Furthermore, the time series on the number of exits (second figure in Figure 10)
show that the shakeout process is delayed and weakened in its magnitude as the size of market
demand is greater. This implies that the increased number of new entrants under a higher
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value of “a” also tend to stay in the industry, thereby leading to a long-run and permanent
expansion of the industry. The time series on mt, the number of incumbent firms (third
figure), do confirm this: there is a general expansion of the industry in the long run as the size
of market demand increases.

The bottom figure in Figure 10 shows what happens to the degree of technological diversity
as the market demand becomes larger. The mean technological diversity (averaged over 1,000
replications) starts from 1, where all initial entrants have heterogeneous technologies, and then
gradually declines over time. However, the decline is much faster in a market with a higher
value of a: The mean diversity decreases in a. Why is this so? This is due to the increase
in the number of firms, mt, resulting from an increase in a. Note that the technological
environment is uniquely defined by N and K which are held fixed for all values of a considered
here. This implies that the number of locally optimal technologies (averaged over 1,000
replications) tends to be constant for different values of a. However, in a market with a higher
value of a, a greater number of firms enter the market and the long-run searches by many
of these firms lead them toward common technologies. Whether the markets are more or
less concentrated, the number of groups of firms sharing common technologies — technology
clusters mainly determined by N and K — tends to be fixed. Since the size of the membership
in each of these groups then increases in a, the mean technological diversity will decline in the
population size.

Figure 11 captures the effects of fixed cost f on firm turnovers. At the initial glance, the
impact of f on the number of entries over time is somewhat counter-intuitive: one would have
expected the number of entries to be negatively related to fixed cost, since it is more difficult to
make profits in a market with a higher value of f — this is what the static equilibrium model of
Cournot oligopoly would predict. Surprisingly, the time series in Figure 11 show that the size
of f has little impact on the number of entries. This result is driven by the assumption in this
model that the decision to enter the market is based on the consideration of relative production
efficiencies rather than that of expected profits. On the other hand, the size of f must have an
impact on the number of exits, since the decision to exit the market in this model is based on
the realized profits (through the firm’s wealth balance). The middle figure on the time series
of the number of exits clearly shows that this is the case. In a market with a higher value
of f , the shakeout process is accelerated and its impact is much more significant. Combining
the entry dynamic with the exit dynamic, we then find that the number of operating firms is
reduced in the long run for higher values of f : A market with a higher fixed cost tends to be
more concentrated.

Figure 11 also shows that the mean technological diversity is positively related to the size
of fixed cost. This result is driven by the same intuition as that which drove the influence of
a on diversity. As f rises in value, the number of operating firms declines. This reduces the
number of firms sharing identical technologies and increases the overall diversity.

The impact the size of potential entrants pool (r) has on the industry dynamics is explored
in Figure 12. How large the pool of potential entrants is depends on the attractiveness of the
given industry relative to other industries as well as the transferability of production knowledge
from one industry to the next. If the industries have similar production systems where the
relevant sets of knowledge overlap to a significant extent, then it seems reasonable that the
size of the potential entrants pool can be quite large. How does the magnitude of r then affect
the industry dynamics? Do industries facing different sizes of entrant pools behave differently
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over time? Figure 12 shows that r increases the number of entries as well as the number
of exits significantly in the short run, which implies that the turnover is likely to be higher
in those industries with higher values of r. For when the industries differ in terms of the
availability of potential entrants, our result is then fully consistent with the empirical findings
that there exists a high correlation between the entry and exit rates across industries. Finally,
the number of incumbent firms is greater for all t when r is higher.

The degree of technological diversity decreases in r. An industry with a bigger pool
of potential entrants tends to have a lower degree of diversity as the increasing number of
incumbent firms converge on a limited number of locally optimal technologies.

It is shown in Figure 13 that the size of the start-up fund has little impact on the number
of entries, though it appears to have a (weak) positive effect in the short run and a (weak)
negative effect in the long run. However, in terms of the exit dynamics, a larger amount of
start-up fund systematically delays the shakeout process by allowing the inefficient firms to
linger on for a longer period of time. This, of course, increases the number of incumbents in
the short run, but it has a negligible impact in the long run. Once all the exits have taken
place, the resulting market concentration is unlikely to be affected by the size of b.

The degree of technological diversity is relatively insensitive to b, though one detects a
weakly negative relationship between them. A market with a greater b tends to accommodate
a larger number of firms in the short run and this leads to a decrease in the mean diversity.

The results on the mean technological diversity, involving the demand/cost/entry parame-
ters, may then be summarized as follows.

Property 3: The degree of technological diversity is higher in the long run when: 1) the
market demand is smaller; 2) the fixed cost is higher; 3) the potential entrants pool is
smaller; and 4) the start-up fund is smaller.

5.2 Effects of Search Propensity (α)

The intensity of a firm’s innovation/imitation activity is captured by α, the probability of
search in each period. If different industries have different degrees of search propensity, will
their evolutionary dynamics be influenced by such differences?

Figure 14 shows that the industry-wide propensity to search does indeed have a significant
impact on the dynamics of the market structure. There is a general decline in the number
of entries (in the short- to medium-run) as the overall search activity in an industry is more
intense — this is intuitive as the incumbent firms’ active search (and the consequent increase
in the average efficiency level) will discourage potential entrants from entering the market.
There is also a decline in the number of exits during the shakeout phase — more intensive
search activities by all incumbent firms make it less likely that any given firm will remain a
laggard. As these two effects combine together, a higher value of α appears to lower the
number of incumbents in the market. This then implies that an industry with firms having
a greater propensity to search tends to experience less turnover of firms — the select few who
enter the market have a greater likelihood of remaining in the market.

The degree of technological diversity captured in Figure 14 tells an interesting story. As
search becomes more intensive, the degree of diversity declines over time. Notice that the
mean technological diversity remains quite high throughout the entire horizon for α = 0.
When α = 0, there is no innovation or imitation. Any change in the distribution of the chosen

22



technologies is purely due to the market selection imposed on the diverse efficiency levels that
the firms are endowed with at the time of their entry. As the general level of efficiency in
the industry reaches a sufficiently high level in the long run, further entry becomes rare and
we tend to see a highly stable market with the surviving firms still operating with the diverse
technologies that they originally entered the industry with. There is, hence, no technological
convergence, when there are no innovations or imitations. As α rises above zero, however,
more active search by the incumbent firms drive them toward a group of common technologies,
thereby reducing the overall technological diversity in the long run.

Property 4: The degree of technological diversity is higher when the firms have weaker
propensity to search for improved technologies.

5.3 Effects of Technological Complexity

Industries may be differentiated in terms of how complex their production processes are. In
modern manufacturing where many of the goods and services are assembled, the degree of
technological complexity is often determined by the nature of the product that is generated
(or put together) at the end of the process:

[T]he production process for an automobile engine (just the engine!) had 130
steps: drill, turn, drill, grind, attach component, transfer to next station, and so
forth ... The most archaic plate glass-making process, by contrast, had only basic
five production steps. – Utterback (1994), p.118

Some industries are then characterized by production processes that entail a large number
of component activities, while others involve processes with only a few activities. Furthermore,
a subset of these component activities may be inter-dependent with one another to such an
extent that there are technological complementarities that make the search for the optimal
process design non-trivial.

In our model, these aspects of the production process are captured using N and K, where
N is the total number of component activities in the production system and K is the number
of other activities that are coupled to each activity. Thus far, we have kept the values of N
and K constant at 16 and 2, respectively. A relevant question to ask in this context is how
two industries having different degrees of technological complexity — i.e., different values of
N or K — will evolve over time. Note that a higher value of N for an industry implies that
the firms must look for an improved technology in a larger (higher dimensional) search space,
while a higher value of K implies that a larger subset of activities are coupled to each other
and, thus, the technology landscape is more rugged.

As shown in Kauffman (1993), an increase in either or both of these parameters raises the
number of local optima on the technology landscape. In this section, I explore how the size
of the search space and the ruggedness of the technology landscape affect the speed and the
effectiveness of the firm-level search and what this implies in terms of the evolving industry
structure.
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5.3.1 Size of the Search Space (N)

Let us start with the impact of N on the mean technological diversity [see the bottom figure
in Figure 15]. In the short run when the firms are actively searching for the (locally) optimal
technology, the expansion of the search space — i.e., an increase in N — unambiguously raises
the initial extent of diversity as there exists a wider variety of component activities over which
the new entrants may start out with unequal production methods. In addition, the average
gain in efficiency realized from a successful idea tends to be smaller when N is larger and,
hence, the overall process of search tends to slow down as well. This further adds to the initial
gain in diversity coming from a higher value of N . A more fundamental result, however, is
that the higher degree of technological diversity (introduced into the industry through a higher
value of N) tends to be permanent. As shown in Figure 15, the diversity measure stays high
even in the long run when N is large. The intuition lies in the fact that a higher value of
N raises the number of local optima on the technology landscape so that the incumbent firms
are all likely to move toward distinct optima (technologies) in the long run: The probability
of any two firms sharing a common technology in the long run steady-state is lower when N
is larger.

How does N affect the size of entry and exit? We find that the effects that N has on both¯̄
Et
¯̄
and

¯̄
Lt
¯̄
tend to change their signs over time. Both

¯̄
Et
¯̄
and

¯̄
Lt
¯̄
increase in N in the

short run (between t = 1 and t ≈ 40). This is clearly captured in Figure 15. For t > 40,
however, the effects reverse their signs such that

¯̄
Et
¯̄
and

¯̄
Lt
¯̄
both decrease in N . Because

this long-run impact of N is not clearly visible in Figure 15, I provide additional evidence in
Table 4 where the steady-state numbers of entries and exits are reported as the per-period
average over the last 2,000 periods from t = 2001 to t = 4000. It is clear that the mean
numbers of entries and exits monotonically decline in N in the long run.

Why do we observe these effects and what causes their reversal over time? We first focus on
the short-run result that both

¯̄
Et
¯̄
and

¯̄
Lt
¯̄
monotonically increase in N . Given the fixed rate

of idea generation, α, and the fact that each idea entails changing the method in only one of the
component activities, a search space with a greater number of dimensions (N) implies that the
average gain in efficiency from a successful idea is relatively smaller. At the population level,
the distribution of the efficiency levels held by the active firms in the market tends to shift up
at a much slower rate when N is large. Since the entry decision of a potential entrant is based
on the efficiency level of the minimally efficient active firm, there then exists a larger room for
the potential entrants to come into the market at any given point in time. The range of the
entrants’ efficiency levels will also be wider and this implies that the ensuing competition will
drive a larger number of incumbent firms out of the market, thereby amplifying the shakeout
process in the beginning of the horizon. The numbers of entries and exits captured in Figure
15 for 0 < t < 40 confirm these intuitions: N raises the number of entries in the short run,
but it also raises the number of exits that follow. This result then implies that an industry
with a production system which consists of a greater number of component activities is likely
to experience a greater rate of firm turnovers in the short run. Furthermore, a higher N
appears to initially promote entry to a greater extent than it does exit, so that the number of
incumbents in the market increases in N in the short run.

In contrast to the short-run relationship, the long-run relationship between N and
¯̄
Et
¯̄

(or
¯̄
Lt
¯̄
) is negative. The intuition behind this result is based on the fact that the long-run
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time frame considered here corresponds to that in which many incumbent firms have already
attained their local optima. Note that the potential entrants do not come into the market
unless they have a technology which is at least as efficient as the one held by the least efficient
incumbent. Clearly, the probability of a potential entrant getting a sufficiently good draw on
the technology is lower if a larger number of incumbent firms are already at the local optima
— the entrant must pick a technology which is superior to the ones that are found to be locally
optimal by the incumbent firms. Since a larger N raises the number of local optima, this
tends to also raise the proportion of incumbents who are already at various local optima in
any given period during the long-run time frame. A larger N then reduces the number of
entries and the number of exits that follow. In the end, the long-run number of surviving
incumbents tends to be lower for a larger value of N .

5.3.2 Inter-activity Complementarity (K)

For a given N , an increase in K raises the number of local optima without an expansion of the
search space. For a randomly chosen firm with its current technology, the expected number
of trials to get to a local optimum is then lower when K is higher. Consequently, potential
entrants find it more difficult to enter the market, since the incumbents are likely to find their
local optima rather quickly. Unless the potential entrants enter the market with a technology
which represents a superior local optimum, it is not likely that they will enter the market.
Since only the relatively efficient firms will be able to enter in this case, the number of exits
will be low as well. As confirmed in Figure 16, the rate of firm turnovers then declines in K.

The mean technological diversity rises in K [bottom figure in Figure 16]. This property
is as expected: an increase in K and the consequent increase in the number of local optima
raises the probability that each individual firm will have a unique technology in the long run.

Combining together the effects ofN andK on the mean technological diversity, we establish
the following property.

Property 5: The degree of technological diversity is higher when 1) the production process
entails a greater number of component activities and 2) there is a greater degree of
interdependence among component activities.

6 Concluding Remarks

The model presented here is based on the view that the production process is a system of
inter-dependent activities and the firm is an adaptive entity whose survival depends on its
ability to discover ways to perform various activities with greater efficiency than its rivals.
The search for improved technology is conducted on a pre-defined technological landscape, so
that the specifications of a firm’s current knowledge and its path of knowledge acquisition are
made explicit. The evolution of the industry, as well as the technology, is then driven by
the innovation/imitation process the firms use and the attributes of the market in which the
selection pressure is continually applied on the population of firms through the entry of new
firms and the consequent competition among the incumbent firms.

Many well-known empirical regularities arose naturally in this model, including those on
firm turnovers, evolving market structure, and the intra-industry technological diversity. In
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addition to the generation of regularities at the industry level, we performed extensive compar-
ative dynamics analyses in order to investigate how these regularities are affected by various
industry-specific factors such as the attributes of the market environment, search propensities,
and the nature of the technology space in which individual firm’s learning takes place. All
of the industry-specific factors considered here are found to have significant impacts on the
shakeout dynamics of the industry as well as the evolution of the intra-industry technological
diversity. Of particular interest are the results concerning the turnover of the firms. We
find that the turnover is higher — i.e., the aggregate numbers of entries and exits over time
are simultaneously greater — when: 1) the market demand is larger; 2) the potential entrants
pool is larger; 3) the start-up fund is smaller; and 4) the firms in the industry have a lower
propensity to search. The number of surviving incumbents is higher in the long run when: 1)
market demand is larger; 2) the fixed cost is lower; 3) the pool of potential entrants is larger;
and 4) the production process entails a greater number of component activities. Finally, the
persistent technological diversity within a given industry is found to depend on the extent of
complexity in the production process which gives rise to multiplicity of optimal technologies.
Furthermore, the degree of technological diversity is observed to be higher in the long run
when: 1) the market demand is smaller; 2) the fixed cost is higher; 3) the potential entrants
pool is smaller; 4) the start-up fund is smaller; 5) the firms have weaker propensity to search
for improved technologies; 6) the production process entails a greater number of component
activities; and 7) there is a greater degree of interdependence among component activities.

There are two ways in which this model can be enriched in a substantive manner. First,
innovations and imitations are modelled here as being purely serendipitous — the firms do
not make conscious investment decisions to engage in research and development to raise the
probability of generating a useful idea. Incorporating such an investment decision into the
current model will be an important step. An issue that is critical to pursuing this extension is
whether to model the investment decision as being driven by foresight on the part of the firms
or by a reinforcement learning mechanism which relies purely on their past experiences.

The second aspect of the current model which could be enriched involves the technolog-
ical environment within which the firm search takes place. In the current model, the firms
search in a static technological environment in that the mapping between the methods vector
and the efficiency level remains fixed over time. But what if the environment is subject to
continual external shocks? How would the shakeout phenomenon and the evolving industry
dynamic be affected by the extent of such volatility in production efficiency? This issue can
be tackled by allowing the efficiency contributions of the individual methods to be determined
fresh each period in a systematic manner. By controlling the way the new efficiency level for
a method deviates from the current efficiency level, one can capture the degree of volatility in
the technological environment.

A final remark that I would like to make is that the current model can also be used to explore
the empirically relevant issues other than the ones considered in this paper. Some examples
include the evolving distribution of the firm sizes over the course of industry development as
well as the age distribution of the surviving firms and the relationship between a firm’s age
and the rate of survival. An agent-based computational model such as the one presented here
provides a natural laboratory in which such questions can be answered through a series of
controlled computational experiments. Work is currently underway to address these issues.
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Table 1: Set Notations

Notation Definition

St Set of surviving firms at the end of t
Sta Those in St which were active in t
St−a Those in St which were inactive in t
Rt Set of potential entrants at the beginning of t
Et Set of actual entrants in t
M t Set of firms poised to compete in t (= St−1 ∪Et)
Stb Those in St which were profitable in t
Lt Set of firms which exit the industry at the end of t

Table 2: List of Parameters and Their Values

Notation Definition
Baseline
Value

Parameter Values
Considered

N No. of Activities 16 {10, 16, 22, 32}
K Degree of Complexity 2 {1, 2, 4, 6}

r
No. of Potential Entrants
Per Period

10 {5, 10, 20, 40}

f Fixed Cost 20 {5, 10, 20, 40}

a
Market Size
(Demand Intercept)

200 {100, 200, 400, 600}

b
Start-Up Budget
for a New Entrant

100 {0, 10, 50, 100, 200}

d
Threshold Wealth
Balance for Exit

0 0

α Probability of Search 1.0 {0, .2, .4, .6, .8, 1}
T Time Horizon 4,000 4,000
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Table 3 (a): Total Entrants, Total Exits, and the Net Entrants∗

Parameter Values
P4000
t=1

¯̄
Et
¯̄ P4000

t=1

¯̄
Lt
¯̄ P4000

t=1

¯̄
Et
¯̄−P4000

t=1

¯̄
Lt
¯̄

a 100 52.938 (14.5676) 41.405 (13.0212) 11.533 (3.02491)
200 98.55 (24.8333) 71.842 (21.4587) 26.708 (6.35351)
400 163.011 (42.7108) 108.507 (34.7703) 54.504 (13.0733)
600 219.33 (61.5639) 137.537 (49.705) 81.793 (19.2965)

f 5 97.598 (26.8411) 55.729 (19.4411) 41.869 (12.5571)
10 98.24 (26.4372) 64.878 (20.78) 33.362 (9.10549)
20 98.55 (24.8333) 71.842 (21.4587) 26.708 (6.35351)
40 94.636 (20.8792) 74.211 (19.0068) 20.425 (4.11963)

r 5 70.099 (18.7419) 45.327 (15.4612) 24.772 (5.9531)
10 98.55 (24.8333) 71.842 (21.4587) 26.708 (6.35351)
20 133.036 (32.2883) 105.017 (29.2701) 28.019 (6.05072)
40 187.051 (49.934) 157.157 (47.356) 29.894 (6.0124)

b 0 107.438 (30.2537) 81.541 (26.6077) 25.897 (6.36938)
10 104.867 (28.4903) 78.788 (25.049) 26.079 (6.15846)
50 100.533 (25.8006) 74.333 (22.0036) 26.2 (6.27514)
100 98.55 (24.8333) 71.842 (21.4587) 26.708 (6.35351)
200 95.168 (24.9625) 68.527 (21.7563) 26.641 (6.28853)

α 0.0 336.807 (51.6723) 304.134 (50.1996) 32.673 (3.43014)
0.2 165.139 (36.9995) 138.266 (34.4218) 26.873 (5.59537)
0.4 134.764 (33.6389) 108.152 (30.6356) 26.612 (5.77848)
0.6 115.361 (27.3696) 88.745 (24.262) 26.616 (6.10014)
0.8 106.001 (26.4235) 79.439 (23.0269) 26.562 (6.20473)
1.0 98.55 (24.8333) 71.842 (21.4587) 26.708 (6.35351)

* Mean over 1,000 replications. Standard Deviations are provided in the parenthesis.

Table 3 (b): Total Entrants, Total Exits, and the Net Entrants∗

Parameter Values
P4000
t=1

¯̄
Et
¯̄ P4000

t=1

¯̄
Lt
¯̄ P4000

t=1

¯̄
Et
¯̄−P4000

t=1

¯̄
Lt
¯̄

N 10 153.492 (40.8841) 114.204 (41.7175) 39.288 (2.98294)
16 98.55 (24.8333) 71.842 (21.4587) 26.708 (6.35351)
22 93.359 (24.405) 70.61 (22.2903) 22.749 (5.01509)
32 95.304 (22.6531) 75.293 (21.2315) 20.011 (3.81043)

K 1 113.405 (61.9597) 86.9 (59.6908) 26.505 (5.88325)
2 98.55 (24.8333) 71.842 (21.4587) 26.708 (6.35351)
4 103.194 (18.1872) 77.514 (15.7142) 25.68 (6.16925)
6 117.168 (18.2084) 91.769 (15.7348) 25.399 (5.94653)

* Mean over 1,000 replications. Standard Deviations are provided in the parenthesis.
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Table 4: Steady-State Number of Entrants and Exits

Mean Value per Period

1
2000

P4000
t=2001

¯̄
Et
¯̄
= 1

2000

P4000
t=2001

¯̄
Lt
¯̄
=

N 10 0.012942 0.011539
16 0.002344 0.001750
22 0.000833 0.000520
32 0.000131 0.000088
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Figure 1:  Decision Stages in Period t
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Figure 2:  Jovanovic-MacDonald Data
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Figure 3:  Baseline Results over J-M Time Span
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Figure 4:  Turnover of Firms
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Figure 5:  Market Price, Industry Output, and Concentration
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Figure 6: Distributions of Marginal Costs and Firm Outputs
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Figure 7: Number of Distinct Technologies
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Figure 8: Number of Distinct Technologies at t = 4,000
Frequency Distribution over 1,000 Replications
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Figure 9: Mean Degree of Technological Diversity - Baseline 
Case
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Figure 10: Impact of the Market Size (a)
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Figure 11: Impact of Fixed Cost (f)
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Figure 12: Impact of Potential Entrant Pool (r)
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Figure 13: Impact of Start-up Fund (b)
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Figure 14: Impact of Search Propensity (a)
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Figure 15: Impact of Search Space Size (N)
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Figure 16: Impact of Technological Complexity (K)
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